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An analytical approach is developed to evaluate the coefficients of thermal expan- 
sion (CTE) of textile reinforced composites. At the micro level, a cylindrical composite 
model is employed to model the fiber/matrix thermal and mechanical interactions. 
The effects of voids and fiber coating on the thermal expansion coefficients of com- 
posites are considered at this level. The cylindrical model was then embedded in 
a macro hybrid finite element solution structure to calculate the value of the CTE 
for textile composites. &-4/epoxy balanced plain weave textile composites were 
manufactured. Five different fiber volume fractions were tested for CTE. Evaluation 
of the thermal expansion coefficients using the current model was compared to 
experimental data for in-plane and out-of-plane directions. 

1. INTRODUCTION 

hermal expansion of composite materials has re- T ceived considerable attention over the past few 
years. This is due to the need to minimize thermal 
residual stresses in composite materials during curing 
or during the Life of the composite component. Ther- 
mal residual stresses can have an adverse effect on 
the strength and fatigue life of structural components. 
If composite parts are subjected to operational cyclic 
temperature variations, they may be prone to failure 
owing to thermal fatigue. 

Voids can form during the manufacturing process of 
composite, especially in ceramic composites. Voids can 
have an effect not only on the mechanical properties of 
a composite, but also on its thermal properties. Voids 
cause stress concentrations which reduce the failure 
strength of components. A miform heat flow (linear 
temperature distribution) induces no stress concen- 
tration in an infinite homogeneous elastic body. How- 
ever if the body contains voids which almost have 
no thermal conductivity, the temperature field will be 
perturbed around the voids. The resulting nonlinear 
temperature distribution can cause localized thermal 
stresses. 

Thermal expansion coefficients of unidirectional fiber 
reinforced composites has been modeled by many 
workers (1-8). In general, these studies investigated 
the effect of volume fractions of fibers and matrix, 
thermal expansion coefficients of constituent materi- 
als, fiber-matrix interface, and mechanical properties of 
the constituents on the overall CTE of the composite. 

In 1967, Levin (l), using an extension of Hill's method 
(2), showed that a simple relationship can be estab- 
lished between the effective thermal expansion coef- 
ficient and the effective elastic moduli of the compos- 
ite. Based on Levin's approach, Rosen and Hashin (3) 
derived bounds for the values of CTE using the effec- 
tive thermal expansion coefficients and the specific. 
heats of the composite anisotropic constituents. In. 
1968, Schapery (4) constructed a complementary and 
potential energy principle of thermo-elasticity theory 
in conjunction with a procedure for minimizing the dif- 
ference between upper and lower bounds proposed by 
Levin (1). Chamberlain (5) developed a relationship for 
transverse thermal expansion coefficient, considering; 
each fiber as being surrounded by matrix in the formi 
of a thick-walled cylinder. The influence of internal 
stresses, due to the thermo-mechanical mismatch be-- 
tween the fiber and the matrix, and the thermal expan-- 
sion behavior of unidirectional fiber-reinforced ceram-. 
ics has been considered by Hsueh and Becher (6). 

None of the above mentioned models have studied 
the effect of voids on the thermal expansion coeffi-- 
cients of textile composites. Furthermore, extensiori 
of these models to include the effect of voids and 3- 
phase composites (i.e., fiber/coating/matrix) has not 
been investigated. 

2. ANALYTICAL APPROACH 

In the present work an analytical approach was 
developed to evaluate the coefficients of thermal ex- 
pansion (-) of textile reinforced composites. First, a 
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repeat unit cell of the composite was g r a p h i d y  mod- 
eled using a previously developed geometric model 
(15). Second, the unit cell was divided into a smaller 
set of hexahedral brick elements with fibers and ma- 
trix around each integration point (14). At the micro 
level, a cylindrical composite model was employed to 
model the fiber/matrix thermal and mechanical inter- 
actions. The effect of voids and fiber coating on the 
thermal expansion coefficients of composites was also 
considered at this level. Although this approach was 
derived for 2- and 3-phase materials, it could be easily 
extended to model n-phase materials with different in- 
ternal structures and inclusions/voids. 

