Steric and Electronic Factors in 1,3-Dipolar Cycloadditions. The Stereochemical Course of the Addition of Dimethyl Aryl- and Alkyldiazomethylphosphonates to Norbornadiene

HUGUETTE COHEN AND CLAUDE BENEZRA

Department of Chemistry, University of Ottawa, Ottawa, Canada, KIN 6N5 Received July 16, 1973

The addition of 14 dimethyl aryl- and alkyldiazomethylphosphonates, $RC(N_2)P(O)(OCH_3)_2$, to norbornadiene has been studied and the stereochemistry of the resulting $exo-\Delta^1$ -pyrazolines determined by n.m.r. The *anti/syn* ratio of the cycloadducts is discussed in terms of steric and electronic factors. For alkyldiazomethylphosphonates steric factors are the dominant ones, while with aryldiazomethylphosphonates electronic factors seem to be of importance.

L'addition de 14 aryl- et alkyldiazomethylphosphonates, $RC(N_2)P(O)(OCH_3)_2$ au norbornadiène a été étudiée et la stéréochimie des Δ^1 -pyrazolines-*exo* formées a été déterminée par r.m.n. Le rapport *anti/syn* des produits d'addition est discuté en termes de facteurs stériques et électroniques. Pour les alkyldiazomethylphosphonates, ce sont les facteurs stériques qui sont prédominants alors que pour les aryldiazomethylphosphonates les facteurs électroniques sont importants.

Can. J. Chem., 52, 66 (1974)

1,3-dipolar cycloaddition reactions provide a general route to five-membered rings containing several heteroatoms (1). The most generally accepted mechanism is the one proposed by Huisgen (1), namely, that cycloaddition is a concerted "no-mechanism" reaction (2). Recently, Firestone (3) has proposed a two-step diradical mechanism. A clear assignment of the role of steric and electronic factors should give some insight into the mechanism of such reactions: steric factors should be more important in a concerted one-step than in a two-step reaction.

Although 1,3-dipolar cycloadditions with activated double bonds are well documented, there has been no systematic study of the reaction of dipoles with isolated double bonds whose reactivity stems from their strain. With dimethyl diazoalkylphosphonates, $RC(N_2)P$ -(O)(OCH₃)₂, the addition to an olefin such as norbornadiene results in the formation of two Δ^1 -pyrazolines (Fig. 1) and the *anti* to *syn*¹ ratio should give some information about the influence of the R group. For $R = CH_3$ and C_6H_5 we found recently (4) that the distribution of adducts could not be explained by consideration of steric factors only and we therefore undertook the study of the addition of 14 dimethyl alkyl-

¹The words *anti* and *syn* refer to the relative position of the C_8 bridge and of the dimethylphosphono group.

and aryldiazomethylphosphonates to norbornadiene. The results are reported here.

Results

All the diazomethylphosphonates necessary for this study, except the *p*-nitrophenyl derivative **5**, were prepared by a general route devised by Seyferth and co-worker (5) from α -ketophosphonates whose tosylhydrazone derivatives decomposed in basic medium to yield the desired starting material. Because of the reactivity of trialkyl phosphite toward *p*-nitroaromatics (6), the Regitz "diazo transfer method" (7) was used to make compound **5**.² The synthesis and ¹³C n.m.r. spectra of some of them (**1**–**5** and **7**) have appeared recently (8).

All cycloadditions were carried out under the same conditions, as described previously (4); a

²After our manuscript (ref. 8) had been submitted for publication, a paper by Regitz and co-workers (7b) described compounds 2 and 5. The physical constants and the spectral data of their compounds agreed well with those of our compounds.

mixture of the diazophosphonate, norbornadiene in more than 40-fold excess, and methylene chloride was heated at $55-60^{\circ}$.³ The addition reaction was fast (24 h for more than 90% completion) with components 1-6, 9-11, and 14, and much slower for derivatives 7, 8, 12, and 13. See Experimental section for details.

The configurations of the pyrazolines were determined essentially by proton n.m.r. and the anti/syn ratio could be estimated directly on the n.m.r. spectrum of the crude by integrations of the signal due to the H_9 protons.⁴ The n.m.r. spectra of some of the aryl pyrazolines (14-23, and 26) have been described elsewhere (9). Of the four possible diastereomeric pyrazolines only the exo adducts were formed, a result quite common in addition to the bicyclo[2.2.1]heptene or -heptadiene systems (10). The exo attachment of the pyrazoline ring is proved by the existence of a 2.0 Hz long-range H_{8s}CCCH₁₀ coupling (11) and the absence of any H10,H4 vicinal coupling. The configuration at C3 is based essentially on the existence of a large (19-20 Hz) P,H_{10} coupling in the *anti* epimer and of a small (6-8 Hz) P,H_{10} coupling in the syn derivative. This is in accord with the known dihedral angular dependence of P-C-C-H coupling (12) in phosphonates; Dreiding models show that the pyrazoline ring is planar in this system and that the dihedral P,H angles are near 0° in the anti epimer (large ${}^{3}J_{PH}$ coupling) and near 120° in the syn epimer (small ${}^{3}J_{PH}$ coupling) (12).

Although this contrasting difference in P,H vicinal coupling allows unambiguous assignments to be made, it is not always sufficient because, in the case of the alkyl derivatives, the H_{10} signal lies under the absorptions of the alkyl protons. In those cases, the stereospecificity of P-C-N=N-C-H homoallylic couplings (9), 4-4.8 Hz in the anti configuration and 5.5-6.6 Hz in the syn configuration, allows unambiguous assignments to be made.

In the case of the *syn* benzyl derivative **39**, the signal for H_9 is shifted upfield (δ 3.40 p.p.m.) as compared with the usual 4.67–4.83 p.p.m. range for this absorption in *syn* derivatives. There is no doubt about the assigned configuration since

the P,H₁₀ coupling is 6.0 Hz (P,H₁₀ = 18.0 Hz in the *anti* epimer). This unusual shielding effect probably corresponds to a preferred conformation of the phenyl ring; additional evidence for preferred conformation is the finding that vicinal P—C—CH₂(C₆H₅) couplings are different for the two benzylic hydrogens.

