A New Access to 4*H*-Quinolizines from 2-Vinylpyridine and Alkynes Promoted by Rhodium–N-Heterocyclic-Carbene Catalysts

Ramón Azpíroz, Andrea Di Giuseppe, Ricardo Castarlenas,* Jesús J. Pérez-Torrente, and Luis A. Oro*^[a]

N-Bridgehead heterocycles are prevalent in many natural and synthetic biologically active alkaloids.^[1] The development of efficient synthetic methodologies for the preparation of these intricate structures has been the focus of intense research,^[2] among which transition-metal catalysts have played a preeminent role.^[3] However, derivatives based on the quinolizine skeleton have received little attention, probably due to their instability, and are mainly limited to quinolizidine,^[4] quinolizinium salts,^[5] or quinolizinone^[6] compounds. Indeed, 4*H*-quinolizines are very scarce,^[7] particularly the 4-unsubstituted counterparts,^[8] and are usually involved in a tautomeric equilibrium with the corresponding butadienylpyridine derivatives (Scheme 1).^[9] Interestingly,

Scheme 1. Tautomerization of 4H-quinolizines.

we have now observed that the process can be shifted towards the quinolizine tautomer depending on the presence and position of certain substituents on the dienyl fragment. However, a straightforward and general method for the preparation of butadienylpyridines is still an important challenge for which organometallic catalysts emerge as a crucial node, as they can potentially achieve this task from 2-vinylpyridine and alkynes through sequential C–H activation and C–C coupling reactions.^[10] Particularly, we have been interested in the design of rhodium catalysts based on N-heterocyclic carbenes (NHCs)^[11] for new C–C and C–X bondforming reactions.^[12] Now, we have discovered that rhodium

[a] R. Azpíroz, Dr. A. Di Giuseppe, Dr. R. Castarlenas,⁺ Prof. J. J. Pérez-Torrente, Prof. L. A. Oro Departamento Química Inorgánica Instituto Síntesis Química y Catálisis Homogénea Universidad de Zaragoza-CSIC Pl. S. Francisco S/N 50009 Zaragoza (Spain) E-mail: rcastar@unizar.es oro@unizar.es
[+] ARAID Foundation Researcher

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201300236.

catalysts bearing NHC ligands give access to the elusive 4Hquinolizines with total atom economy under mild conditions.

Our research group has recently reported that isolable mononuclear Rh-NHC species can be obtained by an Ndonor-ligand-promoted bridge-cleavage reaction of the corresponding dimer.^[12c] Similarly, we have now observed that the treatment of $[{Rh(\mu-Cl)(NHC)(\eta^2-coe)}_2]$ (NHC=IPr (1), IMes (2); coe = cyclooctene; IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-carbene; IMes=1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-carbene) with 2-vinylpyridine afforded [RhCl(NHC)(κ -N, η^2 -CH₂=CHC₅H₄N)] (NHC=IPr (**3**), IMes (4)) in good yields (see the Supporting Information for synthetic details and NMR data). The chelating coordination of vinylpyridine is corroborated by an upfield shift for the olefinic protons ($\delta = 3.39 - 2.13$ ppm) and the occurrence of J_{C-Rh} coupling for the carbon atoms of the alkenyl fragment ($\delta = 16-12$ Hz) in the ¹H and ¹³C{¹H} NMR spectra, respectively.

It has been previously described that rhodium-phosphane catalysts efficiently promote the C–C coupling between alkenylpyridines and olefins,^[13] although the coupling with alkynes has not been reported to date. Now, we have discovered that the introduction of an NHC ligand in complexes **3** and **4** allow for the straightforward preparation of butadienylpyridines from 2-vinylpyridine and alkynes (Scheme 2). Notably, the use of **3** and **4** enables terminal alkynes to be used in this type of transformation without the observation of competitive dimerization or polymerization processes.

Scheme 2. C-C coupling reactions mediated by Rh-NHC catalysts.

