A NOVEL DEAMINATIVE CYCLIZATION OF AMINOGLYCOSIDE. SYNTHESIS OF A KANAMYCIN B VARIANT HAVING 2-OXA-5-AZABICYCLO[2,2,2]OCT-1,5-DIENE RING

Yoshio Nishimura

Institute of Microbial Chemistry 14-23 Kamiosaki 3-Chome, Shinagawa-ku, Tokyo, Japan Sumio Umezawa*

Institute of Bioorganic Chemistry
1614 Ida, Nakahara-ku, Kawasaki-shi, 211, Japan

Abstract: The 3',5'-diene derivative of kanamycin B $(\underline{2})$ was obtained from a 4'-ene derivative of kanamycin B $(\underline{1})$ by treatment with trimethyl orthoacetate. Formation of the title compound $(\underline{4})$ from $\underline{2}$ by deaminative cyclization with sodium methoxide followed by treatment with trifluoroacetic acid was described.

In connection with our interest in development of aminoglycoside antibiotics useful in the treatment of resistant infections $^{1-3)}$, we have investigated the chemical modification of kanamycin B by conformational change $^{4,5)}$. The present paper describes a modification of kanamycin B by bicyclic ring formation in the 4-0-glycoside portion (ring A).

In the preceeding paper, we have reported the formation of a 3',5'-diene kanamycin B derivative ($\underline{2}$) which is thought to be formed by deprotonation at 6', as one of two products by treating a kanamycin B derivative ($\underline{1}$) containing an allylic alcohol system with MeCu·BF₃ "ate" complex⁶. In this paper another synthesis of $\underline{2}$ from $\underline{1}$ by use of trimethyl orthoacetate and a novel transformation of $\underline{2}$ into 2-oxa-5-azabicyclo[2,2,2]oct-1,5-dienyl derivative ($\underline{4}$) through an enamine (3) were described.

Treatment of $\underline{1}$ with trimethyl orthoacetate $(H_3CC(0CH_3)_3, (CH_3)_3CC00H, reflux)$ gave the 3',5'-diene derivative $(\underline{2})$ in 43% yield: $[\alpha]_D^{20}$ +35° (c 0.5, CHCl₃); identical with that described⁶⁾ previously.

Treatment of $\underline{2}$ with sodium methoxide in methanol gave the enamine derivative $(\underline{3})$ with debenzoylation in 67% yield: $\left[\alpha\right]_{D}^{20}$ +5.6° (c 0.54, CHCl $_{3}$); 100 MHz-PMR (CDCl $_{3}$) $\delta 6.02$ (1H dt) with a small coupling, J=2 and 10 Hz, H-4'); 13 C NMR (CDCl $_{3}$) $\delta 152.49$ (C-5'), 109.1 (C-4'), 100.4 (C-1' (?)) and 100.3 (C-1" (?)).

Removal of the t-butoxycarbonyl and cyclohexylidene groups of $\underline{3}$ by treatment with 50% aqueous trifluoroacetic acid followed by resin column chromatography (CG50 (NH₄⁺)) gave 4-0-(2-oxa-5-azabicyclo[2,2,2]oct-1,5-diene-3-yl)-6-0-(3-amino-3-deoxy- α -D-glucopyranosyl)-2-deoxystreptamine ($\underline{4}$) in 54% yield: [α] $_{D}^{20}$ +62.9° (c 0.13, H₂0); 250 MHz-PMR (D₂0) δ 5.62 (1H d, J=4 Hz, H-1"), 6.01 (1H, d, J=2 Hz, H-3'), 6.03 (1H s, H-7'), 7.96 (1H s, H-6'); 13 C-NMR (D₂0)

 $\delta 25.0$ (C-8'), 35.5 (C-2), 47.1 (C-3), 51.0 (C-1), 55.2 (C-3"), 61.2 (C-6"), 66.6 (C-4'), 69.9 (C-4"), 72.3 (C-3"), 73.1 (C-5"), 76.6 (C-5), 80.8 (C-4), 88.0 (C-6), 99.4 (C-1"), 100.9 (C-3'), 115.8 (C-7'), 146.2 (C-1') and 161.4 (C-6').

To our knowledge, this is the first synthesis of the 2-oxa-5-azabicyclooctadiene ring from a 2,6-diamino-2,6-dideoxy-D-glucoside by deaminative cyclization. It should be noted that in naturally occurring aminoglycoside antibiotics, fortimicin AH, AI⁸⁾ and a component of gentamicins ⁹⁾ have 2-oxa-5-azabicyclo[2,2,2]oct-5-ene ring.

The above methodology may be useful for the synthesis of optically active substituted piperidines as a synthon to alkaloids.

Acknowledgement: We wish to thank Professor H. Umezawa, Institute of Microbial Chemistry, for his discussion on this subject, and Dr. H. Naganawa for his discussion on the 250 MHz PMR and 13 C NMR spectra.

References

- 1) S. Umezawa, Advan. Carbohyd. Chem. Biochem., 30, 111 (1974).
- 2) H. Umezawa, Advan. Carbohyd. Chem. Biochem., 30, 183 (1974).
- 3) D. A. Cox, K. Richardson, B. C. Ross, in "Topics in Antibiotic Chemistry", P. G. Sammes (Ed.), Ellis Horwood, Chichester, England, Vol. 1 (1977), p. 5.
- 4) Y. Nishimura, H. Umezawa & S. Umezawa, Tetrahedron Lett., 22, 77 (1981).
- 5) Y. Nishimura & S. Umezawa, Tetrahedron Lett., the preceeding paper.
- 6) K. Maruyama & Y. Yamamoto, <u>J. Am. Chem. Soc.</u>, 99, 8068 (1977); ibid., 102, 2318 (1980).
- 7) O. Hernandex, Tetrahedron Lett., 219 (1978)
- 8) J. B. McAlpine, R. S. Egan, R. S. Stanszek, M. Ciraric, S. L. Mueller, R. E. Carney, P. Collum, E. E. Frager, A. W. Goldstein, D. J. Grampovnik, P. Karth, J. R. Martin, G. G. Post, J. H. Seely & J. Tadanier in "Aminocyclitol Antibiotics", K. L. Reinhart, Jr., T. Suami (Ed.), ACS Symposium Series, No. 125 (1980), p. 295.
- 9) J. Bérdy, J. Kadar Pauncz, Zs. Mèhesfalvi Vajna, Gy. Horvath, J. Gyimesi & I. Koczka, J. Antibiot., 30, 945 (1977).

(Received in Japan 9 September 1981)