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Abstract Ever since the recognition of strong pharma-

ceutical activities of triazoles and thiadiazoles, these scaf-

folds have been the subject of vigorous studies. One of the

best strategies for synthesis of these azoles is dehydro-

cyclization of 1,4-disubstituted thiosemicarbazides, which

leads to s-triazoles in alkaline media, whereas in strong

acidic media 1,3,4-thiadiazoles are formed. However, the

literature is riddled with contradictory communications

regarding the nature of the products of such reactions under

mild acidic conditions. As these compounds are not ame-

nable to X-ray analysis, we have resorted to NMR and

theoretical modelling to resolve this discrepancy. In this

article, we present arguments indicating that dehydrocyc-

lization of 4-benzoylthiosemicarbazides in glacial acetic

acid leads to thiadiazole derivatives. These structural

findings are augmented by studies of bioactivity of a few

members of the studied class of compounds.
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Introduction

The triazole and thiadiazole core structures represent

pharmacophores that have been widely exploited in

medicinal chemistry. The triazole- and thiadiazole-based

compounds have been reported as antimicrobials [1–21],

antivirals [22–24], antitumors [6, 10, 25–31], anticonvul-

sants [11, 32, 33] antidepressants [34–36], analgesic [8,

37–41] and anti-inflammatory [8, 9, 37, 38, 42–46] agents.

An excellent strategy for the synthesis of these azoles is the

dehydrocyclization of 1,4-disubstituted thiosemicarbaz-

ides. It is generally accepted that the cyclization of these

compounds results in the formation of s-triazoles in an

alkaline medium, whereas in an acidic medium 1,3,4-thi-

adiazoles are formed. Results from our laboratory, how-

ever, show that this is not generally true, and for some

substituents, s-triazoles are obtained both under alkaline

and acidic conditions. This leads to confusion regarding the

actual structure of the bioactive compounds. For example,

there is some disagreement in the literature regarding the

identity of the product of 4-benzoylthiosemicarbazides

dehydrocyclization in acetic acid. Some authors have

reported the formation of s-triazoles [47, 48], while others

claim to have obtained thiadiazoles [49–54] as illustrated in

the Scheme 1. As this class of compounds exhibits sig-

nificant antibacterial activity, it is important to unequivo-

cally identify the structure of this bioactive compound. The

uncertainty described above prompted us to study the
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structure of the product of the 4-benzoylthiosemicarbazide

dehydrocyclization (Scheme 1).

In this article, we present results of structural studies on

dehydrocyclization of 4-benzoyl-1-(pyrrol-2-ylcarbonyl)-

thiosemicarbazide (1, R = pyrrol-2-yl), which allowed us

to confirm that the product of this reaction is 2-benzoyla-

mino-5-(pyrrol-2-yl)-1,3,4-thiadiazole (2). Further studies

compare bioactivity of its more complicated analogue,

2-benzoylamino-5-(4-methyl-imidazol-5-yl)-1,3,4-thiadiazole

(3, R = 4-methyl-imidazol-5-yl), with its acyclic (‘linear’)

precursor, 4-benzoyl-1-(4-methyl-imidazol-5-ylcarbonyl)-

thiosemicarbazide (4), which shows excellent activity against

Gram-positive bacteria, as well as inhibitory activity towards

topoisomerase IV (topo IV) [55].

Experimental

Chemistry

All commercial reactants and solvents with the highest

purity were purchased from either Sigma-Aldrich or Lan-

caster and used without further purification. Melting points

were determined on a Fischer–Johns block and were

uncorrected. Elemental analysis was determined by an

AMZ-CHX elemental analyser (are within ±0.4 % of the

theoretical values). IR spectra (m, cm-1) were recorded in

KBr using a Specord IR-75 spectrophotometer. 1H-NMR

spectra (d, ppm) of (1) and (3) were recorded on a Bruker

Avance 300 in DMSO-d6 with TMS as internal standard.

