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o-Aminations of ketone-derived nitrones have been developed
via [3,3]-rearrangement of the intermediates generated upon
condensation with imidoyl chlorides. Careful reagent selection
provides synthetically attractive amino protecting groups. The
enediamide or o’-carbamoyl enamide products can be hydrolyzed
to the desired carbonyl, or exposed to electrophiles for further
a-functionalization.

a-Amino carbonyls are ubiquitous in organic chemistry. Creation
of this functional group via C,—N bond construction is a central
challenge in organic synthesis that has received considerable
attention in the literature." The electrophilic o-amination of
enolates and their equivalents is in principle a direct, efficient
method for a-amino carbonyl synthesis and significant work on
this problem has been reported. Azodicarboxylates are especially
prominent N(-+)-sources that have been widely and effectively
applied to this reaction, including asymmetric variants,” but come
with several drawbacks. Atom inefficiency, explosion hazard,* and
typically harsh or multistep deprotection protocols to reveal the
amine somewhat counterbalance the favourable reactivity profile.
Thus, an argument can be made that an important but often-
overlooked component of the electrophilic a-amination problem
lies in the “packaging” of the amine product. Previous studies by
our group made use of a weak N-O bond for electrophilic
amination methodology,* and we questioned whether this tactic
could be harnessed to provide convenient nitrogen protecting
groups (e.g. Boc, Fmoc, Cbz) concomitantly upon a-amination.
The purpose of this communication is to report a [3,3]-rearrange-
ment of imidoyl nitrones providing a-amination products with
synthetically-attractive amino protecting groups.
[3,3]-Sigmatropic rearrangements are important reactions for the
reliable introduction of various functionality in complex settings.’
Multihetero-[3,3]-rearrangements, such as those of N-alkyl-N-
acetoxyenamines, are an important subclass.® Coates and
Cummins were the first to develop this rearrangement as a
method for a-functionalization: treatment of N-‘Bu nitrones
with acyl chlorides provide a-acyloxy carbonyls (eqn (1)).%?
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Extension of this strategy to achieve o-amination has been
scarcely pursued. The use of an imidoyl chloride rather than an
acyl chloride in the condensation with a keto-nitrone afforded
o-amido ketone products in two preliminary investigations.’
The imidoyl electrophiles used (Y,Z = PhorY = Ph,Z = Me
(Scheme 1)) provided N-Ph/Me-benzoylamino products that
would be difficult to convert to the free a-amino ketones.
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In formulating a reaction design for an o-amination that
proceeds with concurrent generation of synthetically-attractive
protecting groups, we envisioned that a [3,3]-rearrangement
involving an appropriately functionalized imidoyl chloride reagent
could be useful (Scheme 1). Herein, we disclose an a-amination
protocol for keto-nitrone substrates via [3,3]-rearrangement. The
a-amino products obtained are conveniently configured as benzyl
carbamates (NH-Cbz). An unexpected deprotonation event
occurs with acyl migration to furnish enediamide or o’-carbamoyl
enamide products dependent on the a-proton availability on the
nitrone substrate (vide infra).

The requisite keto-nitrones were prepared via hydroxylamine/
ketone condensation.’ A variety of enolizable ketones were
employed with aryl, alkyl, and cyclic substrates providing varied
yields (13-88%) of nitrone product.’ These compounds are stable
to SiO, chromatography and can be stored in a freezer indefinitely.
The Cbz-protected trifluoromethyl imidoyl chloride 1 was
synthesized via the published two step route.!”
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Scheme 1 a-Amination via multiheteroatom [3,3]-rearrangement.
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Scheme 2 Initial result and proposed mechanism.

The reaction of cyclopentanone-derived nitrone 2 and the
imidoyl chloride 1 in the presence of Et;N at 0 °C led to rapid
and complete reagent consumption. Analysis of the crude
reaction mixture showed formation of an o/-carbamoyl enamide
product (3), rather than the anticipated a-amino imine or ketone
(Scheme 2). This was rationalized ex post facto by a 1,4-trifluoro-
acetyl migration/proton transfer® of the initial [3,3]-imine
product (5 — 3, Scheme 2). At this time it is unclear whether
the system is under kinetic or thermodynamic control, although
the formation of a’-carbamoyl enamide products (deprotona-
tion at the less-hindered site) suggests a kinetic scenario.
Equimolar quantities of nitrone and reagent 1 treated with
2.0 equiv. triethylamine provided the optimal results for this
transformation when run in CH,Cl, at 0 °C. The reaction was
usually complete within 30 min.