Catalytic reactions were carried out in an NMR tube in C_6D_6 by using a 1:1 ratio of pyridine/alkyne. Preliminary tests with phenylacetylene under the optimized conditions

3812

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Chem. Eur. J. 2013, 19, 3812-3816

(40 °C at 5 mol% catalyst loading) showed that **4** was slightly more active than **3** (see Table S1 in the Supporting Information). Initially, the formation of (1Z,3E)-2-(4-phenylbuta-1,3-dien-1-yl)pyridine (Figure 1) was observed, however, unexpectedly it was accompanied with a new set of resonances

Figure 1. Monitoring of the reaction between 2-vinylpyridine and phenyl-acetylene catalyzed by 4 in C_6D_6 at 40 °C.

that were unequivocally ascribed to 3-phenyl-4*H*-quinolizine (see below). The formation of this product may arise from a 6π -electrocyclization involving the two conjugated double bonds and one C=N of the pyridine moiety within an undetected (1*Z*,3*gem*)-butadienylpyridine species. A similar transformation has been previously observed for conjugated imines^[14] or oximes^[15] but dearomatization of a pyridine moiety is considerably more challenging.^[16] The similar initial rate for the formation of both organic products points out to a lack of regioisomeric preference in the C–C coupling process, but the (1*Z*,3*E*)-butadienylpyridine product smoothly isomerizes to produce

the (1E, 3E) derivative. A conversion of 97% was reached after 4 h with a $TOF_{1/2}$ value of $35 h^{-1}$ calculated at 50% conversion of 2-vinylpyridine. It is noticeable that the formation of 4-phenyl-4*H*-quinolizine was not detected. Both butadienylpyridine isomers were isolated by column chromatography methods but, unfortunately, the quinolizine derivative could not be recovered despite several attempts under different conditions.^[14c]

The nature of the new organic product as 3-phenyl-4*H*-quinolizine was confirmed by multinuclear NMR experiments. A striking feature of the ¹H NMR spectrum is an unusual set of resonances at higher field (δ = 6.6–4.9 ppm) compared with that corresponding to aromatic protons, which is fully consistent with the presence of nonaromatic bicyclic system. The 4*H*-quinolizine structure was further confirmed by HSQC and HMBC ¹H-¹³C experiments. Remarkably, the methylene fragment at 4-positon of the quinolizine skeleton was observed as a singlet at δ = 4.38 ppm. Moreover, long-range HSQC ¹H-¹⁵N correlation confirms the presence of a N-bridgehead heterocycle (Figure 2) with a δ (¹⁵N) of 117.5 ppm, which falls within the typical range for a trisubstituted amine. In sharp contrast, the (1*E*,3*E*)-butadienylpyridine compound was observed at δ = 309.8 ppm.

Figure 2. ¹H-¹⁵N NMR correlation spectrum for a 4*H*-quinolizine.

Catalyst **4** is a versatile precursor for coupling reactions between 2-vinylpyridine and diverse terminal and internal alkynes (Table 1). Aromatic terminal alkynes reacted faster than aliphatic ones and with higher selectivity to 4H-quinolizine (Table 1, entries 1–3 vs. 4–6). Isomerization of the in-

Table 1. Coupling reaction between 2-vinylpyridine and alkynes.^[a]

	Substrate	<i>t</i> [h]	$4H-q^{[b]}$	Z - $E^{[c]}$	E - $E^{[c]}$	Z - $g^{[d]}$	E - $g^{[d]}$	vipy ^[e]	$\frac{\text{TOF}_{1/2}}{[h^{-1}]}$
1	<_>=	4	48	3	46	-	_	3	35
2	F ₃ C-	1	43	2	48	-	-	7	51
3	MeO-	6	36	16	31	8	-	8	29
4		5	7	37	-	45	10	1	26
5		9	9	39	_	38	11	3	23
6	$\rightarrow =$	20	7	74	2	14	_	2	4
7	–_Si–≡	14	16	47	_	-	-	37	3
8	∕	14	51	36	12	-	-	1	15
9	$\bigcirc = \bigcirc$	12	23	69	6 ^[f]	-	-	2	3
0	-=-{\]	3	45 ^[g]	25 ^[h]	23 ^[h]	_	-	6	18

[a] Complex 4 (5 mol%) in C_6D_6 (0.5 mL) at 40°C, [subs]=1M. [b] 4*H*-Quinolizine; ratio of ¹H NMR integration. [c] 2-(Buta-1,3-dien-1-yl)pyridine. [d] *gem*. [e] Unreacted 2-vinylpyridine. [f] *E*,*Z* isomer. [g] 4-Methyl. [h] 4-Phenyl.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

ternal double bond from Z to E occurred also faster for aromatic than aliphatic-substituted dienyl derivatives. The presence of an electron-withdrawing substituent on the phenyl ring increased the rate whereas selectivity to the N-bridgehead heterocycle decreased for both, electron-donating or -withdrawing groups (Table 1, entries 1–3).