Analytical thin layer chromatography (TLC) was per-

formed with Merc 60F254 silica gel plates and visualized by

UV irradiation (254 nm).

NMR spectra of 2-benzoylamino-5-(pyrrol-2-yl)-1,3,4-

thiadiazole (2)

1H, 13C and 15N NMR spectra were recorded at 300 K in

DMSO-d6 on Bruker Avance II Plus spectrometer at

700.21, 176.09 and 70.96 MHz, respectively. 1H and 13C

chemical shifts were calibrated on solvent signals at 2.49

and 39.7 ppm, respectively. Liquid ammonia was the ref-

erence compound for 15N chemical shifts. The signal

assignments were based on analyses of 1H and 13C 1D

NMR, 1H-1H COSY, 1H-13C HSQC and HMBC, and
1H-15N HSQC spectra. As presented in the discussion

based on the obtained spectra, the compound was identified

as 2-benzoylamino-5-(pyrrol-2-yl)-1,3,4-thiadiazole (2)

with the following signal assignments:
1H NMR d (DMSO-d6) 6.21 (dt, 1 H, J 2.4 and 3.6 Hz,

C0-4), 6.73 (m, 1H, C0-3), 6.98 (m, 1 H, C0-5), 7.56 (t, 2H, J

7.77 Hz, Ph3,5), 7.66 (t, 1 H, Ph4), 8.12 (dd, 2 H, J 8.5,

1.3 Hz, Ph2,6), 11.97 (br s, 1 H, N-2), 12.99 (br s, 1 H,

N-1); and 13C NMR d (DMSO-d6) 109.9 (C-4 pyrrol),

111.4 (C-3 pyrrol), 122.1 (C-5 pyrrol), 122.3, 128.5 (Ph2,6),

128.8 (Ph3,5), 131.7 (Ph1), 133.1 (Ph4), 155.7 (C-2 pyrrol

or thiadiazol), 157.2 (C-2 pyrrol or thiadiazol), 165.1

(carbonyl).

Synthesis of 4-benzoyl-1-(pyrrol-2-ylcarbonyl)-

thiosemicarbazide (1)

The compound (1) was obtained as described previously

for the synthesis of (4) [55].

Yield: (2.68 g, 93 %). Mp: 203-5 �C. IR (m, cm-1) 3298

(NH), 1672 (C=O), 1621, 1489, 886, 753, 707 (Ar–H). 1H-

NMR (300 MHz, DMSO-d6) dH 6.15–6.18 (m, 1H, CH),

6.97–6.99 (m, 2H, 2 9 CH), 7.51–7.57 (m, 2H, 2 9 CH),

7.64–7.70 (m, 1H, CH), 7.97–8.03 (m, 2H, 2 9 CH),

10.63, 11.71, 12.33 (3s, 3H, 4 9 NH). Anal. Calc. for

C13H12N4O2S: C, 54.15; H, 4.19; N, 19.43. Found: C,

54.55; H, 3.87; N, 19.30.

Synthesis of 2-benzoylamino-5-(pyrrol-2-yl/4-methyl-

imidazol-5-yl)-1,3,4-thiadiazole (2) and (3)

A solution of (1) or (4) (0.01 mol) in glacial acetic acid

(30 mL) was refluxed, and progress of the reaction was

monitored by thin layer chromatography. After 5 h, the

reaction was completed, and the reaction mixture was kept

for 12 h at room temperature. The precipitate was filtered,

dried and crystallized from ethanol.

2-Benzoylamino-5-(pyrrol-2-yl)-1,3,4-thiadiazole (2)

Yield: (2.16 g, 80 %). Mp: 276–8 �C. IR (m, cm-1) 3458

(NH), 3002, 1581, 1537, 1468, 905, 735, 696 (Ar–H), 1671

(C=O), 1600 (C=N). Anal. Calc. for C13H10N4OS: C,

R R

R

R R

R

Scheme 1 Proposed [47–54] the direction of dehydrocyclization of

4-benzoylthiosemicarbazides in acetic acid
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57.76; H, 3.73; N, 20.73. Found: C, 58.10; H, 4.11; N,

20.54.

