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a b s t r a c t

Five azidoalkyl-1-amines and p-azidoaniline have been synthesized and complexed with cucurbit[6]uril
in acidic solutions. Isothermal titration calorimetry has been employed to determine the association con-
stant K and the enthalpy of complex formation DH of the azidoalkyl- and azidoarylamines. 4-Azidobutyl-
1-amine forms by far the most stable complex. Cucurbit[6]uril significantly catalyzes the decomposition
of the azidoalkyl- and azidoarylamines studied.

� 2012 Elsevier Ltd. All rights reserved.
n = 1    3
n = 2    4
n = 3    5
n = 4    6

NH2

(CH2)n

N3

(CH2)n

Br

(CH2)n
5% HCl

PPh3

DMF

NaN3
Supramolecular catalysis is a promising field. Indeed, it has al-
ready produced very attractive results for easy syntheses of com-
pounds that otherwise would be difficult to obtain under mild
conditions and with satisfactory regioselectivity.1 In order to
achieve this goal, in general a host molecule is used to mediate
the reaction. Much work has already been done on the basis of
self-assembled capsules,2 calixarenes,3 hemicarcerands,4 and
cyclodextrins5 the latter host molecules being especially useful be-
cause of their intrinsic aptitude to transfer chirality to entrapped
guest molecules.5a,6 Since the discovery7 and the rediscovery of
cucurbit[n]urils (n = 5, 6, 7, 8, and 10) and their complexing abil-
ity,8 this family of host molecules is gaining ever more significance
for applications in slightly acidic aqueous media. This is due to
their high affinity for positively charged organic molecules such
as ammonium compounds, combined with a relatively high speci-
ficity owing to their rigidity.9 With cucurbit[6]uril (CB[6]), Mock
has shown their ability to catalyze the 1,3-dipolar cycloaddition
of azidoalkylamines to aminoalkynes, leading to the exclusive for-
mation of only one triazole regioisomer.10 Since then, this ap-
proach has been used for the preparation of a self-threading
polyrotaxane11 and for the synthesis of oligotriazoles.12 Further
examples were reported with the highly stereoselective photodi-
merization of diaminostilbenes13 and stilbazoles14 in the larger
cavity of cucurbit[8]uril. In contrast, cucurbit[7]uril has been uti-
lized to mediate the dimerization of aminopyridine to a tricyclic
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o.brinker@univie.ac.at (U.H.
compound,15 producing exclusively the anti-trans isomer and
being able to stabilize it with respect to decomposition. All these
synthetic applications have in common that they are employing
protonated nitrogen compounds as a substrate. The presence of
this functional group greatly enhances complex formation, and as
a consequence, the catalytic efficiency of the system.

In the course of our efforts to investigate the possibilities to im-
prove the synthetic utility of azides and nitrenes, we recently could
demonstrate the remarkable regioselectivity of the monofunction-
alization of a resorcinarene cavitand using an encapsulated phenyl
azide.3b Therefore, we now have prepared inclusion complexes of
azidoalkyl- and azidoarylamines in cucurbit[6]uril to investigate
scope and limitations of this approach. In this Letter, we report
about the preparation and the stability of these complexes.

Azidoalkylamines 3–7 were synthesized from dibromoalkanes 1
in analogy to a known literature procedure (Scheme 1).16,17 The
first step corresponds to the preparation of diazides 2 by thermal
treatment of the corresponding dibromides with NaN3 in DMF
(80 �C, 20 h) followed by reduction of one azido group with PPh3

using a slightly modified Staudinger reaction.18 The reduction of
 1  2
n = 6    7N3N3Br

Scheme 1. Synthesis of azidoalkylamines 3–7.
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Figure 1. Job plot of 4+@CB[6].

Table 1
Association constants of cucurbit[6]uril complexes 4+ and 5+ in 7.6 M DCl

4+ 5+

K (M�1) 676 108

Figure 2. ITC titration curves of 6+ and 8+ with CB[6] in 50% formic acid.

Table 2
Energetic parameters and association constants of the CB[6] complexes in 50% formic
acid

4+ Butyl 6+ Pentyl 7+ Hexyl 8+ Aniline

K (M�1) 5500 ± 50 514 ± 5 713 ± 5 655 ± 5
DH (KJ/mol) �22.8 �24.1 �26.3 �9.6
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the second azido group is avoided by use of cold temperatures and
a two-phase system: the freshly generated azidoalkylamine is pro-
tonated and extracted into the acidic aqueous phase and therefore
not available for a second reduction. The hydrochloride salts were
obtained by bubbling dry hydrogen chloride into an ethereal solu-
tion of azidoalkylamines 3–7 in their free base form. For all reac-
tions the yields were uniformly high (85–90%).