The mixture of epimeric pyrazolines was separated on a silica gel column chromatograph. In one instance, it was not possible to isolate pure syn derivative (compound 24) and the amount of this epimer was estimated by n.m.r. of 24 with the starting diazo compound. The results of cycloaddition are summarized in Table 1.

Discussion

All the pyrazolines isolated possess the *exo* configuration. Radical (13) as well as electrophilic (10) additions to norbornene lead mostly, if not exclusively, to products resulting from *exo* attack. Additions to norbornadiene are more complex. Homolytic additions usually give mixtures of nortricyclene derivatives, as well as *exo*-norbornene derivatives (14). Some *endo* products have been reported for the addition of thiols to polyhalonorbornadienes (15). Addition of carbenes to norbornadiene leads to a fair amount of *endo* attack (16). In contrast to the number of products obtained with norbornadiene in radical, electrophilic, or carbenic

TABLE 1.	Results of the cycloaddition
	reactions

Diazo compound $RC(N_2)P(O)(OCH_3)_2$		Amount of pyrazolines (%)		
No.	ro. R		syn	
1	p-CH ₃ OC ₆ H ₄	95	5	
2	p-CH ₃ C ₆ H ₄	90	10	
3	p-BrC ₆ H ₄	90	10	
4	C ₆ H ₅	95	5	
5	$p-NO_2C_6H_4$	93	7	
6	p-CH₃OCOC ₆ H₄	91	9	
7	o-CH ₃ OC ₆ H ₄	$\sim 100^{b}$	~ 0	
8	α -Naphthyl	$\sim 100^{b}$	~ 0	
9	β-Naphthyl	90	10	
10	CH ₃	75	25	
11	C ₂ H ₅	60	40	
12	iso-C3H7	50	50	
13	tert-C4H9	0	100*	
14	$C_6H_5CH_2$	55	45	

*The syn = 100; estimated accuracy $\pm 2\%$; *Estimated by n.m.r. and confirmed by chromatographic separation: no trace of the other epimer could be detected.

³The reaction was followed by n.m.r.: appearance of new P—OCH₃ peaks and of characteristic H₉ absorptions.

⁴The estimate was confirmed within $\pm 2\%$ by chromatographic separation of the mixture.

	TABLE 2.	Pyrazolines	
H anti	P(0)(OCH ₃) ₂	A	$P(O)(OCH_3)_2$
Compound No.		R	Compound No.
15 17 19 21 23 25 27 28 29 31 33 35 	p-CF p-CF p-Br C ₆ H p-N(p-CF o-CF α-Ni β-Ni G-Ni C2H iso-C tert- Cc ^F	$H_{3}OC_{6}H_{4}$ $H_{3}C_{6}H_{4}$ $C_{6}H_{4}$ $D_{2}C_{6}H_{4}$ $H_{3}OCOC_{6}H_{4}$ $H_{3}OCOC_{6}H_{4}$ $H_{3}OC_{6}H_{4}$	16 18 20 22 24 26 30 32 34 36 37 39

additions, only adducts resulting from *exo* attack have been reported in 1,3-dipolar cycloaddition reactions. Thus, although the exclusive formation of $exo-\Delta^1$ -pyrazolines is certainly striking, it is not unprecedented: additions of nitrilimines (17*a*), azides (17*b*), and diazoalkanes (18) to norbornadiene give mono- and bisadducts resulting from exclusive *exo* attack.

The results shown in Table 1 clearly reveal that steric factors are dominating, except in the case of the aromatic derivatives. This is particularly striking for the alkyldiazophosphonates 10-13: as the size of the R group increases from methyl to *tert*-butyl, the amount of *syn*-pyrazoline increases from 25 to 100%. This is in accord with a concerted mechanism of addition. Incidentally, this would suggest that the dimethyl-phosphono group is almost as bulky as an isopropyl group.

It is more difficult to explain the results for the aromatic derivatives (15-30). A consideration of most of the 1,3-dipolar cycloadditions studied by Huisgen's group shows that kinetic control of the reaction is important (2). We have evidence that the reactions we are studying are also kinetically controlled: there was no change in the *anti/syn* ratio with time and the pyrazolines did not epimerize when submitted to the same conditions. Therefore, the *anti/syn* ratio of the products should reflect the differences in energy between the transition states leading to the *anti* and to the *syn* pyrazolines, respectively.

Steric factors alone could not explain the predominance of the anti derivatives. From the A values of the phenyl group (3.0 kcal/mol) (19) and of the $P(O)(OCH_3)_2$ group (2–3 kcal/mol),⁵ there seems to be little difference in size between those two groups and one would expect a 1:1 anti/syn ratio rather than the $\sim 9:1$ ratio observed. Of course, these A-values should be considered as indicative only, since they refer to 1,3-diaxial interactions in the cyclohexane system. In fact, depending on its orientation, a phenyl group can be "smaller" than predicted from the A-value (20) and, indeed, there are examples in the literature where a phenylmethyl nonbonded 1,3-diaxial interaction in a cyclohexyl derivative seems to be preferred to a corresponding methyl-methyl interaction (21). A possible explanation is therefore that the phenyl group, at least in the system studied here, is smaller than the dimethylphosphonate. This interpretation does not seem satisfactory to us

⁵J. L. Bravet and C. Benezra, unpublished results.

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF NORTH TEXAS LIBRARY on 11/10/14 For personal use only.

COHEN AND BENEZRA: 1,3-DIPOLAR CYCLOADDITIONS

FIG. 2. Transition states leading to the *anti* and to the *syn* Δ^1 -pyrazolines respectively.

because of the results for the *o*-methoxyphenyl (7) and the α -naphthyl (8) derivatives: it is evident that the α -naphthyl group, at least, is bulkier than the phosphorus moiety and, still, only the *anti* derivative is obtained.

We rather favor a dominating effect of electronic factors in the aryl derivatives. Since we get mostly the *anti* derivatives, this means that the transition state leading to these products is stabilized, as compared with that for the *syn* ones (Fig. 2). This stabilization can be envisaged in three different ways.

In the transition state of 1,3-dipolar cycloadditions, the dipole is bent (2). Stabilization of the "anti" arrangement depicted in Fig. 2 can occur by favorable coulombic interaction between the phenyl ring and the nitrogen end of the dipole. Such an electrostatic effect can occur only when the phenyl and the nitrogen end of the dipole are *cis* to each other.

