A Catalytic Asymmetric Isatin-Involved Povarov Reaction: Diastereo- and Enantioselective Construction of Spiro[indolin-3,2'-quinoline] Scaffold

LETTERS 2013 Vol. 15, No. 1 128–131

ORGANIC

Feng Shi,* Gui-Juan Xing, Ren-Yi Zhu, Wei Tan, and Shujiang Tu*

School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, China

fshi@jsnu.edu.cn; laotu@jsnu.edu.cn

Received November 15, 2012

The first catalytic asymmetric isatin-involved Povarov reaction has been established. This method provides an unprecedented approach to access the enantioenriched spiro[indolin-3,2'-quinoline] scaffold with concomitant creation of two quaternary stereogenic centers in high yields and excellent stereoselectivities (all >99:1 dr's, up to 97% ee).

The Povarov reaction¹ has exhibited its great significance in organic synthesis, which represents an inverse electron-demand aza-Diels–Alder reaction (IEDDA reaction) between 2-azadienes and electronically rich olefins. In particular, the catalytic asymmetric Povarov reaction is a powerful protocol to obtain enantioselective tetrahydroquinoline skeletons, which exist in a variety of natural products and synthetic compounds with relevant pharmaceutical properties.² As a result, the catalytic enantioselective Povarov reactions of aldehyde-derived 2-azadienes with electron-rich olefins have been extensively investigated and well-developed in the past decades (eq 1).³ However, in sharp contrast, *ketone-derived 2-azadienes have not yet been employed as* reaction *components* to participate in the catalytic enantioselective Povarov reactions (eq 2). Only a few nonenantioselective Povarov reactions of ketimines with olefins were sporadically documented,⁴ presumably due to the low reactivity inherent in both ketones and its

For early reports: (a) Sauer, J.; Wiest, H. Angew. Chem. 1962, 74,
 For reviews: (b) Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656.
 (c) Waldmann, H. Synthesis 1994, 535. (d) Jørgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 3558. (e) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325. (f) Buonora, P.; Olsen, J.-C.; Oh, T. Tetrahedron 2001, 57, 6099. (g) Kobayashi, S.; Jørgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002.

⁽²⁾ For reviews: (a) Katritzky, A. R.; Rachwal, S.; Rachwal, B. *Tetrahedron* **1996**, *52*, 15031. (b) Sridharan, V.; Suryavanshi, P.; Menéndez, J. C. *Chem. Rev.* **2011**, *111*, 7157. For selected examples: (c) Paris, D.; Cottin, M.; Demonchaux, P.; Augert, G.; Dupassieux, P.; Lenoir, P.; Peck, M. J.; Jasserand, D. J. *Med. Chem.* **1995**, *38*, 669. (d) Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K. F.; Tachibana, Y.; Kuo, S.-C.; Hamel, E.; Hackl, T.; Lee, K.-H. J. Med. Chem. **1998**, *41*, 1155.

⁽³⁾ For metal-catalyzed transformations: (a) Ishitani, H.; Kobayashi, S. *Tetrahedron Lett.* **1996**, *37*, 7357. (b) Sundararajan, G.; Prabagaran, N.; Varghese, B. Org. Lett. **2001**, *3*, 1973. (c) Xie, M.-S.; Chen, X.-H.; Zhu, Y.; Gao, B.; Lin, L.-L.; Liu, X.-H.; Feng, X.-M. Angew. Chem., Int. Ed. **2010**, *49*, 3799. (d) Xie, M.; Liu, X.; Zhu, Y.; Zhao, X.; Xia, Y.; Lin, L.; Feng, X. Chem.—Eur. J. **2011**, *17*, 13800. For organocatalyzed transformations: (e) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. **2006**, *128*, 13070. (f) Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. J. Am. Chem. Soc. **2009**, *131*, 4598. (g) Wang, C.; Han, Z.-Y.; Luo, H.-W.; Gong, L.-Z. Org. Lett. **2010**, *12*, 2266. (h) Bergonzini, G.; Gramigna, L.; Mazzanti, A.; Fochi, M.; Bernardi, L.; Ricci, A. Chem. Commun. **2010**, *48*, 327. (i) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen, E. N. Science **2010**, *327*, 986. (j) Dagousset, G.; Retailleau, P.; Masson, G. *J. Am. Chem. Soc.* **2011**, *173*, 14804. (k) Dagousset, G.; Retailleau, P.; Masson, G. Org. Lett. **2012**, *14*, 3158. (m) Shi, F.; Xing, G.-J.; Tao, Z.-L.; Luo, S.-W.; Tu, S.-J.; Gong, L.-Z. J. Org. Chem. **2012**, *77*, 6970. (n) Lin, J.-H.; Zong, G.; Du, R.-B.; Xiao, J.-C.; Liu, S. Chem. Commun. **2012**, *48*, 7738.

