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A New Access to 4 H-Quinolizines from 2-Vinylpyridine and Alkynes
Promoted by Rhodium-N-Heterocyclic-Carbene Catalysts

Ramén Azpiroz, Andrea Di Giuseppe, Ricardo Castarlenas,*
Jesis J. Pérez-Torrente, and Luis A. Oro*?!

N-Bridgehead heterocycles are prevalent in many natural
and synthetic biologically active alkaloids.'!! The develop-
ment of efficient synthetic methodologies for the prepara-
tion of these intricate structures has been the focus of in-
tense research,”! among which transition-metal catalysts
have played a preeminent role.’! However, derivatives
based on the quinolizine skeleton have received little atten-
tion, probably due to their instability, and are mainly limited
to quinolizidine,*! quinolizinium salts,”) or quinolizinone!®
compounds. Indeed, 4 H-quinolizines are very scarce,” par-
ticularly the 4-unsubstituted counterparts,® and are usually
involved in a tautomeric equilibrium with the corresponding
butadienylpyridine derivatives (Scheme 1).’! Interestingly,
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Scheme 1. Tautomerization of 4 H-quinolizines.

we have now observed that the process can be shifted to-
wards the quinolizine tautomer depending on the presence
and position of certain substituents on the dienyl fragment.
However, a straightforward and general method for the
preparation of butadienylpyridines is still an important chal-
lenge for which organometallic catalysts emerge as a crucial
node, as they can potentially achieve this task from 2-vinyl-
pyridine and alkynes through sequential C—H activation and
C—C coupling reactions.'”! Particularly, we have been inter-
ested in the design of rhodium catalysts based on N-hetero-
cyclic carbenes (NHCs)' for new C—C and C—X bond-
forming reactions.'? Now, we have discovered that rhodium
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catalysts bearing NHC ligands give access to the elusive 4 H-
quinolizines with total atom economy under mild conditions.

Our research group has recently reported that isolable
mononuclear Rh—NHC species can be obtained by an N-
donor-ligand-promoted bridge-cleavage reaction of the cor-
responding dimer."*! Similarly, we have now observed that
the treatment of [{Rh(u-Cl)(NHC)(n*coe)},] (NHC=IPr
(1), IMes (2); coe =cyclooctene; IPr=1,3-bis-(2,6-diisopro-
pylphenyl)imidazol-2-carbene;  IMes=1,3-bis-(2,4,6-trime-
thylphenyl)imidazol-2-carbene) with 2-vinylpyridine afford-
ed [RhCI(NHC)(x-N,n>-CH,=CHC;H,N)] (NHC=IPr (3),
IMes (4)) in good yields (see the Supporting Information
for synthetic details and NMR data). The chelating coordi-
nation of vinylpyridine is corroborated by an upfield shift
for the olefinic protons (6=3.39-2.13 ppm) and the occur-
rence of J-_g, coupling for the carbon atoms of the alkenyl
fragment (0=16-12 Hz) in the 'H and “C{'H} NMR spec-
tra, respectively.

It has been previously described that rhodium-phosphane
catalysts efficiently promote the C—C coupling between al-
kenylpyridines and olefins,"¥ although the coupling with al-
kynes has not been reported to date. Now, we have discov-
ered that the introduction of an NHC ligand in complexes 3
and 4 allow for the straightforward preparation of buta-
dienylpyridines  from  2-vinylpyridine and  alkynes
(Scheme 2). Notably, the use of 3 and 4 enables terminal al-
kynes to be used in this type of transformation without the
observation of competitive dimerization or polymerization
processes.
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Scheme 2. C—C coupling reactions mediated by Rh—NHC catalysts.