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF NORTH TEXAS LIBRARY on 11/10/14 For personal use only.

Stabilization can also occur from resonance: the steric hindrance of the C_8 bridge could cause the aromatic ring to be *coplanar* with the dipole in the "*anti*" arrangement, while in the "*syn*" alternative, the aromatic ring is a free rotor.

Finally, the dipole in an "anti" arrangement (with the aromatic ring cis to the nitrogen end of the dipole) could react faster than in the other conformation.⁶ This difference is not unprecedented in the literature. For instance, the cis and trans forms of azomethine ylide dicarboxylic esters have a very different reactivity (22). In the particular case of the addition to norbornadiene, it is not possible to draw a clear-cut conclusion concerning this point; the arrangement depicted

FIG. 3. Transition state leading to the *anti* Λ^1 -pyrazoline with an "anti" arrangement of the phenyl *vs.* the nitrogen end of the dipole.

in Fig. 3 (with the phenyl "trans" to the nitrogen end of the dipole), which could also lead to the *anti* pyrazoline, seems to be precluded for steric reasons. It is of interest to note that there is no substituent effect: the difference between the *anti/syn* ratio found in the case of the *p*-methoxyphenyl derivative for instance and of the *p*-nitrophenyl is within experimental error $(\pm 2\%)$.

Preliminary results for the addition of dimethyl aryldiazomethylphosphonates to 7-oxabenzonorbornadiene indicate that the effect of the $--CH_2$ — bridge is not important: essentially the same *anti/syn* ratio is obtained. It seems therefore that polar effects predominate for aryldiazophosphonates. More work along those lines is in progress.

Experimental

Trimethyl phosphite was purchased from Aldrich Company and distilled before use. The benzoyl and naphthyl derivatives were prepared according to a published procedure (5). Silicic acid (Merck (0.05-0.20 mm)) was used for column chromatography. The i.r. spectra were recorded on a Beckman-20 i.r. Spectrometer either in chloroform solutions or as Nujol mulls. The n.m.r. spectra were run on a HA-100 Varian Spectrometer in deuteriochloroform solutions and chemical shifts are given in δ p.p.m. values with TMS as internal reference. Analyses were performed in Organic Microanalyses Laboratories (Dr. C. Daesslé) in Montreal. Norbornadiene was purchased from Aldrich Company and used as such.

Preparation of p-Carbomethoxybenzoyl Chloride

Since the preparation of p-carbomethoxybenzoyl chloride has not been described yet and since that of the monomethyl ester of terephthalic acid is described in a patent (23), we give here detailed procedures, starting from the commercially available dimethyl terephthalate (purchased from Baker).

$$p$$
-MeOOC--C₆H₄--COOMe $\xrightarrow{(1) \text{HO}^{+}}$

p-MeOOC-C₆H₄-COCl

In a three-necked round-bottom flask equipped with a condenser, a dropping funnel, and a mechanical stirrer, was put dimethyl terephthalate (45 g) in 200 ml anhy-

⁶A referee suggested that determination of the frontier orbital energies and of the coefficients of the terminal atoms in the HOMO of the dipole could perhaps show that the *cis* form of the dipole (Fig. 2, transition state "*anti*") reacts faster than the *trans* form (Fig. 2, "*syn*"). This could indeed lead to conclusive results and those calculations will be undertaken and reported later.

	12 March 10	,			
	14 A A A A A A A A A A A A A A A A A A A				
	1			ja da ser se	
· · · · · ·	$\{q_{i}\} \in \{1, \dots, n\}$	****		and the second	
	- · · · · · · · · · · · · · · · · · · ·				
	1971 ())))))))))))))))))))))))))))))))))))			11 · .	
		1			
	en de la companya de	1 () () () () () () () () () (and the second		
	eller til		the last		
	Constant Const				
		 A graduate state 			
	1.1.1	1 A		A 42 YO 42	
		4. Mar.		for the second	
				1. The second	
	16.61, 6	「「「「」」「「「」」「「」」「「」」」「「」」」			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			14 T T T T T T T T T T T T T T T T T T T		
	10.41,41		14. C		
			en e		

TABLE 3.	Ketophosphonates	RC(0)P(0	$(OCH_3)_2$

	BCOC1				Analys	is (%)		
R	(g)	$P(OCH_3)_3$ (ml)	RCOP(O)(OCH ₃) ₂	Boiling point	Calcd.	Found	Infrared	resonance
p-CH ₃ OCOC ₆ H ₄ ^{<i>a</i>}	27.1	19	23.55*	165–170° (0.015 Torr)	C 48.54 H 4.81 P 11.38	48.71 4.64 10.92	C==O 1660 ^c P==O 1240 POC 1050	3.91 (d, 6H, POCH ₃ , $J_{PH} =$ 11.2), 8.06, 8.15, 8.23, 8.32 ^d (4H aromatic)
α-Naphthyl	18.7	12	23.8	Oil	C 58.87 H 4.94 P 11.68	58.78 5.01 11.65	C=O 1670 P=O ~1250 POC 1040	3.93 (d, 6H, POCH ₃ , $J_{PH} =$ 10.8), 7.45-9.05 (m, 7H, H aromatic)
β-Naphthyl	18.8	12	23.8	Oil	C 58.87 H 4.94 P 11.68	59.11 4.97 11.31	C==O 1650 ^e P==O 1240 POC 1050	3.94 (d, 6H, POCH ₃ , $J_{PH} =$ 10.9), 7.28–8.20 (m, 7H, H aromatic)
C₂H₅ª	31	12	29.70 ^b	70° (0.05 Torr)	C 36.15 H 6.67 P 18.64	36.49 6.61 18.72	C=O 1700 P=O 1265 POC ~1040	1.11 (d of t, 3H, CH_3CH_2 , $J_{HH} = 7.25$, ${}^{4}J_{PH} = 1.0$), 2.86 (d of 9, 2H, CH_3CH_2 —, ${}^{3}J_{PH} = 1.0$), 3.88 (d, 6H, POCH ₃ , $J_{PH} = 11.0$)
C ₆ H₅CH₂	15.4	15	19.72	125° (0.1 Torr)	C 52.40 H 5.72 P 13.51	52.27 ^f 5.63 13.33	C==O 1675 P==O 1210 POC ~1030	3.76 (d, 2H, $CH_2(CO)$, $J_{PH} =$ 11), 3.81 (d, 6H, P—O—CH ₃ , $J_{PH} =$ 11.2), 2 multiplets at ~7.3 and ~7.8 (5H, H aromatic)

"Both ketophosphonates purified by distillation under vacuum. ^bAfter distillation. ^cThe (CO)OCH₃ absorption appeared at 1720 cm⁻¹. ^dAA'BB' part of an AA'BB'X (X = P); positions of main absorptions given. ^eThere was another strong absorption at 1625 cm⁻¹. ^fAnalysis performed by Chemalytics Inc., Tempe, Arizona (Dr. A. M. Yates).