A divergence in reactivity was observed when acetophenone-
derived nitrone 6 was subjected to identical conditions. In the
absence of an o'-enolizable proton, terminal deprotonation
occurred at the a-site furnishing the enediamide product (9 — 7,
Scheme 3).

With optimized conditions in hand and two product classes
identified, we explored the scope of the [3,3]-rearrangement/
a-amination. Nitrones derived from acetophenone derivatives
provided moderate yields ranging from 49-66% (7, 10-12,
Table 1). The enediamide moiety was formed exclusively in the
(Z)-configuration. When a propiophenone-derived nitrone was
used, the product geometry was reversed (12), presumably due
to increased A'“-strain introduced by the methyl substituent
(vs. —H). Cyclic nitrones also performed well in the [3,3]-rearrange-
ment (Table 2). Cyclopentyl and cyclohexyl substrates provided
o/-carbamoyl enamides in 64-78% yields (3, 13-16). The use
of a 4-"Bu-cyclohexanone derived nitrone decreased the yield
and provided minimal diastereoselectivity (17).
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Scheme 3 Divergent reactivity with aryl nitrone.
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Table 1 Aryl nitrone scope
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@ All reactions: [1]y = 0.1 M. ? Yields of isolated products. ¢ See
Supporting Information for more details.
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Table 2 Cyclic/alkyl nitrone scope
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determined by "H NMR spectroscopy. ¢ See Supporting Information
for more details.
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The nitrone N-benzyl protecting group was varied, using
the cyclopentyl core as a model. Several substituted benzyl
nitrones were examined, with the tolyl group providing the
highest yield (14). A chiral nitrone derived from (S)-o-methyl
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Scheme 4 Secondary transformations.

benzylamine was synthesized and tested,'! but chirality transfer
was poor (18).

The acetone-derived nitrone provided the enediamide 19
rather than the isomeric o’-carbamoyl enamide. In this case
and other examples reported with diminished yields, competing
reactions producing unknown byproducts account for the mass
balance. The cyclohexenone-derived nitrone displayed unique
reactivity wherein the chloride byproduct was incorporated
yielding cis-B’-chloro-o’-carbamoyl enamide 20.

Both the enediamide and o'-carbamoyl enamide products
are resistant to hydrolysis and survive acidic or basic aqueous
workup; however, after extensive screening of conditions,
basic hydrolysis was realized upon treatment with freshly
prepared sodium benzylthiolate in MeOH. Subjecting the
enamide 3 to these conditions cleanly provided the Cbz-protected
a-amino ketone 21 in 85% yield (A, Scheme 4). Enediamide
product 7 was also hydrolyzed upon thiolate exposure and
subsequent acidic workup. In this case, partial tranesterification
occurred providing the methoxy-carbamyl protected o-amino
ketone as a minor product (B, Scheme 4). A one-pot procedure
taking nitrone starting material directly to the Cbz-protected
a-amino ketone 21 was also realized by treating the crude
reaction product from the [3,3]-a-amination with NaSBn/
MeOH. This sequence resulted in a yield of 69%, significantly
higher than the analogous two-step process (C, Scheme 4).

The enamide in both product classes provides opportunities
for further a-functionalization. Exposure of enamide 3 to Br,
provided hemiaminal oxazolidinone 23 from bromination-
debenzylation (D, Scheme 4).

In conclusion, we have developed an a-amination of keto-
nitrones via multiheteroatom-[3,3]-rearrangement. This reaction
provides enediamide or o'-carbamoyl enamide products based
on the enolizable sites on the substrates employed. Upon basic

hydrolysis, carbonyl functionality may be revealed providing a
new method for carbonyl a-amination. Ongoing studies in our
laboratory are focused on extending this method to aldo-nitrones
and development of an asymmetric variant.
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