^{(4) (}a) Kouznetsov, V. V.; Forero, J. S. B.; Torres, D. F. A. *Tetrahedron Lett.* **2008**, *49*, 5855. (b) Kouznetsov, V. V.; Arenas, D. R. M.; Arvelo, F.; Forero, J. S. B.; Sojo, F.; Muñoz, A. *Lett. Drug Des. Discovery* **2010**, *7*, 632.

2-azadiene derivatives. Therefore, the development of ketone-involved Povarov reactions, especially the catalytic asymmetric transformations, has become an urgent need in the organic community.

Figure 1. Bioactive spiro-tetrahydroquinolines.

More importantly, the asymmetric Povarov reaction with ketones, in particular with unsymmetrical cyclic ketones, would directly furnish enantioenriched spirotetrahydroquinolines with a new quaternary stereogenic center (eq 2), which defines the characteristic structural core of a large family of heterocycles with pronounced and diverse bioactivities (Figure 1).^{4b,5} Of particular concern is that isatins, a type of unsymmetrical cyclic ketones with high activity, have emerged as privileged building blocks in the synthesis of spiro-fused heterocycles with potential bioactivities.⁶ In this context, the asymmetric Povarov reaction of isatin-derived 2-azadiene with electron-rich olefins would allow for the construction of an optically pure spiro[indolin-3,2'-quinoline] scaffold, which constitutes the core structural element of antitumoral molecules^{4b} (in Figure 1) and hence holds great synthetic importance.

(5) (a) Dorey, G.; Lockhart, B.; Lestage, P.; Casara, P. Bioorg. Med. Chem. Lett. 2000, 10, 935. (b) Ramesh, E.; Manian, R. D. R. S.; Raghunathan, R.; Sainath, S.; Raghunathan, M. Bioorg. Med. Chem. 2009, 17, 660. (c) Kouznetsov, V. V.; Leonor, Y.; Acevedo, A. M. Lett. Drug Des. Discovery 2010, 7, 710. (d) Brown, D. W.; Mahon, M. F.; Ninan, A.; Sainsbury, M. J. Chem. Soc., Perkin Trans. 1 1997, 16, 2329. (6) For a recent review: Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104.

(7) For early examples: (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356. For reviews: (c) Akiyama, T. Chem. Rev. 2007, 107, 5744. (d) Terada, M. Chem. Commun. 2008, 4097. (f) Terada, M. Synthesis 2010, 1929.

(8) (a) Shi, F.; Luo, S.-W.; Tao, Z.-L.; He, L.; Yu, J.; Tu, S.-J.; Gong, L.-Z. Org. Lett. **2011**, 13, 4680. (b) Shi, F.; Tao, Z.-L.; Luo, S.-W.; Tu, S.-J.; Gong, L.-Z. Chem.—Eur. J. **2012**, 18, 6885. (c) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. **2011**, 44, 1156. (d) Shi, F.; Gong, L.-Z. Angew. Chem., Int. Ed. **2012**, 51, 11423.