COHEN AND BENEZRA: 1,3-DIPOLAR CYCLOADDITIONS

		••• •		Analysis	(%)
R	RCOP(O)(OCH ₃) ₂ (g)	Hydrazone ^a (g)	Melting point	Calcd.	Found
p-CH ₃ OCOC ₆ H ₄	20	25.8	118–120°	C 49.09 H 4.78 N 6.36 P 7.02	49.05 4.75 6.08 6.71
α-Naphthyl	18.5	26.7	127°	C 55.42 H 4.88 N 6.46 P 7.14	55.68 4.98 6.60 7.00
β-Naphthyl	18.5	26.9	193–194°	C 55.42 H 4.88 N 6.46 P 7.14	55.27 4.89 6.50 6.97
C ₂ H ₅	20.7	34	155–160°	C 43.11 H 5.72 N 8.37 P 9.26	42.85 5.59 8.51 9.50
C ₆ H ₅ CH ₂	11.4	16.8	125–126°	C 51.52 H 5.33 N 7.07 P 7.81	51.10 ^b 5.44 7.44 7.46

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF NORTH TEXAS LIBRARY on 11/10/14 For personal use only.

*Analysis performed by Chemalytics Inc., Tempe, Arizona (Dr. A. M. Yates).

drous methanol. A solution of KOH (12.9 g) in methanol (250 ml) was added dropwise for 3.30 h while the temperature of the reaction mixture was maintained at 75° (or a little less). After cooling to room temperature, the precipitate was filtered and was further dissolved in water (1500 ml); only the monosalt was soluble and the unreacted diester was filtered off. The filtrate was acidified with a 10% HCl solution (pH 2) and a precipitate formed which was filtered and washed several times with water. The monoacid was dried (at a temperature less than 80°) and 28.5 g were obtained (m.p. 221°, lit. (24) m.p. 230°).

This acid was dissolved in 15 ml anhydrous benzene to which 1 drop of pyridine had been added. Then thionyl chloride (80 ml, from a freshly opened new bottle) was added and the mixture was refluxed for 5 h. Excess SOCl₂ and benzene were removed by distillation under vacuum (water pump); 50 ml anhydrous benzene were added and further distillation (water pump) removed the remaining SOCl₂. The monochloride (27.10 g) was purified by crystallization from cyclohexane, m.p. 52-53° (b.p. 90°, 0.015 Torr)., i.r. (CHCl₃): 1730 (COOCH₃), 1785 (COCl).

Anal. Calcd. for C9H7ClO3 (mol. wt. 198.61): C, 54.43; H, 3.55; Cl, 17.85. Found: C, 54.49; H, 3.68; Cl, 18.02.

Preparation of the Ketophosphonates and of the Diazophosphonates

ż

The ketophosphonates were prepared from the acyl chlorides, according to Seyferth's general procedure (5).

It is very important for the preparation of the p-carbomethoxyphenyl and benzyl derivatives that the Arbuzov reaction be conducted in dilute solution to avoid polymerization. In a typical run, to an anhydrous, vigorously stirred benzene (200 ml) solution of phenylacetyl chloride (20 g) was added an anhydrous benzene (100 ml) solution of trimethyl phosphite (10 g) over 4 h with cooling in an ice-bath. After the addition was completed, the mixture was left under nitrogen, for 24 h at room temperature, then the benzene was distilled off and the phosphonate separated by distillation.

The diazophosphonates, except the *p*-nitrophenyl derivative (8), were prepared from the tosylhydrazone derivatives of the ketophosphonates, as described previously (4).

Tables 3-5 give the details (weight, analysis, etc.) for new compounds, as well as the spectral data.

Kinetic Studies of the Cycloaddition Reaction

All the runs were done at the same time by heating mixtures of 1 mmol of the diazophosphonate, 5 ml norbornadiene, and 0.5 ml of CH_2Cl_2 in the same bath, at a temperature of 55-60 °C. A sample was taken after 2, 5, 10, 24, and 50 h, evaporated to dryness (no more norbornadiene present), and the T-60 n.m.r. spectrum in CDCl₃ was taken. It was possible to estimate the amount of cycloadducts formed by integrating the signal due to H₉ which was well isolated from the others and by comparing it with the CH_3O signals. Since the CH_3O signals were quite different in the pyrazolines and in the diazo compounds, it was also possible to estimate the com-