Catalytic reactions were carried out in an NMR tube in
C¢Dg by using a 1:1 ratio of pyridine/alkyne. Preliminary
tests with phenylacetylene under the optimized conditions
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(40°C at 5 mol % catalyst loading) showed that 4 was slight-
ly more active than 3 (see Table S1 in the Supporting Infor-
mation). Initially, the formation of (1Z,3E)-2-(4-phenylbuta-
1,3-dien-1-yl)pyridine (Figure 1) was observed, however, un-
expectedly it was accompanied with a new set of resonances
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Figure 1. Monitoring of the reaction between 2-vinylpyridine and phenyl-
acetylene catalyzed by 4 in C¢D at 40°C.

that were unequivocally ascribed to 3-phenyl-4 H-quinolizine
(see below). The formation of this product may arise from a
6m-electrocyclization involving the two conjugated double
bonds and one C=N of the pyridine moiety within an unde-
tected (1Z,3gem)-butadienylpyridine species. A similar
transformation has been previously observed for conjugated
imines" or oximes!"” but dearomatization of a pyridine
moiety is considerably more challenging.'! The similar ini-
tial rate for the formation of both organic products points
out to a lack of regioisomeric preference in the C—C cou-
pling process, but the (1Z,3E)-butadienylpyridine product
smoothly isomerizes to produce
the (1E3E) derivative. A con-

COMMUNICATION

protons, which is fully consistent with the presence of non-
aromatic bicyclic system. The 4 H-quinolizine structure was
further confirmed by HSQC and HMBC 'H-"C experi-
ments. Remarkably, the methylene fragment at 4-positon of
the quinolizine skeleton was observed as a singlet at 6=
4.38 ppm. Moreover, long-range HSQC 'H-"N correlation
confirms the presence of a N-bridgehead heterocycle
(Figure 2) with a 0(**N) of 117.5 ppm, which falls within the
typical range for a trisubstituted amine. In sharp contrast,
the (1E,3E)-butadienylpyridine compound was observed at
0=2309.8 ppm.
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Figure 2. '"H-"N NMR correlation spectrum for a 4 H-quinolizine.

Catalyst 4 is a versatile precursor for coupling reactions
between 2-vinylpyridine and diverse terminal and internal
alkynes (Table 1). Aromatic terminal alkynes reacted faster
than aliphatic ones and with higher selectivity to 4 H-quino-
lizine (Table 1, entries 1-3 vs. 4-6). Isomerization of the in-

Table 1. Coupling reaction between 2-vinylpyridine and alkynes.!!

version of 97% was reached

after 4 h with a TOF,, value of Substrate Eh] 4 H-g" Z-E E-EU Z-g! E-g¥ vipy! ?;121;”2
35h! calculated at 50% con-
version of 2-vinylpyridine. It is 1 @—: 4 48 3 46 - - 3 35
noticeable that the formation of
4-phenyl-4 H-quinolizine ~ was 2 F3C_®_: 1 43 2 48 - - 7 51
not detected. Both butadienyl- _
e . 3 MeO—@—— 6 36 16 31 8 - 8 29
pyridine isomers were isolated
by column chromatography 4 \_/ — 5 7 37 - 45 10 1 26
methods but, unfortunately, the =
quinolizine derivative could not 5 Cf 9 9 39 - 38 1 3 23
be recovered despite several at-
tempts under different condi- 6 %{ 20 7 74 2 14 - 2 4
tions.!"*] \
The nature of the new organ- 7 —/Si—: 14 16 47 _ _ _ 37 3
ic product as 3-phenyl-4 H-qui- .
nolizine was confirmed by mul- 8 /T/ 1451 36 12 - - 1 15
tinuclear NMR experiments. A ¢ O = O 12 23 69 6l _ _ 2 3
striking feature of the 'H NMR
10 +© 3 45lel 25 231 - - 6 18

spectrum is an unusual set of

resonances at higher field (6=
6.6-4.9 ppm) compared with

that corresponding to aromatic  [h] 4-Phenyl.
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[a] Complex 4 (5 mol%) in C¢Ds (0.5 mL) at 40°C, [subs] =1m. [b] 4 H-Quinolizine; ratio of "H NMR integra-
tion. [c] 2-(Buta-1,3-dien-1-yl)pyridine. [d] gem. [e] Unreacted 2-vinylpyridine. [f] E,Z isomer. [g] 4-Methyl.
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ternal double bond from Z to E occurred also faster for aro-
matic than aliphatic-substituted dienyl derivatives. The pres-
ence of an electron-withdrawing substituent on the phenyl
ring increased the rate whereas selectivity to the N-bridge-
head heterocycle decreased for both, electron-donating or
-withdrawing groups (Table 1, entries 1-3).

