320 Communications synthesis

In the above scheme n represents the appropriate stoichiometric amount of the Grignard reagent. In fact a large excess of the Grignard reagents was always used (100%), but 2 was obtained only when $R = CH_3$, C_2H_5 , or C_6H_5 , whereas 3 was obtained with larger groups. Compound 6 was isolated only when $R = CH_3$. Furthermore, a double 1,4-addition could not be observed with reagent 4. This fact suggests a possible mechanism based on alternative additions of the Grignard anions followed by eliminations of the Grignard reagent H_3CSMgX . The last step is a 1,4-addition of the RMgX and the obtaining of the insoluble magnesium enole ether does not allow a second 1,4-addition.

Diethyl t-Butylmalonate (2; $R = CH_3$):

To a freshly prepared solution of methylmagnesium iodide (0.1 mol) in dry ether (120 ml) was added copper(I) bromide (50 mg) and the mixture was stirred for 15 min. Diethyl α -dithiomethylmethylene malonate (1; 5.28 g, 0.02 mol) in ether (60 ml) was dropped during 1 h into the Grignard solution with cooling in ice water. The mixture was stirred at room temperature for 1 h and then refluxed for 30 min. The mixture was cautiously decomposed with 10% hydrochloric acid (methanethiol evolved) and filtered to remove copper salts. The ether phase was washed with a 15% sodium hydrogen carbonate solution, dried, and evaporated. Distillation of the residue through a Vigreux column gave the pure colourless product; yield: 78%; b.p. 70°/1 torr.

 $C_{11}H_{20}O_4$ calc. C 61.0 H 9.2 (216.0) found 61.1 9.3

2,6-Dibenzyl-3,5-dimethyl-1,7-diphenyl-2,5-heptadiene-4-one (5; $R=CH_2C_0H_3$):

To a freshly prepared solution of benzylmagnesium chloride (0.16 mol) in dry ether (200 ml + 50 mg copper(I) bromide), was added 4 (5.88 g, 0.02 mol) in ether (200 ml) slowly as above. The mixture was then refluxed for 2 h, decomposed, and worked-up as above. The product was recrystallised from petroleum ether (b.p. $40-60^{\circ}$ /benzene; yield: $35^{\circ}\%$; m.p. 117° .

C₃₅H₃₄O calc. C 89.3 H 7.3 (470.0) found 89.0 7.1

¹H-N.M.R.: (see Table 2). Two different peaks for the methylene protons were observed: one for the *cis* at $\delta = 3.34$ ppm and the other for the *trans* at $\delta = 3.51$ ppm.

Mass spectrum: $m/e \approx 470$ (M $^{\oplus}$, 1%), 379 (18%), 288 (12%), 211 (28%), 91 (100%).

Diisopropylmethylene Malonodianilide:

Sodium hydride (100 mg) was added to a solution of 3 ($R = i-C_3H_7$) (1 g) in aniline (5 ml). The mixture was refluxed for 1 h, cooled, and poured on to an excess of ice-cold 10% hydrochloric acid. The product was collected and recrystallised twice from dilute methanol. The yield is nearly quantitative: m.p. 198°. The compound crystallised with half a molecule of water.

C₂₂H₂₆N₂O₂· ¹/₂H₂O calc. C 73.5 H 7.3 N 8.0 (359.0) found 73.5 7.4 8.3

I.R. (Nujol): $v_{\text{max}} = 3280$ (m), 1670 (s), 1600 (s) cm⁻¹.

¹H-N.M.R. (CDCl₃): $\delta = 9.4$ (s, 2H), 7.6-7.0 (m, 10H), 1.9 (q, 2H), 0.9 ppm (d, 12H).

5

Substitution of S-Methyl Groups by Grignard Rea-

Department of Organic Chemistry, Hebrew University of Jerusa-

Reactions of doubly activated methylene groups with carbon

disulphide and alkyl halides in the presence of a strong

base (e.g. sodium hydride) have been known for a long

time^{1, 2}. More recently both Corey³ and one of us⁴ have

described a similar reaction with ketones, so that their x-di-

thiomethylene derivatives or $\alpha'\alpha'$ -bis-dithiomethylene deri-

Following the report of Corey concerning the reaction of

α-dithiomethylene ketones with dimethylcopperlithium, we have reacted a variety of similar compounds with Grignard

reagents (in the presence of small amounts of copper(1) bro-

mide) and we found that a substitution of both α -dithiomethyl

groups by two Grignard residues can be achieved. When

the R moiety of Grignard reagent is not bulky, e.g. methyl,

We want to report the reaction of two typical systems:

α-dithiomethylene derivatives of diethyl malonate (1), and

the bis- α,α' -dithiomethylene derivatives of diethyl ketone (4).