2-Benzoylamino-5-(4-methyl-imidazol-5-yl)-1,3,4-thia-

diazole (3)

Yield: (1.17 g, 41 %). Mp: 256–8 �C. IR (m, cm-1) 3229

(NH), 1666 (C=O), 1610, 1579, 1511, 1488, 766, 711 (Ar–

H), 2924, 2853, 1451, 1353 (Aliph.), 1622 (C=N). 1H-

NMR (300 MHz, DMSO-d6) dH 2.56 (s, 3H, CH3),

6.54–7.69 (m, 3H, 3 9 CH), 7.70 (s, 1H, CH), 8.11–8.14

(m, 2H, 2 9 CH), 12.45 (s, 1H, NH), 12.91 (s, 1H, NH).

Anal. Calc. for C13H11N5OS: C, 54.72; H, 3.89; N, 24.55.

Found: C, 54.47; H, 3.74; N, 24.85.

Antimicrobial assay

Microorganisms used in this study were as follows:

S. aureus ATCC 25923, S. aureus ATCC 6538, S. epide-

rmidis ATCC 12228, M. luteus ATCC 10240, B. subtilis

ATCC 6633, B. cereus ATCC 10876 and B. cereus ATCC

11778 (as representative examples of Gram-positive bac-

teria); and E. coli ATCC 25922, E. coli ATCC 10538,

E. coli NCTC 8196, P. vulgaris NCTC 4635, K. pneumo-

niae ATCC 13883, P. aeruginosa ATCC 15442, P. aeru-

ginosa NCTC 6749, P. aeruginosa ATCC 27853,

P. aeruginosa ATCC 9027, P. mirabilis ATCC 12453 and

B. bronchiseptica ATCC 4617 (as representative examples

of Gram-negative bacteria).

Preliminary antibacterial potencies of (1) and (3) against

a panel of Gram-positive and Gram-negative bacteria were

screened on the basis of growth inhibition zones (GIZ) by

means of the agar well diffusion method. Then, the MICs

were determined by the agar dilution method (for (1)) or

the broth microdilution technique (for (3)). The minimum

inhibitory concentration (MIC) was defined as the lowest

concentration of the compound, preventing growth of the

tested microorganism. In both the methods, the recom-

mended Mueller–Hinton medium was used—agar and

broth, respectively [56, 57].

The disc diffusion method

The disc diffusion method was used to determine pre-

liminary activity of (1). For this method, sterile filter paper

discs (9-mm diameter) were dripped with the compound

solution to load 400 lg of one compound per disc. Dry

discs were placed on the surface of Mueller–Hinton II agar

medium. The diameter of the growth inhibition zone was

read after 18 h of incubation at 35 �C.

The agar well diffusion method

The agar well diffusion method was used to determine

preliminary activity of (3). For this method, sterile swabs

were used to spread the microbial suspensions (0.5

McFarland inoculum diluted 1:100 in Mueller–Hinton

broth) onto the medium surface, and then the compound

solution at a concentration of 5,000 lg/mL was introduced

into wells (80 lL per well separately). The wells (8-mm

diameter) were made on the agar with a sterile cork borer.

The plates were preincubated at room temperature for

1.5 h, to allow the diffusion of solution into the medium,

and were then incubated at 37 �C for 18 h.

The agar dilution method

The agar dilution method was used to determine MICs for

(1). For the determination, the compound was dissolved in

DMSO. Concentrations of the agent tested in solid medium

ranged from 6.25 to 400 lg/mL. The final inoculum of all

organisms studied was 104 colony-forming units per mL

(CFU/mL). Minimal inhibitory concentrations were read

after 18 h (for bacteria) of incubation at 35 �C. Cipro-

floxacin (5 lg per disc) was used as the control antimi-

crobials. The MIC results were repeated three times and are

illustrated in Table 1.