We recently described a number of chiral phosphoric acid⁷ catalyzed multicomponent reactions for the synthesis of enantioenriched heterocycles with biological relevance.^{3m,8} Inspired by the above success and the fact that there has not been a report on an enantioselective ketone-involved Povarov reaction for the synthesis of important spiro-[indolin-3,2'-quinoline] scaffolds, we considered utilizing isatin in the asymmetric Povarov reaction, wherein the isatin-derived ketimine should be activated by the chiral phosphoric acid. In this work, we present the first enantioselective ketone-involved Povarov reaction, which directly assembles isatins, anilines, and styrenes into biologically important spiro[indolin-3,2'-quinolines] with two quaternary stereogenic centers in high yields and excellent stereoselectivities (all > 99:1 *dr*'s, up to 97% *ee*).

Our study commenced with a three-component reaction of 1-benzylisatin 1a, 4-methoxyaniline 2a, and α -methyl *o*-hydroxystyrene **3a** in the presence of 10 mol % of chiral phosphoric acids 5 in toluene at 50 °C (Table 1). All the chiral phosphoric acids 5 enabled the reaction to proceed smoothly to afford a single diastereomer of spiro[indolin-3,2'-quinoline] 4aaa in high yields but with various levels of enantioselectivity (entries 1-6). The results revealed that 2,4,6-triisopropylphenyl-substituted phosphoric acid (Trip-PA) 5f was far more superior to other analogues with regard to enantioselectivity (entry 6 vs 1-5). The subsequent screening of the solvents at 25 °C disclosed that toluene was the most suitable reaction media, affording the desired product in 92% yield and 81% ee (entry 7 vs 8-10). Lowering the reaction temperature from 25 to -20 °C led to a substantial increase in the enantioselectivity with maintained reactivity (entries 7, 11-12), but lowering the temperature further to -30 °C resulted in a moderate yield albeit with an excellent enantiomeric excess (entry 13). Finally, increasing the stoichiometry of 3a rendered the reaction to proceed at -20 °C in a quantitative yield of 99% with a maintained enantioselectivity of 94% ee (entry 14 vs 12).

With the optimal conditions in hand, we then carried out the investigation on the substrate scope of isatins 1 (Table 2). At first, isating bearing different types of N-substituents were utilized as substrates (entries 1-5), which demonstrated that this approach was applicable to various isatins with N-benzyl, alkyl, or phenyl substituents, affording spiro[indolin-3,2'-quinolines] in excellent diastereoselectivities (all > 99:1 drs) and with a high level of enantiomeric excesses (up to 97% ee). Generally speaking, isatins with N-benzyl groups were superior to those with N-alkyl or *N*-phenyl groups in terms of yield and enantioselectivity (entries 1-3 vs 4-5). As for *N*-benzyl substituted isatins, changing the substituents on the benzyl group had some delicate effect on the enantioselectivity (entries 1-3). Notably, the perfluorinated N-benzylisatin 1c exhibited the highest capability of affording the corresponding product in 99% yield and 97% ee (entry 3). Basically, the reactivity of N-alkyl and N-phenyl substituted isatins was lower than that of N-benzylisatins; therefore the reaction temperature was increased to 50 °C to render a cleaner reaction (entries 4-5). Moreover, the use of CCl₄ as Table 1. Optimization of Reaction Conditions^a

^{*a*} Unless indicated otherwise, the reaction was carried out in 0.1 mmol scale in solvent (1 mL) with 5 Å MS (150 mg) for 48 h, and the ratio of **1a/2a/3a** was 1.2/1/2.4. ^{*b*} Isolated yield and a single diastereomer was observed unless indicated otherwise. ^{*c*} Determined by HPLC. ^{*d*} The reaction time was 84 h. ^{*e*} The ratio of **1a/2a/3a** was 1.2/1/3.6.

solvent greatly improved the yield but with a slightly decreased enantioselectivity (entries 4-5, in parentheses). Then, the influence of various substituents at different positions of the phenyl moiety of isatins on the reaction was investigated. As shown in entries 6-16, this protocol is amenable to a wide range of electronically different substituents at the C5, C6, or C7 position of isatins, delivering structurally diverse spiro[indolin-3,2'-quinolines] in high vields (60-99%) and good stereoselectivities (all >99:1 dr's, 81-97% ee's). The position of the substituent seemingly exerts some influence on the enantioselectivity and reactivity. For instance, the C5-substituted isatin exemplified by 1f showed lower reactivity and enantioselectivity than C6- or C7-substituted analogues; thus the reaction was conducted at 50 °C (entry 6). The C6- or C7-substituted isatins regardless of the electronic feature of the substituents were able to deliver high yields and excellent enantioselectivities (92-97% ees), and no remarkable difference in the stereoselectivity was observed between the C6- and C7-substituted isatins (entries 7-14 and 16). Moreover, C5,C6-disubstituted isatin 10 also smoothly participated in the reaction with 93% ee and 87% yield (entry 15).