The presence of bulky substituents in aliphatic alkynes reduced the activity (Table 1, entries 6 and 7). It is noticeable that the key (1Z,3gem)-butadienylpyridine isomers were detected for aliphatic alkynes, and consequently, the conversion to 3-R-4*H*-quinolizine is lower, which suggests that the tautomerization is disfavored in these cases.^[17] Monitoring of the reaction showed that the initially formed *Z*-gem-butadienylpyridine isomerizes to *E*-gem derivatives and tautomerizes to the 4*H*-quinolizine compounds (Figure 3). Nota-

Figure 3. Monitoring of the reaction between 2-vinylpyridine and 3-phenyl-1-propyne catalyzed by **4** in C_6D_6 at 40 °C.

bly, for aliphatic alkynes, the isomerization of 1Z,3E to 1E,3E butadienylpyridines was not detected under catalytic conditions,^[18] whereas internal alkynes reacted smoothly (Table 1, entries 8–10). The configuration of the conjugated double bonds of the butadienyl products was confirmed by ¹H-NOE NMR experiments (see the Supporting Information). In the case of 3-hexyne, the formation of the 1Z,3E derivative was initially observed with subsequent isomerization to 1E,3E and 4H-quinolizine compounds. However, diphenylacetylene behaved somewhat different. The initial rate for the 4H-quinolizine formation was higher but the N-heterocycle underwent a re-opening to afford the (1Z,3E)-2-(3,4-diphenylbuta-1,3-dien-1-yl)pyridine derivative with

both phenyl groups disposed mutually *trans* (Figure 4). Dissymmetric 1-phenyl-1-propyne gave exclusively 4-methyl-3phenyl-4*H*-quinolizine and 2-(3-methyl-4-phenylbuta-1,3dien-1-yl)pyridine.

Scheme 3 shows a plausible mechanism for the formation of the 3-R-4H-quinolizine compounds. Initially, the activation of a terminal C–H bond of the

Figure 4. Monitoring of the reaction between 2-vinylpyridine and diphenylacetylene catalyzed by **4** in C_6D_6 at 40 °C.

2-vinylpyiridine to generate rhodium-alkenyl-hydride species is proposed.^[19] The subsequent coordination of the alkyne, migratory insertion and reductive elimination should generate both (1Z,3E)- or (1Z,3gem)-butadienyl-pyridine products depending on the regioselectivity. In both cases, the Z configuration of the internal double bond is kinetically favored if a concerted insertion mechanism is assumed. Then, formation of 4H-quinolizine skeletons can be rationalized through a metal-mediated or thermal electrocyclization. To shed light on this point, a solution of pure Z-gem isomer, (Z)-2-(3-benzylbuta-1,3-dien-1-yl)pyridine, in C_6D_6 was heated at 60°C. Monitoring of the reaction by NMR spectroscopy evidenced the smooth formation of the 4Hquinolizine isomer, thus, pointing to a thermally activated cyclization process. In fact, an equilibrium mixture (butadienylpyridine/heterocycle) of 75:25 was reached after 3 h, which was corroborated by the exchange peaks observed in the ¹H-NOE NMR spectrum at 80°C. It is noticeable that the formation of the E-gem regioisomer was not observed indicating that metal catalyst accounts for the Z to E isomerization of the internal double bond. A cisoidal configuration of the conjugated double bonds is essential for the electrocyclic reaction to take place, thus isomerization of the internal double bond is a handicap to be overcome. A similar equilibrium mixture was observed after heating the (1Z,3E)-butadienylpyridine obtained from 3-hexyne, but in

Scheme 3. Plausible mechanism for the formation of 4*H*-quinolizine derivatives mediated by 4.

3814

this case the equilibrium is further shifted to the quinolizine compound in 60:40 molar ratio.