The broth microdilution method

The broth microdilution method was used to determine

MICs for (3). This method was performed in 96-well

microplates with the Mueller–Hinton broth containing

from 1.95 to 1,000 lg/mL of (1). 20 lL of each bacterial

0.5 McFarland suspension was added to the Mueller–Hin-

ton broth per each well; total volume was 200 lL. After

incubation (37 �C for 18 h), the optical density (OD600)

measurements were determined for bacterial cultures in the

presence and in the absence of tested compounds. Cefur-

oxim at concentrations of 0.06 to 500 lg/mL was used as

control antimicrobials. The MIC results were repeated

three times and are illustrated in Table 1.

Inhibition of bacterial type IIA topoisomerases

Supercoiling assay

The assays were performed using S. aureus Gyrase Super-

coiling Assay Kits (Inspiralis). In brief, supercoiled

pBR322 plasmid DNA (0.5 lg) was incubated with 1 unit

of gyrase, in the dedicated supercoiling assay buffer sup-

plied by the manufacturer, in the presence of varying con-

centrations of the test compounds. Reactions were carried

out at 37 �C for 1 h and then terminated by the addition of

equal volume of 29 STOP Buffer (40 % sucrose, 100 mM

Tris–Cl pH 7.5, 1 mM EDTA, and 0.5 mg/ml bromophenol

blue) and chloroform/iso-amyl alcohol. Samples were vor-

texed, centrifuged and run through a 15 cm 1 % agarose gel
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in TAE buffer (40 mM Tris–acetate, 2 mM EDTA) for 3 h

at 50 V. Gels were stained with ethidium bromide and

visualized under UV light.

Decatenation assay

The assay was performed using S. aureus topoisomerase IV

decatenation kits (Inspiralis). Interlinked kDNA substrate

(0.5 lg) was incubated with 1 unit of topoisomerase IV

(Inspiralis), in the dedicated decatenation assay buffer

supplied by the manufacturer, in the presence of varying

concentrations of the test compounds. Reactions were

carried out at 37 �C for 1 h and then terminated by the

addition of equal volume of 29 STOP Buffer (40 %

sucrose, 100 mM Tris–Cl pH 7.5, 1 mM EDTA and

0.5 mg/ml bromophenol blue) and chloroform/iso-amyl

alcohol. Samples were vortexed, centrifuged and run

through a 15 cm 1 % agarose gel in TAE buffer for 1.5 h at

80 V. Gels were stained with ethidium bromide and visu-

alized under UV light. The concentrations of the inhibitor

that prevented 50 % of the kinetoplast DNA from being

converted into decatenated minicircles (IC50 values) were

determined by plotting the results obtained from the

densytometric analyses of the gel images by means of

Quantity One software (BioRad).

Theoretical calculations

Structures of alternative products of dehydrocyclization of

(1) (s-triazole and thiadiazole) were optimized by means of

the B3PW91 functional expressed in the 6-31?G(d,p) basis

set [58, 59], as implemented in Gaussian09 [60]. Contin-

uum solvent model IEFPCM with parameters for DMSO

was used in all calculations. Theoretical NMR shifts were

then obtained for the optimized structures by means of the

B3LYP functional [61] with 6-311?G(2d,p) basis set.

Default thresholds were used in all calculations. It has been

shown that reoptimization by means of the B3LYP func-

tional led to same conclusions.