The Micro-Level Cylindrical Model 

can be represented, in tensor form, as follows: 
The stress strain behavior for anisotropic materials 

Eij  = Sijkl u ~ L  + ‘ ~ i j  AT 

0.. = c.. & 
t j  ljkl kt - AT 

where u is the stress vector, E is the strain vector, C is 
the stiffness tensor, S is the compliance tensor (S  = 
C-’), (Y is the vector of CTE, r is the vector of thermal 
stresses [r = CijU akl) and AT is the temperature in- 
crement . 

For fibrous composites, the coefficient of thermal 
expansion is also a function of the volume fraction of 
constituent materials, their CTE, their relative stiffness 
and the interface characteristics between the constitu- 
ents. Fiber coating could have a large effect on the CTE 
of composites. 

In order to derive the stress-strain relationships, the 
following assumption were made: i) steady state heat 
flow, ii) temperature of fiber, coating and matrix tem- 
perature is constant and equal and iii) all interfaces 
are perfectly bonded. 

In the cylindrical composite model shown in Q. 1,  if 
we treat the fiber as a transversely isotropic material, 
and the matrix and the coating as isotropic materials, 
the basic equations of stress, strain and displacement, 
in polar coordinates, can be represented as follows [ 11): 

C2i + C,,r + - - uiC3ir/Ei (la) r 

(lb) 
1 ‘  A4iC2i 

uir = -Ali  7 Tirdr + A3,Cli - __ 
r2 

(1C) - AliTi + A3iCli + __ A4iC2i 

r2  
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Fig. 1. Cylindrical model wed to calculate for Zphase 
and 3-phaseJIbrous composites. 

where i refers to fiber (0, matrix (m) or coating (c): 0 5 

r 5 c, qr, is radial displacement: uir, uio and uiz are 
stresses in radial, tangential and axial directions, re- 
spectively: E~~ and qO E~ are strains in radial, tangen- 
tial and axial directions, respectively; ain and ait are 
axial and transverse thermal expansion coefficients, 
respectively; Ei. and ui are axial Young’s modulus and 
Poisson’s ratio, respectively; CIi, Gi and C3i are con- 
stants that need to be solved: and, 

Ei 
(1 + u , ) ( l -  2 U i ) ’  

A,i = (aitui + 4 E i  
Aji = 

1- u: 

Notice that because of the symmetry about the axes 
and the uniformity in the axial direction of this fiber/ 
coating/matrix system, all shear strains and stresses 
are zero. 

To calculate the axial thermal expansion coefficient, 
where the fibers control the composite behavior (espe- 
cially in polymer composites), we assume the bound- 
ary conditions to be as follows: 

ufr= 0 at  r = 0 (24 

ufr = ucr a t  r = a (2b) 
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urn, = ucr at r = b (2c) 

u , , = O  a t r=  c (2d) 

CW E f z  = Ec2 = E r n ,  

Solving the previous equations, for a specific material 
configuration such as fiber/interface/matrix or fiber/ 
matrix only) under the specified boundary conditions, 
we can obtain the constants CIi, CZi, CSi and calculate 
the stresses and strains in Eq 1 .  

Notice that the number of the constituents of the 
composite will determine the size of the problem. For 
example, for a 2-phase composite [i.e., fiber and matrix 
only), the number of constants to be solved are 6 with 
3 boundary conditions, while for a 3-phase composite 
[i.e., fiber/coating/matrix) the number of constants is 
9 with 5 boundary conditions. These constants are 
needed to evaluate the stress and strain states and 
CTE in Eq 1 .  If we define the longitudinal thermal ex- 
pansion coefficient of a composite as: 

Ei z a, = - 
Tb 

where ciZ is the strain of the fiber, coating or matrix 
[refer to Eq 2e) in the axial direction, then we can cal- 
culate the thermal expansion Coefficient of the com- 
posite in the axial direction. 

To calculate the transverse thermal expansion co- 
efficient, where the matrix will control the composite 
behavior, we assume the boundary conditions to be 
as follows: 

ufr= 0 at r = 0 (34 

of, = ucr at r = a (3b) 

ufr = u,. at r = a (3c) 

u,, = ucr at r = b (34 

urn, = u,, at r = b (3e) 

u , , = O  a t r =  c (30 

Again, notice that the number of the constituents of 
the composite will determine the size of the problem. 
For a 2-phase composite, the number of constants to 
be solved are 6 with 4 boundary conditions, while for a 
3-phase composite, the number of constants is 9 with 
6 boundary conditions. 