The presence of bulky substituents in aliphatic alkynes re-
duced the activity (Table 1, entries 6 and 7). It is noticeable
that the key (1Z,3gem)-butadienylpyridine isomers were de-
tected for aliphatic alkynes, and consequently, the conver-
sion to 3-R-4 H-quinolizine is lower, which suggests that the
tautomerization is disfavored in these cases.'”! Monitoring
of the reaction showed that the initially formed Z-gem-buta-
dienylpyridine isomerizes to E-gem derivatives and tauto-
merizes to the 4 H-quinolizine compounds (Figure 3). Nota-

conv. (%)

t (h)

Figure 3. Monitoring of the reaction between 2-vinylpyridine and 3-
phenyl-1-propyne catalyzed by 4 in C¢Dy at 40°C.

bly, for aliphatic alkynes, the isomerization of 1Z3F to
1E,3F butadienylpyridines was not detected under catalytic
conditions,"® whereas internal alkynes reacted smoothly
(Table 1, entries 8-10). The configuration of the conjugated
double bonds of the butadienyl products was confirmed by
"H-NOE NMR experiments (see the Supporting Informa-
tion). In the case of 3-hexyne, the formation of the 1Z3F
derivative was initially observed with subsequent isomeriza-
tion to 1 E,3 E and 4 H-quinolizine compounds. However, di-
phenylacetylene behaved somewhat different. The initial
rate for the 4 H-quinolizine formation was higher but the N-
heterocycle underwent a re-opening to afford the (1Z,3 E)-
2-(3,4-diphenylbuta-1,3-dien-1-yl)pyridine ~ derivative with
both phenyl groups disposed

mutually tzrans (Figure 4). Dis-

symmetric 1-phenyl-1-propyne

gave exclusively 4-methyl-3- N
phenyl-4 H-quinolizine and 2- - + [Rn]
(3-methyl-4-phenylbuta-1,3-
dien-1-yl)pyridine.

Scheme 3 shows a plausible
mechanism for the formation of
the 3-R-4 H-quinolizine com-
pounds. Initially, the activation
of a terminal C—H bond of the
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Figure 4. Monitoring of the reaction between 2-vinylpyridine and diphe-
nylacetylene catalyzed by 4 in C¢Dg at 40°C.

2-vinylpyiridine to generate rhodium-alkenyl-hydride spe-
cies is proposed.” The subsequent coordination of the
alkyne, migratory insertion and reductive elimination should
generate both (1Z,3E)- or (1Z,3gem)-butadienyl-pyridine
products depending on the regioselectivity. In both cases,
the Z configuration of the internal double bond is kinetical-
ly favored if a concerted insertion mechanism is assumed.
Then, formation of 4 H-quinolizine skeletons can be ration-
alized through a metal-mediated or thermal electrocycliza-
tion. To shed light on this point, a solution of pure Z-gem
isomer, (Z)-2-(3-benzylbuta-1,3-dien-1-yl)pyridine, in CyDg
was heated at 60°C. Monitoring of the reaction by NMR
spectroscopy evidenced the smooth formation of the 4 H-
quinolizine isomer, thus, pointing to a thermally activated
cyclization process. In fact, an equilibrium mixture (butadie-
nylpyridine/heterocycle) of 75:225 was reached after 3h,
which was corroborated by the exchange peaks observed in
the '"H-NOE NMR spectrum at 80°C. It is noticeable that
the formation of the E-gem regioisomer was not observed
indicating that metal catalyst accounts for the Z to E iso-
merization of the internal double bond. A cisoidal configu-
ration of the conjugated double bonds is essential for the
electrocyclic reaction to take place, thus isomerization of
the internal double bond is a handicap to be overcome. A
similar equilibrium mixture was observed after heating the
(1Z3E)-butadienylpyridine obtained from 3-hexyne, but in
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Scheme 3. Plausible mechanism for the formation of 4 H-quinolizine derivatives mediated by 4.
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this case the equilibrium is further shifted to the quinolizine
compound in 60:40 molar ratio.

