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Asymmetric synthesis of (2S,3S)-3-hydroxy-2-phenylpiperidine
via ring expansion

Jaemoon Lee,* Thoa Hoang, Stephanie Lewis, Steven A. Weissman, David Askin, R. P. Volante
and P. J. Reider

Department of Process Research, Merck Research Laboratories, Merck & Co., Inc., PO Box 2000 Rahway, NJ 07065, USA

Received 5 June 2001; accepted 5 July 2001

Abstract—A catalytic highly enantioselective (99% ee) preparation of N-tert-butyloxycarbonyl-(2S,3S)-3-hydroxy-2-phenyl-piper-
idine and N-tert-butyloxycarbonyl-(2S)-2-phenyl-piperidin-3-one was developed using an intramolecular epoxide opening
followed by ring expansion. The cis-epoxide starting material was available in high ee via Jacobsen epoxidation. © 2001 Elsevier
Science Ltd. All rights reserved.

Functionalized piperidines have attracted increasing
interest as synthetic targets because of important activity
as pharmacophores in medicinally active compounds.
Various methods have been developed for the synthesis
of substituted piperidines in a diastero- and enantioselec-
tive manner.1 Neuropeptide substance-P (Neurokinin-1)
receptor antagonists 12 and 23 have been prepared via the
piperidine intermediates (2S,3S)-3-hydroxy-2-phenyl-
piperidine 3 and the derived piperidinone 4, respectively.

Although a number of methods have been developed to
access compound 3 using the chiral pool method or
racemic synthesis followed by resolution, the challenge
of a catalytic asymmetric synthesis of 3 and 4 remained.2b,4

In this report, we describe a catalytic, highly enantiose-
lective preparation of these important intermediates.

We envisioned a retrosynthetic strategy (Scheme 1)
whereby 3P might arise from the formal 6-endo mode5

Scheme 1.
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cyclization of cis-epoxide 6P to give the desired piper-
idine.6,7 Alternatively, the selective cyclization of 6P
via 5-exo mode5 to pyrrolidinol 10P followed by ring
expansion8 would provide the desired piperidine ring
system 3P.4a Epoxide 6P would be available in asym-
metric form via enantioselective Jacobsen epoxidation
of cis-olefin 8L.

Synthesis of phenylpiperidinol 3 (Scheme 2) com-
menced with 3-carbon homologation of phenyl-
acetylene with 1-bromo-3-chloropropane (THF, reflux,
16 h) to afford acetylene 7 (89%). The acetylene was
hydrogenated with Lindlar’s catalyst (45 psi H2,
EtOAc) to afford �-alkylated cis-styrene 8 (95%).
Jacobsen’s asymmetric epoxidation of 8 gave the corre-
sponding cis-epoxide 9 with a high degree of enantiose-
lectivity at 5°C (94% ee, 75% yield).9 Treatment of the
chloro cis-epoxide 9 with benzylamine in refluxing ace-
tonitrile afforded the presumed 5-exo-tet mode cycliza-
tion product pyrrolidinol 10 in 65% yield.

With 10 in hand, we next pursued the ring expansion
study.8 The ring expansion of 2-((phenyl)-hydroxy-
methyl)-pyrrolidine to the piperidine isomer has been
reported in which trans-3-chloro-2-phenylpiperidine
was obtained exclusively by treatment of the pyrro-
lidine with methanesulfonyl chloride at room tempera-
ture.4a,10 We speculated that the bicyclic aziridinium
intermediate 11, formed from methanesulfonyl chloride
and 10, might be trapped by acetate ion by employing
a lower reaction temperature and acetate as an external
nucleophile to form the desired 3-acetoxy-piperidine.

In practice, pyrrolidinol 10 was treated with methane-
sulfonyl chloride and triethylamine in THF at −20°C to
form the aziridinium intermediate 11 with no chloro-
piperidine detected.10 Subsequent treatment with 4.5
equiv. of tetra-n-butylammonium acetate (−20°C to
room temperature) afforded the desired acetoxy-piper-
idine 12 in 85% yield and 99% ee as a white crystalline
solid. In this way, the bicyclic aziridinium intermediate
11 was trapped efficiently with acetate ion at low
temperature (−20°C) and resulted in a high degree of
chirality transfer.11 The enantiomeric purity of 12 was
efficiently upgraded during the crystallization step
(ethyl acetate–hexanes, mp 105�106°C). Interestingly,
only a small amount of the isomeric pyrrolidinyl acetate
13 (�5%) was detected in the crude reaction mixture.

The next step involved a selective N-debenzylation/Boc
protection using Pd/C, H2 (45 psi) in the presence of
Boc2O to afford 14 (95%).4a The acetate 14 was
hydrolyzed to the piperidinol 3 using NaOH in
MeOH12 (95%). Oxidation of piperidinol 3 was accom-
plished using Moffatt conditions13 (EDC, DMSO, pyri-
dine, TFA) to afford 2-phenyl-N-tert-butyloxyl-
carbonyl-piperidine-3-one 4 without epimerization
(86%).

The synthesis described herein provides N-Boc-piperidi-
nol 3 in seven steps and 32% overall yield from phenyl-
acetylene, and demonstrates the Jacobsen epoxidation/
ring enlargement strategy as an efficient asymmetric
method for the synthesis of cis-�-aryl-�-hydroxy-piper-
idines.

Scheme 2.
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