Structure of the Calystegines: new alkaloids of the nortropane family.

P.-H. Ducrot and J. Y. Lallemand

Laboratoire de synthèse organique, associé au C.N.R.S., Ecole Polytechnique 91128 Palaiseau France

ABSTRACT: Three new alkaloids have been isolated from Calystegia sepium; their structures have been established from their ${}^{1}H$ and ${}^{13}C$ N.M.R. spectra, and confirmed by the synthesis of model compounds.

In a quest towards a better understanding of how plants interact with their environment, and more precisely with soil bacteria, three new alkaloids, called *calystegines* B_1 , B_2 , and A_3 have been isolated from the roots of *Calystegia sepium*¹; they are supposed to enhance the growth of the *Rhizobium* species of bacteria. We wish to present here their structure elucidation and confirmation by the synthesis of model compounds.

After extraction and HPLC purification, calystegines B_1 , B_2 , and A_3^1 were subjected to high resolution mass spectrometric analysis, leading to molecular formulae: $C_7H_{13}O_3N$ (M=159.0895) with 4 exchangeable hydrogens for calystegine A_3 (C.I. with ND₃), and $C_7H_{13}O_4N$ (M=175.0844) with 5 exchangeable hydrogens for calystegines B_1 and B_2 .

Scheme 1

The ¹³C N.M.R. spectrum of calystegine B₁ revealed 1 quaternary carbon (δ =93.0 ppm), 4 methine carbons (δ =60.0, 70.0, 73.0, 82.0 ppm) and 2 methylene carbons (δ =25.0, 32.0 ppm). The ¹³C N.M.R. spectra of calystegines B₂ and A₃ also displayed also 1 quaternary carbon at 93 ppm similar to that observed in calystegine B₁, and also 4 methine carbons (δ =58.0, 76.5(2C), 80.3 ppm) and 2 methylene carbons (δ =24.2, 31.0 ppm) for calystegine B₂, 3 methine carbons (δ =54.0, 72.5, 82.5 ppm) and 3 methylene carbons (δ =29.1, 31.0, 42.5 ppm) for calystegine A₃.

¹H N.M.R. studies at high field² (400 MHz) with extensive ¹H-¹H decoupling experiments lead us to propose structures <u>1</u>, <u>2</u> and <u>3</u> for *calystegines* B₁, B₂, and A₃ (see Scheme 1).

3880

In calystegine B₁ 2 isolated proton spin systems were identified:

a first spin system of 5 coupled protons was assigned to H-2, H-3, H-4, H-4' and H-5; the second spin system of 3 protons was assigned to H-6, H-7 and H-7'. A small long range coupling constant can be detected between H-2 and H-7 (J=1.5 Hz). The stereochemistry at C-6 is in agreement with the observation that the 2 vicinal protons H-5 and H-6 do not display any coupling, due to a dihedral angle close to 90° (bridgehead and endo protons). The coupling constant measurements indicated that the 3 protons on C-2, C-3 and C-4, bearing the hydroxy groups, are axial (J=7.5-9 Hz).

The structure of *calystegine* B_2 has been elucidated in a similar manner, noting that C-6 was not bearing an hydroxy group since H-5 displays 2 coupling constants with H-4 and H-6 respectively ($J_{4,5} = 3.5Hz$; $J_{5,6} = 9Hz$).

The elucidation of the structure of *calystegine* A_3 has been achieved in the same manner.

It is important to note that the six-membered ring of *calystegines* has a chair conformation, in view of the fact that, in *calystegine* B_1 , proton H-5 displays 2 coupling constants for H-4 and H-4' respectively $(J_{4,5}=2.5 \text{ Hz}; J_{4',5}=3.5 \text{ Hz})$, which can only appear in a chair conformation: a boat conformation would provide a dihedral angle close to 90° between C-5-H-5 and C-4-H-4' bonds, and another one close to 0° between C-5-H-5 and C-4-H-4 bonds, as shown in *Scheme 2*.

Scheme 2

An additional proof is provided by observation of a long range coupling constant between H-2 and H-7, which can only appear in a chair conformation of the six-membered ring. (see Scheme 3.)³

Scheme 3

Confirmation of structure

In order to confirm these structures, we have prepared some products, having the tropane skeleton by the dipolar addition of 3-oxo pyridinium betaines to activated olefins⁴. The results are summarized in *Scheme 4*.

R =	<u>6</u> <i>R</i> ′	nb of isomers	react. time	yield % <u>4</u> - <u>7</u>
Me	CN	2	36 h.	40
	SO_2Ph	2	14 h.	68
	CO ₂ Me	4	36 h.	15
Bn	CN	2	3 d.	48
	SO_2Ph	1	16 h.	72
	CO ₂ Me	4	36 h.	20
	SOPh	1	4 d.	39

a: CH₃I or BnBr, refluxing PrOH. b: MeONa, MeOH. c: refluxing THF.

DUIGUIIGU 4	Sci	heme	4
-------------	-----	------	---

A similar approach to the tropane skeleton has recently been described by Koizumi et $al.^5$.

The stereoselectivity observed in this reaction must be related to the difference in steric hindrance provided by the R and R' groups. When phenyl-vinyl sulfone was used as activated olefin, only one isomer is obtained when R is a benzyl group: structure $\underline{7a}^{6}$, with an *exo* substituent was assigned to this adduct, according to the fact that no coupling constant is detected between H-5 and H-6_{endo}. Two isomeric compounds $\underline{7b}$ and $\underline{7c}^{7}$ are obtained when a methyl group is the R substituent, corresponding respectively to the *exo* and the *endo* substituted cycloadducts. This provides a convenient proof of the stereochemistry of carbon C-6 of *calystegine* B₁, since H-5 and H-6_{exo} of $\underline{7c}$ display a coupling constant of 6 Hz, which is in agreement with that observed for H-5 and H-6 of *calystegine* B₂.