The transverse thermal expansion coefficient of the 
composite could be defined as the value of the strain 
at r = c (the outer surface of the composite cylinder) 
at a unit increase in temperature: 

Ern, 
at = - 

where emr is the strain of the matrix in the radial direc- 
tion. Using this equation, we can calculate the thermal 
expansion coefficient of the composite in the trans- 
verse direction. 

Tc 

Effect of Voids 

Voids inside the matrix can be considered as inclu- 
sions that only affect the properties of matrix. The 
properties of matrix can be used to replace the origi- 
nal matrix properties in the general composite cylin- 
drical model approach. 

For the Matrix-Voids model, shown in Fig. 2, voids 
are assumed to be spherical and the heat transfer is 
assumed to be: in steady state with the following tem- 
perature distribution (12): 

where Tg is the temperature in matrix at r = a,Tk is 
the temperature in matrix at r = b, and T, is the tem- 
perature inside matrix. 

Inclusion affects the elastic properties of composites 
[ 13). If the inclusion is taken as a void, the bulk mod- 
ulus and shear modulus of the void will be zero [i.e. 
K ,  = G, = 0). The bulk and shear moduli of matrix 
containing voids can be obtained as follows [ 13): 

3&+ 4G, A 

where V, is the volume fraction of voids, I< and G are  
bulk and shear moduli respectively, mu denotes ma- 
trix containing voids, m denotes pure matrix. 

On account of radial symmetry of the temperature 
distribution the radial stress component (T, and the 
tangential component ut should satis@ the condition 
of equilibrium, in the radial direction of an element as 
follows [ 1 1): 

/ r=b 

01 r l a :  Void 
a l  r Ib: Matrix 

Flg. 2 Sphericuf model of matriw with mid. 
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h r  d - + - (a, - Ut) = 0 
dr r 

The stress-strain relations can be represented as fol- 
lows (16): 

dumr 
(7.c) E, = - 

dr 

Urn, 
Ernt = - 

r (7.d) 

where T, is the temperature distribution in matrix, 
a, and umt are matrix radial and tangentkd stresses, 
respectively: E, and E , ~  are matrix radial and tangen- 
tial strains, respectively; u, is matrix radial displace- 
ment: and a,, Em, and u, are thermal expansion 
coefficient, Young's modulus and Poisson's ratio of 
matrix, respectively. 

Solving Eqs 6 and 7, the expressions of stress and 
strain could be derived as: 

1 + u ,  1 C~rn T,r2dr + Clmr + ~ (8.a) 
r 2  

where C,, and C,, are constants of integration to be 
determined from the following boundary conditions: 

u,=O at r = a  and r = b  (9) 

Substituting Eq 8 into Eq 9, C,, and C,, can be ob- 
tained as follows: 

I r b  

the volume fraction of voids in matrix only. The ther- 
mal expansion coefficient of matrix with voids can be 
defined as: 

Emr 
a, = - at r = b  

T: 
In the case of existence of voids in the composite, the 
properties of the matrix with voids Em, G,,, u, and 
a, is used to replace the properties of the matrix with- 
out voids Em, G,, u, and am in the cylindrical model 
outlined in the previous section. 

Hybrid Finite Element Analysis 

This model was previously developed (14, 15) to pre- 
dict the elastic and thermal properties of textile com- 
posites. This is a two-part model. First a geometrical 
model is used to construct the textile preform and 
characterize the relative volume fractions and spatial 
orientation of each yarn in the composite space. Data 
acquired from the geometrical analysis is used by a 
hybrid finite element approach to model the composite 
behavior. 

The geometrical model starts by modeling the pre- 
form forming process in a typical textile machine. An 
ideal fabric geometrical representation is constructed 
by calculating the location of a set of spatial points 
"hots" that can identify the yarn center-line path with- 
in the preform space. This is followed by incorporating 
a B-spline function to approximate a smooth yarn 
centerline path relative to the identified knots. The B- 
spline function is chosen as the approximation func- 
tion due to its ability to minimize the radius of curva- 
ture along its path and its C2 continuity. Constructing 
a 3-D object (i.e. yam) by sweeping a cross section 
along the smooth centerline forming the yam surface 
carries out the final step in this model. 