Discussion

Recently, a series of products of dehydrocyclization of

4-benzoylthiosemicarbazides in glacial acetic acid were

obtained in our laboratory with the aim of comparing their

bioactivity with those of their acyclic 4-benzoylthiose-

micarbazide precursors. All the compounds were charac-

terized by 1H NMR spectra, which clearly confirmed the

process of aromatization of the ‘linear’ substrates. How-

ever, based on the broad resonance of the NH group at

about 13 ppm, we could not confirm whether the s-triazole

or thiadiazole derivative was formed. Typically, the 1H

NMR spectra of s-triazoles display a sharp NH resonance

signal at about 14 ppm, while for thiadiazoles, a broad

signal in the range 10–12 ppm is observed. The NH signals

at about 13 ppm, for products of aromatization of 4-ben-

zoylthiosemicarbazides in glacial acetic acid, are halfway

between these typical values, and thus, are ascribed in the

literature either to s-triazole or thiadiazole moieties.

Unfortunately, structures of these compounds cannot be

confirmed based on X-ray analysis because none of them

are prone to crystallization. Thus, in order to establish the

actual structure, 2D NMR experiments (as detailed in

the ‘‘Experimental’’ section) were carried out based on the

example of dehydrocyclization of (1).
1H-15N HSQC spectrum shows two correlations of NH

protons to attached nitrogen atoms: 12.99–130.5 and

11.97–155.5 ppm. In the COSY spectrum (Fig. 1a), the

signal at 11.97 ppm shows correlations with other protons

and is the entering point for assignment of protons at 6.21,

6.73 and 6.98 ppm as protons of the pyrrole ring. Thus, the

second spin system in the COSY spectra at 7.56, 7.66 and

8.12 ppm corresponds to the phenyl ring protons. Signal at

8.12 ppm was assigned as ortho protons in phenyl ring.

The second NH atom is connected with carbonyl carbon in

the benzamide fragment (left) or to thiocarbonyl group

within triazole ring. In HMBC spectrum (Fig. 1b), signal at

12.99 ppm correlates with the carbon atom at 165.1 ppm.

Correlation with the same atom was detected for ortho

Table 1 In vitro antimicrobial

activities of (1), (3),(4) and

reference antibiotics expressed

as the growth inhibition zone

(GIZ, mm) and minimal

inhibitory concentration

(MIC, lg/mL)

Strains ATCC: a25923, b6538,
c12228, d10240, e6633, f11778,
g10876

Compound S. aureus S. epidermidis M. luteus B. subtilis B. cereus

GIZ MIC GIZ MIC GIZ MIC GIZ MIC GIZ MIC

(1) 18a,b 50a,b 20c 50c 15d 25d 20e 25e 14f 25f

(3) 50a

8a

125a

500b

19c 62.5c 44d 31.25d 50e 62.5e 8g [1,000g

(4) 34a

18b

500a

1,000b

24c 3.91c 50d 0.98d 21e 7.81e 8g 62.5g

Cefuroxim 0.49a

0.98b

0.98c 0.98d 0.98e 31.25g

Ciprofloxacin 0.5a

0.5b

0.5c 2d \0.125e 1f
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phenyl protons at 8.12 ppm. From this, it can be concluded

that the product of the dehydrocyclization of (1) is the

thiadiazole (2).

The assignment was augmented by the results of theo-

retical modeling of 13C and 15N spectra. The three signals

with the highest chemical shifts and two signals with the

lowest chemical shifts in theoretical 13C spectra of both

alternative products clearly support the thiadiazole struc-

ture as evidenced by the data illustrated in Table 2. Also

the difference between NH signals in 15N spectra calcu-

lated for triazole (40.1 ppm) and thiadiazole (20.8 ppm),

when compared with the experimental value of 24.5 ppm,

supports this conclusion. The unambiguous assignment of

some carbon signals, which is experimentally impossible

due to lack of long-range couplings, was achieved in the

theoretical manner. The selected DFT functional, B3PW91

[62–64], has been shown previously to be adequate for

calculating properties of compounds of this class [65–68].

Figure 2 shows all 13C signals and relates them to the

corresponding carbon atoms.