The complexes were prepared by dissolution of azidoalkylamine
hydrochloride in water followed by addition of cucurbit[6]uril.19 A
putative complex of 4-azidobutyl-1-ammonium 4+ in cucur-
bit[6]uril is represented in the graphical abstract.20 The stoichiom-
etry of the complexes 3+@CB[6], 4+@CB[6], and 5+@CB[6] was
determined by 1H NMR spectroscopy in 7.6 M DCl using the method
of continuous variation (Job plot, Fig. 1). A 1:1 stoichiometry was
found for all complexes. The association constants were determined
by titration to give 676 M�1 for 4+@CB[6],21 and 108 M�1 for
5+@CB[6]22 (Table 1). Some unsuccessful attempts were made to
obtain single crystals of the complexes.23

We also employed isothermal titration calorimetry (ITC) with 1/
1 (v/v) HCO2H/H2O as the solvent to determine the binding
constants of azidoalkylamines in CB[6] (Fig. 2). This choice of sol-
vent combination was partly dictated by the poor solubility of
cucurbit[6]uril in pure water and in common solvents and by the
technical requirements of the ITC apparatus used. The binding
properties of the four azidoamines 4, 6, 7, and 8 are shown in Ta-
ble 2. Due to the larger benzene ring, p-azidophenylammonium
8+ (K = 655 M�1) is bound about eight times weaker than 4-azido-
butylammonium 4+ (K = 5500 M�1) which seems to be a perfect fit
for the cavity of cucurbit[6]uril. Chain lengths longer than four
carbon atoms led to a much weaker bonding (K = 514 M�1 for 6-
azidopentylammonium 6+ and K = 713 M�1 for 8-azidohexylam-
monium 7+). This preferential binding for the butyl group can be
found again in previous works,24 where it has been shown that
complexation of butylammonium in cucurbit[6]uril leads to a
highly negative value for the reaction enthalpy combined with an
almost maximal entropic gain among all linear alkylammoniums.
However, in comparison to other complexes of alkylammoniums
in cucurbit[6]uril,24 the association constants are relatively low,
indicating that the azido group has a negative effect on the stability
of the complex, which is probably due to the presence of an elec-
tron lone-pair on its nitrogen atoms generating a repulsive interac-
tion with a rim of the host. A second reason for the low measured
affinity is the choice of solvent, for example, a strongly acidic solu-
tion, which leads to a competition for binding with protons and
formic acid.24 The binding constants of comparable amines are
known to be much larger in water25 or even in 0.05 M NaCl.24

Whereas azidoammoniums 4+–8+ are stable in acidic solution at
room temperature, they decompose completely within a week in
the dark, when cucurbit[6]uril is added. Considering that pKa shifts
in the magnitude of 4–5 units have already been reported upon
complexation,25,26 a plausible explanation is that protonation of
the azido group is facilitated by complex formation, generating a
dication, which can be efficiently stabilized by the CO groups at
the rims of the host. The decay has been observed by 1H NMR spec-
troscopy showing the disappearance of azidoammonium X+ after
only a few hours. However, in the liquid phase, no products of
low molecular weight could be detected. Similar results showing
the efficacy of cucurbiturils as supramolecular acid catalysts have
already been published.27 Our experiments also have shown that
the decomposition of an azidoalkylamine in cucurbituril cannot
proceed through a catalytic cycle. In fact, stoichiometric amounts
of cucurbit[6]uril are required because the major products, the cor-
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responding diamines, have a much higher affinity to the host24,28

than the starting compounds, thereby forming a poorly soluble
complex.

In conclusion, azidoalkylamines 3–7 and azidoarylamine 8 form
complexes with cucurbit[6]uril in acidic aqueous solution. Among
these compounds, the best fit is provided by butyl derivative 4 for
which an association constant of 5500 M�1 has been determined.
The solutions of 3–8@CB[6] in 7.6 M DCl have proven to be chem-
ically unstable. Although the studied azidoalkyl- and azidoarylam-
ines can be kept in this solvent at room temperature, they do
decompose rapidly in the presence of cucurbit[6]uril.
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