	Undrogono		Analys	is (%)		
R	(g)	Diazo compound ^a (g)	Calcd.	Found	Infrared	Nuclear magnetic resonance
<i>p</i> -CH₃OCOC ₆ H₄ 6	15.6	9.56 (orange crystal m.p. 48° dec. 140°)	C 46.48 H 4.61 N 9.86 P 10.90	46.81 4.62 9.71 10.89	C=N ₂ 2080 ^b P=O 1240 POC 1040	3.82 (d, 6H, POCH ₃ , J _{PH} = 12.2) 3.90 (s, 3H, CH ₃ OCO), 8.05, 7.96, 7.19, 7.15° (AA'BB', 4H, H aromatic)
α-Naphthyl 8	13	4.4 (yellow oil)	C 56.53 H 4.74 N 10.13 P 11.21	56.30 4.95 10.27 10.93	$\begin{array}{c} C = N_2 & 2080 \\ P = O & \sim 1220 \\ POC & 1030 \end{array}$	3.81 (d, 6H, POCH ₃ , J _{PH} = 10.5), 7.73 (complex m, fine structure 7H)
β-Naphthyl 9	12	8.0 (orange crystal m.p. 40° dec. 137°)	C 56.53 H 4.74 N 10.13 P 11.21	56.40 4.85 9.85 10.98	$\begin{array}{c} C = N_2 & 2080 \\ P = O & \sim 1240 \\ POC & 1030 \end{array}$	3.78 (d, 6H, POCH ₃ , $J_{PH} = 12.0$) 7.20-7.90 (m, 7H, fine structure)
C2H5 11	18	6.5 (yellow oil)	C 33.71 H 6.22 N 15.72 P 17.38	33.97 6.44 15.67 17.52	$\begin{array}{ccc} C = N_2 & 2080 \\ P = O & 1265 \\ POC & \sim 1040 \end{array}$	1.17 (t, 3H, CH_3CH_2 , $J_{HH} =$ 7.5), 2.20 (d of q, 2H, CH_3CH_2 , $J_{PH} =$ 9.5), 3.75 (d, 6H, POCH ₃ , $J_{PH} =$ 12.0)
C6H₅CH2 14	11.0	7.3 (yellow oil)	N 9.46 P 10.45	9.45 10.45	C=N ₂ 2030 P=O ~1290 POC ~1050	3.42 (d, 2H, $CH_2C_6H_5$, $J_{PH} =$ 9.6), 3.67 (d, 6H, POC H_3 , $J_{PH} =$ 12.0), 7.27 (m, H aromatic)

TABLE 5. Diazomethylphosphonates $RC(N_2)P(O)(OCH_3)_2$

.

*All the diazo compounds were purified by chromatography on a silica gel column.
*CO at 1715 cm⁻¹.
*AA 'BB' part of an AA 'BB'X (X = P) spectrum, the positions of the 4 main peaks (2 of them are doubled by *J_{PH} coupling) are given.

Table 6.	% completion of the cycloaddition reaction	
----------	--	--

Diazo		Re	action	time (h)		
No.	1	2	5	10	24	50
1	n.m.ª	20	40	55	90	90
2	n.m.	15	30	50	90	90
3	n.m.	25	30	55	90	95
4	n.m.	30	55	70	90	95
5	0	n.m.	50	65	75	95
7	0	0	0	8	11	60
10	_	75	83	100*	_	_
11	_	25	50	60	90	_
12	0	0	0	0	10	45

^aNot measurable. ^bNo more trace of the starting material.

72

CAN. J. CHEM. VOL.

52, 1974 Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF NORTH TEXAS LIBRARY on 11/10/14 For personal use only.

TABLE 7. Cycloaddition conditions; cycloadducts

		٤						
						Pyrazoline		
$RC(N_2)P(0)(OCH_3)_2$	•	Products isol	ated			Analys	sis %	
R	Reaction time (h)	Compound	Weight (g)	Compound	Melting point	Calcd.	Found	Infrared ^a
p-CH ₃ OC ₆ H ₄	24	Diazo 1	0.210	anti 15	129–130°	C 59.48	59.86	P==0 ~1240
		syn 16	0.180			N 8.16 P 8.89	8.29 8.85	P0C ~1050
1		anti 15	1.97	syn 16	Oil	C 59.48	59.17	P=0 ~1250
						H 6.16 N 8.16 P 8.89	6.50 8.50 9.10	P0C ~1050
p-CH ₃ C ₆ H ₄	24	Diazo 2	0.260	anti 17	108–109°	C 61.44 H 6 36	61.57 6.50	P==0 ∼1230
		syn 18	0.300			N 8.42 P 9.31	8.64 9.10	P0C~1040
2		Mixture	0.210	e.	.0	11 12 0	61 57	
		anti 17	2.98	Syn 18	0	C 01.44 H 6.36	6.42	P=0 ~1240
						N 8.42 P 9.31	8.64 9.50	$P-OC \sim 1050$
p-BrC ₆ H ₄	24	Diazo 3	0.100	anti 19	147–148°	C 48.36 H 4 56	48.06 4.86	P==0 ~1230
		syn 20	0.340			N 7.05 P 7.80	7.15	POC ~1040
3		anti 19	3.100		5	76 76	18 76	
				syn 20	0	H 4.56	4.80	P=0 ~1220
						N 7.05 P 7.80	6.91 7.50	POC ~1050

:

COHEN AND BENEZRA: 1,3-DIPOLAR CYCLOADDITIONS

.

÷.

		: *
		· · ·
		N 11

TABLE '	7	(Continued)
---------	---	-------------

		Dreducto in	alatad			Pyrazolin	e	
$RC(N_2)P(O)(OCH_3)_2$						Analysis	s %	
R	time (h)	Compound	(g)	Compound	Melting point	Calcd.	Found	Infrared ^a
C ₆ H₅ ^b	24	Diazo 4	0.2	syn 22	Oil	C 60.37 H 6.02	60.56 6.04	P==O ∼1240
4		syn 22	0.1			N 8.80 P 9.73	8.72 9.35	P-OC ~1050
		anti 21	1.9					
$p-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	24	Diazo 5	0.280	anti 23	124°	C 52.90 H 4.99	53.19 5.05	P=0 ∼1240
5		syn 24°	0.230			N 11.56 P 8.52	11.81 8.77	P—OC ~1100
		anti 23	0.980					
<i>p</i> -CH₃OCOC ₆ H₄	24	Diazo 6	0.150	anti 25	149°	C 57.46 H 5.63	57.74 6.03	$P=0 \sim 1240$ P-OC ~ 1050
		syn 26	0.332			N 7.44 P 8.23	7.61 8.37	CO 172:
6		anti 25	3.290	syn 26	145°	C 57.46 H 5.63 N 7.44 P 8.23	57.20 5.59 7.73 8.31	P=O ~1240 P-OC ~1050 CO 1725
o-CH3OC6H4	54	Diazo 7	0.780	anti 2 7	94–95°	C 59.48 H 6.16	59.22 6.20	P=0 ∼1270
7		anti 27	3,570			N 8.16 P 8.89	8.28 9.09	P-OC~1050
α-Naphthyl	168	Diazo 8	0.120	anti 28	136–138°	C 65.21 H 5.74	65.48 5.71	P=0 ~1230
8		anti 28	3.130			N 7.60 P 8.40	8.01 8.74	P—OC 1050
β-Naphthyl	24	Diazo 9	0.110	anti 29	128°	C 65.21 H 5.74	65.31 5.76	N=N 1550
		syn 30	0.250			N 7.60 P 8.40	7.86 8.23	$r=0 \sim 1230$ P-OC ~1050
9		anti 29	1.970	syn 30	Oil	C 65.21 H 5.74	65.47 5.53 7.78	P=0 ~1230
						P 8.40	8.59	P—OC ∼105

74

CAN. J. CHEM. VOL. 52, 1974

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF NORTH TEXAS LIBRARY on 11/10/14 For personal use only.