We have recently documented for the first time inhibi-

tory properties of 4-benzoylthiosemicarbazides against

bacterial topoisomerase IV [55]. Among tested compounds

4-benzoyl-1-(indol-2-ylcarbonyl)-thiosemicarbazide (5, R =

indol-2-yl) was found to be the best inhibitor of topo IV

with IC50 = 14 lM. A decrease in this inhibitory activity

(IC50 = 90 lM) was observed when indole moiety was

replaced with imidazole in (4). 1,4-Dibenzoylthiosemi-

carbazide (6, R = phenyl), with a considerably different

structure from both (4) and (5), was inactive as inhibitor of

both DNA gyrase and topoisomerase IV. Based on the DFT

and docking studies it was proposed that two factors: (i) the

structure of the thiosemicarbazide and (ii) substituent at

N1 nitrogen atom are the key functionalities required

for inhibition of topo IV rather than H-bond interaction

between NH–NH–C(=S)–NH core and the enzyme. In

order to expand these initial findings with further details on

the structure–activity relationship for this chemical class,

(3), the cyclic product of (4), was synthesized and its

biological activity evaluated. It was found that (3) exhibits

no inhibitory activity against topo IV. Based on these

findings, we can conclude that both substituents as well as

the NH–NH–C(S)–NH core are important for interactions

of thiosemicarbazide-based compounds with topo IV.

Interestingly, inhibitory activities of 4-benzoyltiosemic-

arbazides and their cyclic derivatives do not parallel their

antibacterial activities. The comparison of these activities

for compounds (1) and (3) with the corresponding literature

data on (4) is given in Table 1 in the Experimental section.

Fig. 1 a 1H-1H COSY and b 1H-13C HMBC NMR spectra used in elucidation of the structure of the product of dehydrocyclization of (1)

Table 2 Comparison of selected 13C NMR signals (ppm), pre-

dicted theoretically at the IEFPCM(DMSO)/B3LYP/6-311?G(2d,p)//

IEFPCM(DMSO)/B3PW91/6-31?G(d,p) for alternative structures

with the experimental values

Thiadiazole Experiment Triazole

166.3 164.9 170.6

160.8 157.0 168.6

159.1 155.6 152.1

111.7 111.2 118.6

111.6 109.7 112.2
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As can be seen, the replacement of the imidazole with

pyrrole ring, exemplified by (1), resulted in increase in

antibacterial activity against S. aureus ATCC 25923 and

6538 as compared to (4). The same trend was observed

when antibacterial potency of thiosemicarbazide (4) with its

cyclic derivative (3) was compared. Compound (1) was

more active against B. cereus ATCC 10876 than (4) and

control antibiotic cefuroxim. This implies that 4-ben-

zoyltiosemicarbazides and their cyclic derivatives partici-

pate in at least two different mechanisms of antibacterial

activity: one is connected with inhibition of topo IV, while

the nature of the other cannot be elucidated from the limited

data collected thus far. Evidently, broader structure–activity

relationship analysis is necessary. Systematic search among

this chemical class is in progress in our laboratory.

Conclusion

In this contribution, arguments indicating that dehydro-

cyclization of 4-benzoylthiosemicarbazides in glacial ace-

tic acid leads to thiadiazole derivatives were presented.

These structural findings were augmented with studies on

bioactivities of a few members of the studied class of

compounds. They further evidence that thiosemicarbazide

derivatives have at least two different targets correspond-

ing to their antibacterial activities.
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Daukšas V (2001) Synthesis of 3-(3,4-domethoxyphenyl)-1H-

1,2,4-triazole-5-thiol and 2-amino-5-(3,4-dimethoxyphenyl)-1,3,

4-thiadiazole derivatives exhibiting anti-inflammatory activity.

Pharmazie 56:617–619

45. Labanauskas L, Udrenaite E, Gaidelis P, Brukštus A (2004)
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