A repeat unit cell of the modeled preform is identi- 
fied from the geometric modeling and used to repre- 
sent a complete yarn or tow pattern. A hybrid finite 
element approach is used to divide the unit cell into 
smaller subcells. Each subcell is an hexahedral brick 
element with fibers and matrix around each integra- 
tion point. A virtual work technique is applied to the FE 
solution to calculate the properties of the repeat unit 
cell. The unit cell properties are considered to be rep- 
resentative of the composite properties. 

The heterogeneous solution, although successful in 
cutting down the number of elements, has a limita- 
tion. This limitation is bounded by the difference in 
the fiber and matrix properties the can cause instabil- 
ities in the numerical solution. To overcome such lim- 
itation a homogenization operation is carried out at the 
micro-scale level. This is done around each integration 
point in the FE mesh. Figure 3 shows a schematic 
presentation of the finte element division scheme and 
the micro-level homogenization. 

3. EXPERIMENTAL WORK 

Materials 

Balanced plain weave fabric performs made from 3K 
AS-4 graphite yarns with 5 ends/cm were purchased 
from BP Chemical Company. CIBA-GEIGY Araldite 
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Rg. 3. Finite element divisions of a unit ceU and micro-level homogenization. 

epoxy resin and HY 956 hardener were used as the 
matrix material. The mixing ratio was 4:l for epoxy 
resin to hardener at room temperature. Fabric layers 
were manually placed in 30.48 X 38.1 cm molds and 
impregnated with epoxy resin. The composite was 
cured in a compression molding machine at 80°C for 
2 hours and then post cured at 120°C for 1.5 hours in 
an oven. The balanced plain weave composite was 
manufactured with five different volume fractions by 
applying different pressure in the compression-mold- 
ing machine (14). 

Testing Procedure and Experimental Setup 

Testing samples (3.8 cm X 3.8 cm X sample thick- 
ness) were cut and placed into an oven. Four samples 
were tested for each volume fraction. Two strain gauges 
were placed on the surface of each sample, in the in- 
plane and the out-of-plane directions. A temperature 
sensor was placed in the in-plane direction. These two 
strain gauges and temperature sensor were connected 
to a data acquisition system. Temperature of the oven 
was increased from room temperature to 115.6"C grad- 

A standard titanium silicate isotropic sample was 
used instrumented with strain gauges to determine 
the thermally induced apparent strain. The average 
experimental thermal expansion coefficient of the stan- 
dard sample was a2 = -11.01 X (mm/mm/OC). 
The standard sample has an  actual thermal expan- 
sion coefficient a1 = 0.031 X (mm/mm/"C). The 
thermally induced apparent strain was calculated as: 

ually. 

- 
&apparent - E 2  - E l  = (a2 - a , P T  

= -11.04 X AT 

where E~~ is the thermally induced apparent strain, 
E~ is the actual strain, E~ is the experimental strain, 
and AT is the temperature change. The electrical re- 
sistance of the metallic foil strain gauges changes as 
the temperature increases leading to the thermally in- 
duced apparent strain. 

4. RESULTS AND DISCUSSION 

The experimental in-plane and out-of-plane thermal 
expansion coefficients for balanced plain weave carbon/ 
epoxy textile composites are listed in Table 1 .  From. 
this table we can conclude that with the increase of the 
fiber volume fraction, the in-plane thermal expansion. 
coefficient decreases. This means that fibers control 
the in-plane strain, making the composite stronger hi 
this direction. 

The out-of-plane CTE experimental values, for all. 
five different fiber volume fractions, are larger than1 
the thermal expansion coefficients of each component. 
of the composite. Micrographic images, similar to the :  
one shown in Fig. 4, show that the composite under 
investigation suffered from large laminar cracks. These: 
cracks could occur during curing of the composite as 
a result of thermal residual stresses or during the: 
CTE testing. Debond sites can cause the out-of-plane 
elastic modulus to sharply decrease and the out-of-. 
plane CTE to increase. 

The hybrid finite element analysis model presented 
in this paper was used to predict the CTE for these 
samples for the in-plane direction only. Since we were 
not able to quant@ the exact dimensions of differed 
interfacial gaps, the model was not used to predict 
the out-of-plane properties. Weave crimp angles were 
measured from micrographic images and listed in 
Table 2. With the increase of fiber volume fractions, 

Table 1. Experimental CTE for Balanced 
Plain Weave CarbonlEpoxy Composite. 