Next, the substrate scope with respect to anilines 2 was explored by the reaction with isatin 1a or 1h and α -methyl

Table 2. Substrate Scope of Isatins^a

5 R ¹ 6 7	0 3 ¹ /2 N1 R 1	NH ₂ OH + OMe 2a OH 10 mol % 5 PhCH ₃ , 5	MeO if, -20 °C i Å MS		
entry	4	$R^{1}/R\left(1 ight)$	yield $(\%)^b$	${ m dr} \ (\%)^c$	ее (%) ^d
1	4aaa	H/Bn (1a)	99	>99:1	94
2	4baa	$\mathrm{H/}p\text{-}t\mathrm{BuC_6H_4CH_2}\ (\mathbf{1b})$	90	>99:1	93
3	4caa	$H/C_6F_5CH_2(1c)$	99	>99:1	97
4	4daa	H/iPr(1d)	41^e	>99:1 ^e	88^e
			(79^{f})	(>99:1 ^f)	(84^{f})
5	4eaa	H/Ph (1e)	31^e	>99:1 ^e	90^e
			(56^{g})	(>99:1 ^g)	(82^{g})
6^e	4faa	5-Cl/Bn (1f)	65	>99:1	81
7	4gaa	6-F/Bn (1g)	76	>99:1	96
8	4haa	6-Cl/Bn (1h)	95	>99:1	97
9	4iaa	6-Br/Bn (1i)	99	>99:1	93
10	4jaa	6-CH ₃ /Bn (1j)	99	>99:1	96
11	4kaa	7-F/Bn (1k)	99	>99:1	92
12	4laa	7-Br/Bn (11)	99	>99:1	93
13	4maa	7-CF ₃ /Bn (1m)	89	>99:1	94
14	4naa	$7\text{-}CH_3/Bn\left(\mathbf{1n}\right)$	60	>99:1	94
15	4oaa	5,6- F_2 /Bn (10)	87	>99:1	93
16	4paa	$7\text{-Br/}p\text{-}t\text{BuC}_6\text{H}_4\text{CH}_2$	63	>99:1	95
		(1p)			

^{*a*} Unless indicated otherwise, the reaction was carried out in 0.1 mmol scale in toluene (1 mL) with 5 Å MS (150 mg) at -20 °C for 84 h, and the ratio of 1/2a/3a was 1.2/1/3.6. ^{*b*} Isolated yield. ^{*c*} Determined by ¹H NMR. ^{*d*} Determined by HPLC. ^{*e*} Performed at 50 °C. ^{*f*} In the presence of 15 mol % 5f with 4 Å MS at 50 °C in CCl₄. ^{*g*} Performed at 50 °C in CCl₄ with 4 Å MS.

o-hydroxystyrene **3a** (Table 3, entries 1-6). The results disclosed that the anilines substituted with electron-donating groups served as appropriate substrates, providing the corresponding products in good yields (70-99%) and excellent stereoselectivities (all >99:1 dr's, 91-97% ee's, entries 1-5). In addition, the anilines with electron-withdrawing groups such as 2d could also be employed to react with excellent diastereoselectivity and reasonable enantioselectivity (>99:1 dr, 78% ee, entry 6). The generality for α -alkyl *o*-hydroxystyrenes **3** was also examined by the reaction with isatin **1h** and 4-methoxyaniline **2a**. Several α-alkyl o-hydroxystyrenes bearing different substituents on their benzene rings or with different α -alkyl groups were accommodated in the reaction, leading to the generation of desired products in high yields (86-99%) and good stereoselectivities (all >99:1 drs, 89-97% ees, entries 1 and 7–9). Significantly, the use of α -alkyl *o*-hydroxystyrenes as dienophiles to react with isatin-derived ketimine provides an easy access to optically pure spiro[indolin-3, 2'-quinolines] with two quaternary stereogenic centers, one of which is an all-carbon quaternary chiral center.