•••			
			£11.
· · · · · · · · · · · · · · · · · · ·			
		et de la companya de	
생활 사람이 있는 것이 같아.			
		a di sena di seconda d Seconda di seconda di se Seconda di seconda di s	
	 and a second and a second and a second and a second a s		

		Droducts is al	Lata			Pyrazolir	e	
$RC(N_2)P(O)(OCH_3)_2$			ated			 Analysi	s %	
R	Reaction time (h)	Compound	Weight (g)	Compound	Melting point	Calcd.	Found	Infrared ^e
C₂H₅	27	No diazo left		anti ^e 33	Oil	C 53.33 H 7.05	53.25 7.16	P=O ~1230
		Mixture 33 + 34	1.990			N 10.36 P 11.46	10.18 11.43	P-OC ~1040
11		syn 34	2.79					
				syn ^e 34	Oil		-	P=O 1230 P-OC 1040
iso-C ₃ H ₇	216	Diazo 12	0,320	anti ^e 35	Oil	C 54.92 H 7.44	54.57 7.14	P=0 ∼1230
		Mixture $35+36^d$	1.390			N 9.85 P 10.98	9.64 11.10	POC ~1050
12		syn 36	1.360					
				syn ^e 36	Oil	_		$P=0 \sim 1230$ P-OC ~ 1040
tert-C4H9	26 days	Diazo 13	1.900	syn 37	Oil	C 56.36 H 7.77	55.98 8.12	P=O ∼1230
13		syn 37	1.040			P 10.38	10.12	P-OC ~1040
		Unidentified	0.440					
C ₆ H ₅ CH ₂	24	Diazo 14	0.44	anti 38	82–83°	C 61.47 H 6.37	61.22 6.45	P=O ~1220
		syn 39	1.00			N 8.43 P 9.32	8.55 9.33	P—OC ~1040
14		anti 38	1.55					
				syn 39	128–129°	C 61.47 H 6.37	61.10 6.57	P=O ∼1230
						N 8.43 P 9.32	8.46 9.54	P—OC ~1040

TABLE 7 (Concluded)

^eCm⁻¹. ^bThe anti derivative 20 has been described (4). ^cThe syn pyrazoline was identified in a mixture with the diazo compound, by n.m.r. ^dPure samples of anti 33 and 35 respectively could be obtained by further chromatography. ^cAnalyzed as a 1:1 mixture of syn + anti.

COHEN AND BENEZRA: 1,3-DIPOLAR CYCLOADDITIONS

						-
TADIE 8	Nuclear magnetic	reconance spect	ra of the pyra	zolines (ch	emical shifts ir	ւ ծ ո ո ո) ։

R	8	4	10	7	P-OCH ₃	9	5,6	Others
p-CH ₃ OCOC ₆ H ₄ anti 25	$\begin{array}{ccc} C & 0.69 \\ \Delta \delta & 0.64 \\ \delta_{s} & 1.01 \\ \delta_{a} & 0.37 \end{array}$	2.42	2.80	3.54	3.70	5.19	6.20	3.93 (CH ₃ OCO) 7.85, 7.93 8.09, 8.17 ^a
p-CH₃OCOC ₆ H₄ syn 26	$\begin{array}{ccc} C & 1.49 \\ \Delta \delta & 0.26 \\ \delta_{s} & 1.49 \\ \delta_{a} & 1.23 \end{array}$	3.36 or 3.65	2.32	3.65 or 3.36	3.83 3.51	4.79	6.25*	8.04, 7.95 7.59, 7.50 (4H aromatic, AA'BB')
α-Naphthyl anti 28	C 0.65 $\Delta \delta$ 0.57 δ_s 0.94 δ_a 0.36	2.24	3.16	3.55	3.29 3.68	5.25	6.21	7.39-7.61 (m, 7H aromatic)
β-Naphthyl anti 29	$\begin{array}{ccc} C & 0.71 \\ \Delta \delta & 0.50 \\ \delta_s & 0.96 \\ \delta_a & 0.46 \end{array}$	2.46	2.87	3.56	3.73 3.47	5.19	6.18	7.37-8.31 (m, 7H aromatic)
β-Naphthyl <i>syn</i> 30	$\begin{array}{ccc} C & 1.38 \\ \Delta \delta & 0.20 \\ \delta_{s} & 1.48 \\ \delta_{a} & 1.28 \end{array}$	3.42 or 3.66	2.45	3.66 or 3.42	3.84 3.46	4.78	6.25 ^b	7.32-7.90 (m, 7H aromatic)
C₂H₅ <i>anti</i> 33		2.71	_	3.52	3.78 3.71	5.25	6.21	
C ₂ H ₅ syn 34	C 1.28 $\Delta\delta$ 0.21 δ_{s} 1.39 δ_{a} 1.18	3.05 or 3.55	~2	3.55 or 3.05	3.90 3.87	4.69	6.23	0,69 (t, CH ₃)
iso-C ₃ H ₇ anti 35		2.75	2.34	3.50	3.63 3.67	4.98	6.16	1.63, 1.29, (2d, 6H, nonequivalent CHMe ₂)
iso-C3H7 syn 36		3.09 or 3.56	1.87	3.56 or 3.09	3.87 3.80	4.67	6.21	0.56, 1.22 (2d, 6H, nonequivalent CHMe ₂)
tert-C4H9 syn 37	C 1.23 $\Delta\delta$ 0.17 δ_{A} 1.32 δ_{B} 1.15	3.05 or 3.55	1.94	3.55 or 3.05	3.82	4.72	6.24°	1.03 (s, (CH ₃) ₃ C)

76

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF NORTH TEXAS LIBRARY on 11/10/14 For personal use only.