Fiber Volume In-Plane CTE Out-of-Plane 
Fraction ("A) ( x  mmlmml"C) ( x l  0-6 mmlmm/"C) 

26.8 12.15 2 2.7 106.55 2 1.32 
37.5 4.97 2 0.82 107.79 ? 3.8 
47.5 4.32 2 0.23 112.98 t 8.26 
54.0 4.01 2 1.34 113.12 t 3.52 
55.7 2.28 t 0.1 1 92.96 2 5.53 
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Fig. 4. Microscopic image of carbon/epoxy balanced plain 
weave composite with Vf = 37.5%. X 1400. 

the crimp angles decrease. This is expected since 
more volume fraction typically means higher pressure 
in composite manufacturing. The pressure help ”flat- 
ten” the crimp angle of the yarns. Elastic and thermal 
properties of carbon fibers and epoxy matrix at room 
temperature as listed in the literature provided by the 

Table 2. Fiber Volume Fraction and Crimp Angles. 

Fiber volume fraction (%) 26.8 37.5 47.1 54 55.7 
Crimp angle (degrees) 5.53 5.35 5.16 4.95 4.81 

16 

14 

12 

10 

a 

6 

4 

2 

0 

Table 3. Properties of Fiber and Matrix. 

Material Properties AS4 Graphite Epoxy 

Young’s modulus (GPa) 221 3 
Shear modulus (GPa) 13.8 1.11 
Poisson’s ratio 0.2 0.35 
Thermal expansion coefficients 

Axial (mm/mm/”C) -0.2 X lo4 55 X lo4 
Transverse (mm/mm/”C) 10 x 10-6 

manufacturers and used in the modeling process are 
listed in TabZe 3. It is important to notice that these 
material properties may change within the tempera- 
ture range under investigation. 

Predictions using the current model are shown in 
Fig. 5, and compared to experimental data. From this 
Figure, we can see that the theoretical in-plane ther- 
mal expansion coefficients are in good agreement with 
experimental results except the first point. This agree- 
ment proves that the existence of interfacial gaps have 
little to no effect on the in-plane modulus and CTE of 
the composites. 

5. CONCLUSION 

In this work, a theoretical model is developed to 
predict the thermal expansion coefficients for uni- 
directional fiber reinforced composites. This model is 
based on a cylindrical composite approach. Stress- 
strain behavior and temperature distribution in ma- 
trix and fibers are used to construct the model. For 

+ Experimental 
Current Model 

. . s f  .. i 

0 0.1 0.2 0.3 0.4 0.5 0.6 

Vt 

Q. 5. In-plane CTE for carbon/epoxy balanced plane weave composite with change of volumepactifm o f m r  Vf in (%). 
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longitudinal and transverse thermal expansion coeffi- 
cients, different boundary conditions are employed to 
solve their stress-strain equations. Furthermore, the 
effect of voids on the thermal expansion coefficients 
of composites is also considered via alteration of the 
moperties of matrix material. This new model is ern- 

3. B. W. Rosen and Z .  Hashin, International Journal of Engi- 

4. R. A. Schapery, Journal of Composite Materials, 2, 3, 

5. N. J. Chamberlain, British Aircraft Corporation Report 

6. C. Hsueh and P. F. Becher, Journal of the American Ce- 

neering Science, 8, 2,  157 (1970). 

380 (1968). 

SON (P) 33 (1968). 

bedded within a hybrid finite-element analysis model 
to calculate thermal expansion Coefficients of textile 
composites. 

AS4 graphite/epoq balanced plain weave compos- 
ites with five different fiber volume fractions were tested 
for in-plane and out-of-plane thermal expansion coef- 
ficients. For in-plane thermal expansion coefficients, 
the theoretical predictions matched the experimental 
results well for both composites. The experimental 
out-of-plane thermal expansion coefficients for all five 
different fiber volume fractions were larger than the 
thermal expansion coefficients of each component of 
the composite. These large values could be attributed 
to the interfacial gaps and fiber/matrix debonding that 
may have occurred during curing of the composite. 
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