Theoretical calculations (DFT/m06-2x/kcal mol⁻¹) for the thermodynamics of the tautomerization process were performed. In full agreement with experimental results, it was found that 3-phenyl-4*H*-quinolizine is $1.83 \text{ kcal mol}^{-1}$ more stable than *Z*-gem-butadienylpyridine whereas the formation of 4-phenyl-4*H*-quinolizine from the (1*E*,3*Z*)-butadienylpyridine isomer is disfavored by 2.04 kcal mol⁻¹ (Figure 5). On the other hand, the calculated energies for di-

Figure 5. Thermodynamic DFT-calculated free energies (ΔG , kcalmol⁻¹) for the tautomerization of butadienylpyridine \leftrightarrow quinolizine.

phenylacetylene were also in agreement with the experimental results. Although the 4H-quinolizine is $3.24 \text{ kcal mol}^{-1}$ more stable than the (1Z,3Z)-butadienylpyridine isomer, not detected in the catalytic reaction, tautomerization to the (1Z,3E) counterpart is also slightly favored (-0.68 kcal mol⁻¹), thus explaining the smoothly tautomerization observed experimentally (Figure 4).

In conclusion, we have described the outstanding catalytic performance in C–C coupling reactions of new Rh–NHC catalysts leading to the formation of 4*H*-quinolizine derivatives under mild conditions with total atom economy. We have shown that the thermal 6π -electrocyclization process leading to the formation of N-bridgehead heterocycles is favored for internal- versus terminal-substituted butadienyl-pyridine derivatives. The design of improved catalysts for selective *Z*-gem-butadienylpyridine formation and reduced *Z* to *E* isomerization of the internal double bond is ongoing in our laboratories.

Experimental Section

Synthesis of catalyst 3: A yellow solution of 1 (300 mg, 0.235 mmol) in toluene (10 mL) was treated with 2-vinylpyridine (50 μ L, 0.470 mmol) and was stirred at room temperature for 1 h. After filtration through Celite the solvent evaporated to dryness. Addition of hexane caused precipitation of a yellow solid, which was washed with hexane (3×4 mL) and dried in vacuo. Yield: 250 mg (84%). Elemental analysis calcd (%) for C₃₄H₄₃N₃ClRh: C 64.61, H 6.86, N 6.65; found: C 64.92, H 6.89, N 6.62.

Synthesis of catalyst 4: The complex was prepared as described for 3 starting from 2 (300 mg, 0.271 mmol) and 2-vinylpyridine (58 μ L, 0.542 mmol). Yield: 260 mg (87%). Elemental analysis calcd (%) for C₂₉H₃₅N₃ClRh: C 61.38; H 5.70; N 7.67; found: C 61.05, H 5.80, N 7.26.

COMMUNICATION

Standard procedure for the catalytic C–C coupling between 2-vinylpyridine and alkynes: An NMR tube containing a solution of the catalyst (0.025 mmol) in of C_6D_6 (0.5 mL) was treated with 2-vinylpyridine (0.5 mmol) and the alkyne (0.5 mmol) and heated at 40 °C. The reaction course was monitored by NMR and the conversion determined by integration of the corresponding resonances in the ¹H NMR spectra of 2-vinylpyridine and the products.

Acknowledgements

Financial support from the Ministerio de Economía y Competitividad of Spain Project CTQ2010–15221), the Diputación General de Aragón (E07), the ARAID Foundation under the program "*Jóvenes Investiga-dores*", and CONSOLIDER INGENIO-2010, under the Project MULTI-CAT (CSD2009–00050) are gratefully acknowledged.

Keywords: carbenes \cdot C–C coupling \cdot C–H activation \cdot electrocyclization \cdot quinolizine