The absolute configuration of compound **4had** (>99% *ee* after recrystallization) was unambiguously determined to be

Table 3. Substrate Scope of Anilines and α -Alkyl *o*-Hydroxystyrenes^{*a*}

R	0 N Bn 1a: R = H 1h: R = Cl	NH ₂ R ¹	+ R ² 3	3 10 mol % 5f , -20 PhCH ₃ , 5 Å MS			R
	_		R ¹	R^{2}/R^{3}	yield	dr	ee
entr	y 4	1	(2)	(3)	(%)	(%) ^c	$(\%)^{a}$
1	4haa	1h	4-OMe	H/Me	95	>99:1	97
			(2a)	(3a)			
2	4aba	1a	4-OEt	H/Me	70	>99:1	94
			(2b)	(3a)			
3	4hba	1h	4-OEt	H/Me	99	>99:1	97
			(2b)	(3a)			
4	4aca	1a	4-OPh	H/Me	99	>99:1	91
			(2c)	(3a)			
5	4hca	1h	4-OPh	H/Me	99	>99:1	95
			(2c)	(3a)			
6^e	4ada	1a	$4\text{-}F\left(2d\right)$	H/Me	44	>99:1	78
				(3a)			
7	4hab	1h	4-OMe	Me/Me	99	>99:1	90
			(2a)	(3b)			
8	4hac	1h	4-OMe	OMe/Me	86	>99:1	90
			(2a)	(3c)			
9	4had	1h	4-OMe	H/Et	87	>99:1	89
			(2a)	(3d)			

^{*a*} Unless indicated otherwise, the reaction was carried out in 0.1 mmol scale in toluene (1 mL) with 5 Å MS (150 mg) at -20 °C for 84 h, and the ratio of 1/2/3 was 1.2/1/3.6. ^{*b*} Isolated yield. ^{*c*} Determined by ¹H NMR. ^{*d*} Determined by HPLC. ^{*e*} Performed at 50 °C.

(2'S,4'S) by single-crystal X-ray diffraction analysis (in Scheme 1).⁹ The configurations of other spiro[indolin-3, 2'-quinolines] were assigned by analogy.

Based on our experimental results and recent related studies on the reaction mechanism,^{3m} we proposed a plausible reaction pathway to explain the stereochemistry of the isatin-involved Povarov reaction (Scheme 1). As exemplified by the formation of **4had**, α -ethyl *o*-hydroxystyrene **3d** initially participated in the vinylogous Mannich reaction with the ketimine generated from isatin **1h** and aniline **2a** under

(9) CCDC 910489. See the Supporting Information for details.

Scheme 1. Proposed Reaction Mechanism

the catalysis of chiral phosphoric acid **5f** via a hydrogenbonding interaction, generating a transient intermediate **I**, which subsequently underwent an intramolecular Friedel– Crafts reaction facilitated by the same phosphoric acid **5f**, to afford the enantioenriched spiro[indolin-3,2'-quinoline] (2'S,4'S)-**4had**.

In conclusion, we have realized the first enantioselective isatin-involved Povarov reaction, which is applicable to a variety of reaction components, delivering new spiro-[indolin-3,2'-quinolines] with concomitant creation of two quaternary stereogenic centers in high yields and excellent stereoselectivities (all > 99:1 dr's, up to 99% yield and 97% ee). This transformation has provided the first example of a ketone-involved asymmetric Povarov reaction and also has offered an efficient method to obtain enantioenriched spiro[indolin-3,2'-quinoline] scaffolds with medicinal relevance.

Acknowledgment. We are grateful for financial support from NSFC (21002083 and 21232007).

Supporting Information Available. Experimental details, characterization of new compounds, and crystal data of **4had**. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.