CONVERSION OF LACTONE INTO LACTONE HEMITHIOACETAL AND SYNTHESIS OF ENOL LACTONE

Masahito OCHIAI, Kiyoharu NISHIDE, Manabu NODE, and Eiichi FUJITA* Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu 611

Lactone hemithioacetal was synthesized in good yield from ω -phenylthiocarboxylic acid derived from lactone, and it was converted into enol lactone via the corresponding sulfoxide.

The introduction of functional groups into the α -methylene group of lactone has been well established, because of the easy formation of its enolate anion. We now wish to report phenyl-sulfenylation at the ω -methylene group in lactone followed by the conversion of the product 3 into enol lactone 4 as shown in Scheme.

Scheme

Five- or six-membered lactone was transformed into the corresponding ω -phenylthiocarboxylic acid 2 in acceptable yield by treatment with benzenethiol and Lewis acid (AlBr₃, BBr₃, or tri-n-butyltin triflate). The reaction required longer time and higher temperature compared to that with alkanethiol and Lewis acid,¹ because of lower nucleophilicity of benzenethiol than that of alkanethiol.

Successive conversion of the acid 2 into lactone hemithioacetal 3 was easily achieved by intramolecular cyclization reaction; the acid 2 on treatment with N-chlorosuccinimide in toluene or carbon tetrachloride under nitrogen afforded $\frac{3}{3}$ in good yield.^{2,3} The results were summarized in Table. The stereoisomers of $\frac{3}{20}$ obtained from acid $\frac{2}{20}$ were easily separated by preparative TLC in a 1:1 ratio.⁴

Oxidation of 3b and 3e with MCPBA followed by elimination by heating the resulting sulfoxide

						the second			
ring opening of lactone l_{λ}^{a}						Pummerer type reaction of 2^{b}_{\sim}			
1		Lewis acid	(yield	%) ^C 2 ~		reaction time (h)	(yield 🖇	%) ^c 3 ^c	
°	la ~~	(n-Bu)₃SnOTf ^d	(54)	CO ₂ H SC ₆ H ₅	2a ~~	0.5	(83)		3a ~~
C ₆ H ₅ C ₆ H ₅ 0	1b ~~	BBr ₃	(69)	C ₆ H ₅ C ₆ H ₅ C ₆ H ₅ CO ₂ H SC ₆ H	2b ~~	1	(85)		3b ~~
	1c ~~	AlBr ₃	(49)	SC 6 H	2c ~~	1	(86)		3c ~~
	1d ~~	AlBr ₃	(31)		2d ~~	0.5 ^e	(55)	C SC ^e H ²	3d ~~
X	0) <u>le</u>	A1Br₃	(49)	CO2H SC6H	2e ~~	2 ^f	(65)		3e ~~
le		BBr₃	(49)	2e					

Table Conversion of lactone 1 to lactone hemithioacetal 3 via ω -phenylthiocarboxylic acid 2

a) Reaction was carried out in benzenethiol unless otherwise noted. b) Acid 2 was treated with one molar equivalent of NCS in toluene at ambient temperature under nitrogen unless otherwise noted. c) Isolated yield. d) Co-solvent: dichloromethane. e) Reaction solvent: a l:l mixture of dichloromethane and carbon tetrachloride. f) Reaction solvent: carbon tetrachloride.

gave rise to enol lactones 4b and 4e in 70% and 63% yield, respectively. As expected, the sulfoxide derived from $3c_{\alpha}(\alpha-SC_{6}H_{5})$ showed no change on prolonged heating in carbon tetrachloride. However another sulfoxide obtained from $3c_{\alpha}(\beta-SC_{6}H_{5})$ produced an unstable enol lactone 4c which was isomerized to $\alpha\beta$ -unsaturated lactone 5^{5} during isolation by preparative TLC (62% yield).

References and Notes

- 1) M. Node, K. Nishide, M. Sai, and E. Fujita, Tetrahedron Lett., 1978, 5211.
- 2) C. G. Kruse, E. K. Poels, F. L. Jonkers, and A. van der Gen, J. Org. Chem., 43, 3548 (1978).
- The addition of triethylamine in order to scavenge hydrogen chloride produced during the reaction gave somewhat lower yield of 3.
- 4) 3c; α -SC₆H₅: NMR δ 5.63 ppm (1H, d, J = 3.9 Hz, \geq C<u>H</u>-SC₆H₅); β -SC₆H₅: NMR δ 5.44 ppm (1H, d, $J = 2.2 \text{ Hz}, \geq$ C<u>H</u>-SC₆H₅).
- 5) D. Butina and F. Sondheimer, Synthesis, 1980, 543.

(Received December 24, 1980)