Both products were prepared according to our previous

ethyl, a 1,4-addition follows the substitution.

gents

Ytzhak ITTAH, Israel SHAHAK*

vatives are now easily available.

lem, Jerusalem, Israel

Table 1. Reaction of Grignard Reagents with 1

R	Product type	Yield (%) ^a	b.p./torr ^b or m.p.	Empical formula ^c	I.R. (nujol) v cm ⁻¹ (>C=O)	1 H-N.M.R. (CDCl ₃) δ ppm
СН3	2	78	70°/1	C ₁₁ H ₂₀ O ₄ (216.0)	1730, 1750	0.82 (s, 9H), 1.30 (t, 6H), 3.10 (s, 1H), 3.90 (q, 4H)
C_2H_5	2	72	93°/0.3	C ₁₄ H ₂₆ O ₄ (258.0)	1730, 1750	0.90 (t, 9H), 1.32 (t, 6H), 1.40 (q, 6H), 3.12 (s, 1H), 3.90 (q, 4H)
<i>i</i> -C ₃ H ₇	3 ^d	60	92°/0.2	C ₁₄ H ₂₄ O ₄ (294.0)	1705, 1725	0.95 (d, 12H), 1.30 (t, 6H), 1.90 (q, 2H), 4.25 (q, 4H)
C ₆ H ₅	2	60	m.p. 133°	C ₂₆ H ₂₆ O ₄ (402.0)	1728, 1746	1.28 (t, 6H), 3.14 (s, 1H), 3.92 (q, 4H), 7.28 (m, 15H)
C ₆ H ₅ CH ₂	3 ^e	42	*AAAPPVPB.	$C_{22}H_{24}O_4$ (352.0)	1706, 1727	2.80 (s, 4H), 7.30 (m, 10H), 10.7 (s, 2H)

^a Yield of analytically pure product.

d The dianilide is prepared

Table 2. Reaction of Grignard Reagents with 4

R	Product type	Yield (%)	b.p./torr or m.p.	Empirical formula ^a	I.R. (nujol) v cm ⁻¹ (>C=O)	¹H-N.M.R. (CDCl 3) δ ppm
CH ₃	6 ⁶	60	142°/1	C ₁₂ H ₂₂ O (182.0)	1680	0.84 (s, 9H), 1.20 (d, 3H), 1.60 (s, 6H), 1.70 (s, 3H), 2.80 (q, 1H)
C ₆ H ₅	5	32	m.p. 228°	C ₃₁ H ₂₆ O (414.0)	1620	2.00 (s, 6H), 7.21 (m, 20H)
C ₆ H ₅ CH ₂	5	35	m.p. 117°	C ₃₅ H ₃₄ O (470.0)	1670	2.05 (s, 6H), 3.34 (s, 4H), 3.51 (s, 4H), 7.15 (m, 20H)
4-H ₃ CC ₆ H ₄	5	30	m.p. 202°	C ₃₅ H ₃₄ O (470.0)	1610	2.14 (s, 6H), 3.32 (s, 12H), 7.18 (m, 16H)

^a All compounds gave satisfactory elemental analyses (C $\pm 0.30\%$, $H \pm 0.30\%$) unless otherwise stated.

Received: December 18, 1975

b b.p.'s are corrected.

c All compounds gave satisfactory elemental analyses $(C\pm0.30\%, H\pm0.30\%)$ and showed correct molecular ion peaks in the mass spectra.

^e Isolated as the diacid; N.M.R. data for diacid are given.

^b Correct elemental analysis not obtained, product apparently contained a small amount of $5 (R = CH_3)$

¹ R. Gompper, W. Töpfl, Chem. Ber. 95, 2861 (1962).

² R. Gompper, W. Töpfl, *Chem. Ber.* **95**, 2881 (1962). ³ E. J. Corey, R. H. K. Chen, *Tetrahedron Lett.* **1973**, 3817.

⁴ I. Shahak, Y. Sasson, Tetrahedron Lett, 1973, 4207.