••

		÷						
					:	14		1
								1
								ebol-1640
4								-
$\overline{0}$								and then
[]								- the state of the
-								and sectors of
UO .	ni sti sti Stati st				: . :.		2	
X	- <u>-</u>	a di addi	191				1	-
R								
R								
B								1
П								Contraction Contraction
S								
X								
Ξ.				1				
L								1
E								
ĽĽ								
9				, i sta	· · · ·			2
Α ι.			· ·					-
ō								
Y								
L								
ß								
ΞŽ	Ē							
Ζþ	5							
Ξs))							
	7							
- <u>6</u> -	5							
E S	2							
Ŭ,	5							
ess Sr 1								-
ăн	-							
ch								
ear.								
ese								
CL								
n.								Ì
N/								
×	1		· . ·	 				
'n								
<u>j</u>								- 1
1 fi								1
de	n hu	· · ·	· .	 				· I
oa			· •					
Ē								
МО								
Ă								
'n.								
lei								
U								
Ľ.	e gende			:der	19.5		đ	ġ.
n.								
Ŭ								

			Ĥ	ABLE 8 (Co	ncluded)		ļ	
R	8	4	10	7	POCH ₃	6	5,6	Others
C ₆ H ₅ CH ₂ anti 38	C 1.03 $\Delta\delta$ 0.31 δ_{A} 1.34 δ_{B} 0.72	2.84	2.47	3.57	3.45 3.34	5.05	6.21	3 (m, 2H, C H_2 Ph), 7.20–7.60 (m, H aromatic)
С ₆ Н ₅ СН ₂ syn 39	C 1.10 $\Delta\delta$ 0.34 δ_{s} 1.27 δ_{a} 1.01	2.99 or 3.28	1.90	3.28 or 2.99	3.94 3.92	3.40	6.08 ^b	3.29 (ABX m, 2H, CH_2 Ph, $\delta_{A} = 3.58$, $\delta_{B} = 3.04$, $J_{AB} = 14.0$, $J_{PA} = 6.2$, $J_{PB} = 8.1$)
^a AA'BB' part of an A ^b Center of an eight-lir.	AA'BB'X spectrum (X ie multiplier,	$= {}^{31}$ P). The I	nain absorptic	ons are giver				

COHEN AND BENEZRA: 1,3-DIPOLAR CYCLOADDITIONS

Can. J. Chem. Downloaded from. www.nrcresearchpress.com by UNIVERSITY OF NORTH TEXAS LIBRARY on 11/10/14 For personal use only.

78

CAN. J. CHEM. VOL. 52, 1974

	TABLE 9.	Nuclear m	agnetic res	sonance spe	ectra of pyi	razolines (c	oupling c	onstants ^a in F	(z)
R	H _{8a} ,H _{8s}	H ₉ ,H ₁₀	H _{8s} ,H ₉	H _{8s} ,H ₁₀	H₅,H₀	P,H ₁₀	P,H9	P-OCH ₃	Others ^b
p-CH ₃ OCOC ₆ H ₄	10.0	6.5	1.0	1.5	4.8°	19.5	4.0	10.0^{d}	P,H aromatic $= 2.25$
<i>mill</i> 25 <i>p</i> -CH ₃ OCOC ₆ H ₄	9.2	6.0	I	I	6.0	6.0	6.0	10.5	P, H aromatic = 2.25
α-Naphthyl	10.0	6.4	1.0	1.6	4.5°	19.2	4.0	10.8	2.c - 1.0 - +.c
anit 28 β-Naphthyl	10.0	6.04	l		4.5°	20.0	4.4	10.8	I
anti 29 ß-Naphthyl	9.2	6.0		ļ	5.6	6.0		10.8	5,4=6,7=3.2
$c_{2}H_{s}$	9.2	6.8	1.0	ļ	I	I	4.8	11.2	
anti 33 C ₂ H ₅	8.0	6.6	1.0	I	6.0	I	6.6	10.2	$CH_3CH_2 = 7.2$
syn 34 iso-C ₃ H ₇		6.2	1.2	1.6		20.0		11.0^{d}	$CH(CH_3)_2 = 6.7 = 5.2$ $CH(CH_3)_2 = 6.4$
ant 35 iso-C ₃ H ₇	I	6.5	1.0	1.5	5.7	6.5	6.5	10.8	$CH(CH_3)_2 = 5.2$
syn 30 tert-C4H9	10.0	6.4	1.0	ł	l	6.4	6.4	10.0	0, t = 0, l = 3.2
c ₆ H ₅ CH ₂	0.6	6.0	l	1.5	I	18.0		10.2	
ann 38 C ₆ H ₅ CH ₂ syn 39	10.0	6.0	Ι	1.5	6.0	6.0	Ι	10.6	p -CC H_2 Ph: 6.2 and 8.1 5.4 - 6.7 - 2.0
$a \pm 0.2$ Hz. b A ll the H ₉ resonance $c W_{1/2}$. $d \pm 0.5$ Hz.	s show, in addi	tion, a small o	coupling (1.0) Hz) with on	e of the brid	gehead (the u	pfield one ir	the anti derival	1, c = 1, c = 4, c

:

pletion of the reaction in this way. The % completion given here can be estimated to be accurate within $\pm 5\%$. For the tert-butyl derivative 13, there was no noticeable reaction after 50 h. No kinetic studies were done on 6, 8, 9, and 14 (Table 6).

General Procedures for the Cycloaddition Reactions

A mixture of norbornadiene (40 ml), diazophosphonate (3 g), and CH₂Cl₂ (3 ml) was warmed at a bath temperature never exceeding 55-60°. The proportions were changed slightly for the p-methylphenyldiazo derivative 2 (norbornadiene, 50 ml, diazo compound, 3.42 g, and CH₂Cl₂, 5 ml) and for the *p*-nitrophenyldiazo derivative 5 (norbornadiene, 35 ml, diazo compound, 2 g, CH2Cl2, 2 ml). The reaction time varied from 24 h to 26 days (see Table 7). The addition with the phenyl 4 and the methyl 10 derivatives have been described (4). The reaction time was 24 h for both reactions.