- a) J. P. Michael, *Nat. Prod. Rep.* **2008**, *25*, 139; b) H. F. Ji, L. Shen, *Molecules* **2011**, *16*, 6732; c) R. A. Saporito, M. A. Donelly, T. F. Spande, H. M. Garraffo, *Chemoecology* **2012**, *22*, 159.
- [2] a) S. F. Martin, Pure Appl. Chem. 2009, 81, 195; b) Modern Heterocyclic Chemistry, Vol. 4 (Eds.: J. Alvarez-Builla, J. J. Vaquero, J. Barluenga), Wiley-VCH, Weinheim, 2011; c) H. T. Pham, I. Chataigner, J.-L. Renaud, Curr Org. Chem. 2012, 16, 1754.
- [3] a) J. A. Varela, C. Saa, *Chem. Rev.* 2003, *103*, 3787; b) I. Nakamura,
 Y. Yamamoto, *Chem. Rev.* 2004, *104*, 2127; c) D. M. D'Souza, T. J. J.
 Müller, *Chem. Soc. Rev.* 2007, *36*, 1095; d) S. Perreault, T. Rovis,
 Chem. Soc. Rev. 2009, *38*, 3149.
- [4] a) W. E. Döring, R. A. N. Weil, J. Am. Chem. Soc. 1947, 69, 2461;
 b) K. A. Tehrani, M. D'hooghe, N. De Kimpe, *Tetrahedron* 2003, 59, 3099;
 c) C. Tsukano, A. Oimura, I. Enkhtaivan, Y. Takemoto, Org. Lett. 2012, 14, 1902;
 d) L. Liu, L. Zhang, Angew. Chem. 2012, 124, 7413; Angew. Chem. Int. Ed. 2012, 51, 7301.
- [5] a) B. S. Thyagarajan, Adv. Heterocycl. Chem. **1965**, 5, 291; b) C. Sotiriou-Leventis, A. M. M. Rawashdeh, W. S. Oh, N. Leventis, Org. Lett. **2002**, 4, 4113; c) A. Nuñez, B. Abarca, A. M. Cuadro, J. Alvarez-Builla, J. J. Vaquero, J. Org. Chem. **2009**, 74, 4166; d) M. Tian, H. Ihmels, S. Ye, Org. Biomol. Chem. **2012**, 10, 3010.
- [6] a) V. Boekelheide, C. T. Liu, J. Am. Chem. Soc. 1952, 74, 4920; b) A. Schwartz, Z. Pál, L. Szabo, K. Simon, I. Hermecz, Z. Mészáros, J. Heterocycl. Chem. 1987, 24, 645; c) M. Hagimori, S. Matsui, N. Mizuyama, K. Yokota, J. Nagaoka, Y. Tominaga, Eur. J. Org. Chem. 2009, 5847; d) S. Mochida, N. Umeda, K. Hirano, T. Satoh, M. Miura, Chem. Lett. 2010, 39, 744.
- [7] a) O. Diels, K. Alder, Justus Liebigs Ann. Chem. 1932, 498, 16;
 b) R. M. Acheson, G. A. Taylor, J. Chem. Soc. 1960, 1691; c) W. K. Gibson, D. Leaver, J. Chem. Soc. 1966, 324; d) T. N. Grant, C. L. Benson, F. G. West, Org. Lett. 2008, 10, 3985.
- [8] R. M. Acheson, S. J. Hodgson, R. G. M. Wright, J. Chem. Soc. Perkin Trans. 1 1976, 1911.
- [9] a) V. Boekelheide, W. G. Gall, J. Am. Chem. Soc. 1954, 76, 1832;
 b) T. Miyadera, E. Ohki, I. Iwai, Chem. Pharm. Bull. 1964, 12, 1344;
 c) T. Miyadera, Y. Kishida, Tetrahedron Lett. 1969, 10, 397; d) G. G. Abbot, D. Leaver, K. C. Mathur, J. Chem. Res. 1978, 224.
- [10] a) F. Kakiuchi, S. Murai, Acc. Chem. Res. 2002, 35, 826; b) V. Ritleng, C. Sirling, M. Pfeffer, Chem. Rev. 2002, 102, 1731; c) Y. J. Park, J. W. Park, C. H. Jun, Acc. Chem. Res. 2008, 41, 222; d) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; e) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; f) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879.
- [11] a) W. Herrmann, Angew. Chem. 2002, 114, 1342; Angew. Chem. Int. Ed. 2002, 41, 1290; b) S. Würtz, F. Glorius, Acc. Chem. Res. 2008,

www.chemeurj.org

41, 1523; c) J. M. Praetorius, C. M. Crudden, *Dalton Trans.* 2008, 4079; d) S. Díez-González, N. Marion, S. P. Nolan, *Chem. Rev.* 2009, 109, 3612.