Theoretical calculations (DFT/m06-2x/kcalmol™) for the
thermodynamics of the tautomerization process were per-
formed. In full agreement with experimental results, it was
found that 3-phenyl-4 H-quinolizine is 1.83 kcalmol™' more
stable than Z-gem-butadienylpyridine whereas the forma-
tion of 4-phenyl-4 H-quinolizine from the (1 E,3 Z)-butadie-
nylpyridine isomer is disfavored by 2.04 kcalmol™
(Figure 5). On the other hand, the calculated energies for di-
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Figure 5. Thermodynamic DFT-calculated free energies (AG, kcalmol™')
for the tautomerization of butadienylpyridine—quinolizine.

phenylacetylene were also in agreement with the experimen-
tal results. Although the 4 H-quinolizine is 3.24 kcalmol ™
more stable than the (1Z,3Z)-butadienylpyridine isomer,
not detected in the catalytic reaction, tautomerization to the
(1Z3E) counterpart is also slightly favored (—0.68 kcal
mol ™), thus explaining the smoothly tautomerization ob-
served experimentally (Figure 4).

In conclusion, we have described the outstanding catalytic
performance in C—C coupling reactions of new Rh—NHC
catalysts leading to the formation of 4 H-quinolizine deriva-
tives under mild conditions with total atom economy. We
have shown that the thermal 6m-electrocyclization process
leading to the formation of N-bridgehead heterocycles is fa-
vored for internal- versus terminal-substituted butadienyl-
pyridine derivatives. The design of improved catalysts for se-
lective Z-gem-butadienylpyridine formation and reduced Z
to E isomerization of the internal double bond is ongoing in
our laboratories.

Experimental Section

Synthesis of catalyst 3: A yellow solution of 1 (300 mg, 0.235 mmol) in
toluene (10 mL) was treated with 2-vinylpyridine (50 pL, 0.470 mmol)
and was stirred at room temperature for 1h. After filtration through
Celite the solvent evaporated to dryness. Addition of hexane caused pre-
cipitation of a yellow solid, which was washed with hexane (3x4 mL)
and dried in vacuo. Yield: 250 mg (84 % ). Elemental analysis calcd (%)
for C3,H;;N;CIRh: C 64.61, H 6.86, N 6.65; found: C 64.92, H 6.89, N
6.62.

Synthesis of catalyst 4: The complex was prepared as described for 3
starting from 2 (300 mg, 0.271 mmol) and 2-vinylpyridine (58 uL,
0.542 mmol). Yield: 260 mg (87 %). Elemental analysis caled (%) for
C,oH3sN;CIRh: C 61.38; H 5.70; N 7.67; found: C 61.05, H 5.80, N 7.26.

Chem. Eur. J. 2013, 19, 38123816
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Standard procedure for the catalytic C—C coupling between 2-vinylpyri-
dine and alkynes: An NMR tube containing a solution of the catalyst
(0.025 mmol) in of CsD4 (0.5mL) was treated with 2-vinylpyridine
(0.5 mmol) and the alkyne (0.5 mmol) and heated at 40°C. The reaction
course was monitored by NMR and the conversion determined by inte-
gration of the corresponding resonances in the 'H NMR spectra of 2-vi-
nylpyridine and the products.
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