General Procedure for the Isolation of the Cycloadducts

The reaction mixture was poured as such on a 180 g silica gel column chromatograph. Excess diazo compound was eluted with ether while the pyrazolines came out with MeOH-ether mixtures. In the case of the aryl derivatives, the syn epimer was eluted first (5% MeOH in ether) and then the anti (10% MeOH in ether). Separation was much more difficult with alkyl derivatives. The addition of the methyl derivative 10 has already been described (4). For all the alkyl derivatives, the excess diazo compound was eluted with pure ether. In the case of the ethyl 11 and the isopropyl 12 derivatives, the anti epimer was eluted before the syn; the eluent in both cases was a 20% solution of MeOH in ether. As to the tert-butyl diazo compound 13, only one pyrazoline (syn) could be detected and was isolated with MeOH-ether (20:80).

Nuclear Magnetic Resonance Spectra of the Pyrazolines (Tables 8 and 9)

Those spectra are typical of a syn or an anti configuration. For all isomers, H₈ appears as an AB quartet, the center (C) of which is given; H₈₅ (syn to the 5,6 double bond) is assigned the low-field signals because of longrange couplings with H₉ and H₁₀ protons; otherwise (e.g. compound 36) the assignment (s or a) is not specified (δ_A and δ_B are given). P—OCH₃ gives two doublets (unequivalent OCH₃'s).

In the anti isomers, the bridgehead protons (H4 and H_7) are broad singlets > 1.0 p.p.m. apart; H_{10} gives rise to a d or d of d signal (eight lines in all) by coupling with H₉, H_{8s}, and P; H₉ appears as a d of d (coupling with P, H_{10} ; fine resolution shows each signal as a t, due to coupling with H_{8s} and either H_4 or H_7); H_5 and H_6 each give a narrow multiplet; w_{\pm} is given.

In the syn isomers the bridgehead protons are broad s 0.3-0.5 p.p.m. apart, and no assignment is made; H10 gives rise to a t signal (in fact it is a d of d by coupling with H₂ and P; the fine structure reveals further longrange coupling with H₈₅); H₉ appears as a t (in fact d of d, by coupling with P and H10; also small couplings with H_{8s} and either H_4 or H_7 are visible); H_5 and H_6 give an eight-line multiplet (AB part of an ABXY spectrum by coupling with H_4 and H_7) the center of which is given in Table 8.

The authors wish to thank the National Research Council of Canada for financial support of this work (operating grant A-5496) and the Rector of the University of Ottawa for a stipend to one of us (H.C.).

- R. HUISGEN. Angew. Chem. Int. Ed. 2, 633 (1963).
 R. HUISGEN. J. Org. Chem. 33, 2291 (1968).
- R. A. FIRESTONE. J. Org. Chem. 33, 2285 (1968); 37, 3. 2181 (1972).
- H. J. CALLOT and C. BENEZRA. Can. J. Chem. 50, 1078 (1972).
- R. S. MARMOR and D. SEYFERTH. J. Org. Chem. 36, 5. 128 (1971).
- 6. J. E. CADOGAN, Q. Rev. 22, 222 (1968).
- 7. (a) M. REGITZ, W. ANSCHÜTZ, and A. LIEDHEGENER. Chem. Ber. 101, 3734 (1968); (b) H. SHERER, A. HARTMANN, M. REGITZ, B. D. TUNGGAL, and H. GUNTHER. Chem. Ber. 105, 3357 (1972).
- N. GURUDATA, C. BENEZRA, and H. COHEN. Can. J. Chem. 51, 1142 (1973).
- 9. H. COHEN and C. BENEZRA. Org. Magn. Res. 5, 205 (1973).
- 10. C. W. JEFFORD and F. DELAY, J. Am. Chem. Soc. 94, 4794 (1972) and references therein.
- 11. L. M. JACKMAN and S. STERNHELL. Applications of nmr spectroscopy in organic chemistry. 2nd Ed., Pergamon Press, Oxford. 1969. p. 334.
- 12. C. BENEZRA. Tetrahedron Lett. 4471 (1969); J. Am. Chem. Soc. 95, 6890 (1973).
- H. C. BROWN and J. H. KAWAKAMI. J. Am. Chem. 13. Soc. 92, 201 (1970).
- (a) S. J. CRISTOL, G. D. BRINDELL, and J. A. REEDER. 14. J. Am. Chem. Soc. 80, 635 (1958); (b) D. J. TRECKER and J. P. HENRY. J. Am. Chem. Soc. 85, 3204 (1963); (c) H. J. CALLOT and C. BENEZRA. Can. J. Chem. 49, 500 (1971); (d) H. G. KUIVILA and C. R. WARNER. J. Org. Chem. 29, 2845 (1964).
- D. I. DAVIES and P. J. ROWLEY, J. Chem. Soc. C, 2245 15. (1967).
- R. R. SAUERS and P. E. SONNET. Tetrahedron, 20, 16. 1029 (1964).
- 17. R. HUISGEN, R. GRASHEY, and J. SAUER. Cycloaddition reactions of alkenes. In The chemistry of alkenes. Edited by S. Patai. Interscience Publishers, London. 1964. (a) р. 816 (b) р. 836. N. FILIPESCU and J. R. DEMEMBER. Tetrahedron, 24,
- 18. 5181 (1968).
- 19. J. A. HIRSCH. Table of conformational energies-1967. In Topics in stereochemistry. Vol. 1. Edited by N. L. Allinger and E. L. Eliel. Interscience Publishers, New York. 1967. p. 199.
- 20 N. L. ALLINGER and M. T. TRIBBLE. Tetrahedron Lett. 3259 (1971) and references therein.
- 21. B. L. Shapiro, M. J. Gattuso, N. F. Hepfinger, R. S. SHONE, and W. L. WHITE. Tetrahedron Lett. 219 (1971).
- 22. R. HUISGEN, W. SCHEER, H. MÄDER, and E. BRUNN. Angew Chem. Int. Ed. 8, 604 (1969). B. W. HOTTEN. U.S. Patent No. 2 808 428; Chem.
- 23. Abstr. 52, 2918c (1958).
- Dictionary of organic compounds. 4th Ed. Eyre and 24. Spottiswoode Publishers Ltd., London. 1965. p. 2949.