- [12] a) M. V. Jiménez, J. J. Pérez-Torrente, V. I. Bartolomé, V. Gierz, F. J. Lahoz, L. A. Oro, Organometallics 2008, 27, 224; b) A. Di Giuseppe, R. Castarlenas, J. J. Pérez-Torrente, F. J. Lahoz, V. Polo, L. A. Oro, Angew. Chem. 2011, 123, 4024; Angew. Chem. Int. Ed. 2011, 50, 3938; c) L. Palacios, X. Miao, A. Di Giuseppe, S. Pascal, C. Cunchillos, R. Castarlenas, J. J. Pérez-Torrente, F. J. Lahoz, P. H. Dixneuf, L. A. Oro, Organometallics 2011, 30, 5208; d) A. Di Giuseppe, R. Castarlenas, J. J. Pérez-Torrente, M. Crucianelli, V. Polo, R. Sancho, F. J. Lahoz, L. A. Oro, J. Am. Chem. Soc. 2012, 134, 8171; e) G. Lázaro, M. Iglesias, F. J. Fernández-Alvarez, P. J. Sanz-Miguel, J. J. Pérez-Torrente, L. A. Oro, ChemCatChem, DOI:10.1002/ cctc.201200309.
- [13] a) N. Fujii, F. Kakiuchi, N. Chatani, S. Murai, *Chem. Lett.* 1996, 25, 939; b) Y. G. Lim, J. B. Kang, Y. H. Kim, *Chem. Commun.* 1996, 585; c) N. Fujii, F. Kakiuchi, A. Yamada, N. Chatani, S. Murai, *Chem. Lett.* 1997, 26, 425; d) Y. G. Lim, J.-B. Kang, K. Lee, Y. H. Kim, *Heteroat. Chem.* 2002, 13, 346; e) P. Buskens, D. Giunta, W. Leitner, *Inorg. Chim. Acta* 2004, 357, 1969.
- [14] a) I. Hasan, F. W. Fowler, J. Am. Chem. Soc. 1978, 100, 6696; b) C.
 Cao, Y. Li, Y. shi, A. L. Odom, Chem. Commun. 2004, 2002;
 c) D. A. Colby, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2008, 130, 3645; d) T. Kobayashi, K. Takeushi, J. Miwa, H. Tsuchikawa, S. Katsumura, Chem. Commun. 2009, 3363; e) H. Wei, Y. Wang,

B. Yue, P. F. Xu, *Adv. Synth. Catal.* **2010**, *352*, 2450; f) K. Tanaka, K. Fukase, S. Katsumura, *Synlett* **2011**, 2115; g) S. Duttwyler, C. Lu, A. L. Rheingold, R. G. Bergman, J. A. Ellman, *J. Am. Chem. Soc.* **2012**, *134*, 4064.

- [15] a) M. L. Meketa, S. M. Weinreb, Y. Nakao, N. Fusetani, J. Org. Chem. 2007, 72, 4892; b) K. Parthasarathy, M. Jeganmohan, C. H. Cheng, Org. Lett. 2008, 10, 325; c) K. Kohno, S. Azuma, T. Choshi, J. Nobuhiro, S. Hibino, Tetrahedron Lett. 2009, 50, 590; d) R. M. Martin, R. G. Bergman, J. A. Ellman, J. Org. Chem. 2012, 77, 2501.
- [16] a) H. Wang, Y. Wang, C. Peng, J. Zhang, Q. Zhu, J. Am. Chem. Soc. 2010, 132, 13217; b) S. P. Roche, J. A. Porco Jr., Angew. Chem. 2011, 123, 4154; Angew. Chem. Int. Ed. 2011, 50, 4068.
- [17] Although other metal catalysts promote the formation of (Z,Z)-butadienylpyridines, the presence of quinolizine tautomers has not been detected: a) Y. Nakao, K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2008, 130, 2448; b) Y. Kuninobu, Y. Fujii, T. Matsuki, Y. Nishina, K. Takai, Org. Lett. 2009, 11, 2711.
- [18] A pure sample of 2-((1Z,3E)-5-phenylpenta-1,3-dien-1-yl)pyridine in the presence of 5 mol% of 4 gave 33 mol% of the *E*,*E* isomer after 16 h at 80°C.
- [19] a) G. Jia, D. W. Meek, G. C. Galluci, *Organometallics* 1990, *9*, 2549;
 b) R. Castro-Rodrigo, M. A. Esteruelas, S. Fuertes, A. M. López, S. Mozo, E. Oñate, *Organometallics* 2009, *28*, 5941.

Received: January 22, 2013 Published online: February 21, 2013

3816 -