Reduction of <u>7a</u> affords two isomeric allylic alcohols <u>8a</u> and <u>8b</u>, which, upon catalytic hydrogenation, yield a mixture of the two saturated alcohols <u>9a</u> and <u>9b</u>. Equatorial alcohol <u>9a</u> displays a coupling constant of 2.5 Hz between H-1 and H-2, in agreement with that detected in the *calystegines* ($J_{4,5}=3.5$ Hz). An additional proof comes from the detection in alcohol <u>9a</u> of a small long range coupling constant between H-2 and H-7_{exp} (J=1Hz), which does not appear in compound <u>9b</u>⁸.

a: DIBAH, THF; 70%. b: H₂, Pd/C, EtOH; 80%. Scheme 5

References and notes

1: D. Tepfer, A. Goldmann, N. Pamboukdian, M. Maille, A. Lepingle, D. Chevalier, J. Denarié and C. Rosenberg: J. of Bact., 1988, 170, 1153.

2: CALYSTEGINE B₁: ¹³C:5 (ppm) :25.0, 32.0(C - 4, C - 7); 60.0(C - 5); 70.0, 73.0, 82.0(C - 2, C - 3, C - 6); 93.0(C - 1) ¹H:5(ppm) :3.95(H - 6); 3.3(H - 3); 3.2(H - 2); 3.12(H - 5); 2.35(H - 7'); 1.88(H - 4'); 1.3(H - 4, H - 7) J_{3,2} = 9Hz; J_{3,4'} = 7.5Hz; J_{3,4} = 7Hz; J_{4',4} = 13Hz; J_{5,4} = 2.5Hz; J_{5,4'} = 3Hz; J_{2,7} = 1.5Hz J_{6,7'} = 7Hz; J_{6,7'} = 8Hz; J_{7,7'} = 15Hz

Specific rotation not avalaible.

CALVSTEGINE B₂: ¹³C: δ (ppm) :24.2, 31.0(C - 6, C - 7); 58.0(C - 5); 76.5(2C), 80.3(C - 2, C - 3, C - 4); 93.0(C - 1) ¹H: δ (ppm) :3.41(H - 4); 3.25(H - 2); 3.17(H - 3); 3.12(H - 5); 1.8(H - 6, H - 6'); 1.58(H - 7); 1.37(H - 7') J_{4,3} = 8.5Hz ; J_{4,5} = 3.5Hz ; J_{2,3} = 9Hz ; J_{5,6} = 9Hz ; J_{6,7} = 7Hz ; J_{6,7'} = 9Hz ; J_{7,7'} = 12Hz; J_{6,6'} = 11Hz ; J_{2,7'} = 1.5Hz [α]_D = 2,9° (c = 0,2 H₂O) CALVSTEGINE A₃: ¹³C: δ (ppm) :29.1, 31.0, 42.5(C - 4, C - 6, C - 7); 54.0(C - 5); 72.5, 82.5(C - 2, C - 3); 93.0(C - 1) ¹H: δ (ppm) :1.4 - 1.9(6H)(H - 4, H - 4', H - 6, H - 6', H - 7, H - 7'); 3.3(H - 2); 3.4(H - 5); 3.6(H - 3)

Specific rotation not avalaible.

3: for general reviews on the tropane alkaloids see G. Fodor and R. Dharanipragada: *Nat. Prod. Rep.*, 1986, 3, 181 and references cited therein; G. Fodor in "The Alkaloids" ed. by R. H. F. Manske vol. VI,145 and vol. IX, 269, Academic press.

4: C. Y. Ishag, K. J. Fisher, B. E. Ibrahim, G. M. Iskander and A. R. Katritsky: J. Chem. Soc. Perkin Trans. I, 1988, 917, and references cited therein.

5: T. Takahashi, T. Hagi, K. Kitano, Y. Takeuchi and T. Koizumi: Chem. Lett., 1989, 593.

6: <u>**7a**</u>: N.M.R. ¹H δ (ppm) :7.05(*dd*, *H*-4); 6.1(*dd*, *H*-3); 4.17(*d*, *H*-5); 3.75 (AB: J=12.5 Hz, CH₂Ph); 3.6(*dd*, *H*-1); 3.55(*dd*, *H*-6); 2.8(*ddd*, *H*-7); 2.0(*dd*, *H*-7')

 $J_{3,4} = 10Hz; J_{4,5} = 5Hz; J_{3,1} = 1.5Hz; J_{1,7} = 7.5Hz; J_{7,7'} = 15Hz; J_{6,7} = 5Hz; J_{6,7'} = 9Hz$

7: <u>7c</u>: N.M.R. ¹H δ (ppm) : 6.65(dd, H - 4); 6.05(dd, H - 3); 4.35(d, H - 5); 3.62(dd, H - 6); 3.55(dd, H - 1); 2.75(ddd, H - 7); 1.9(dd, H - 7')

 $J_{3,4} = 10Hz; J_{4,5} = 5Hz; J_{3,1} = 1.5Hz; J_{1,7} = 7Hz; J_{7,7'} = 15Hz; J_{6,7} = 5Hz; J_{6,7'} = 8Hz$

<u>**Tb**</u> N.M.R. ¹H δ (ppm) :7.0(dd, H-4); 5.95(dd, H-3); 3.85(m, 2H; H-1, H-6); 3.45(t, H-5); 2.65(ddd, H-7); 2.1(dd, H-7') J_{3,4} = 10Hz; J_{4,5} = 5Hz; J_{3,1} = 1.5Hz; J_{7,7'} = 12Hz; J_{7',6} = 10Hz; J_{7,6} = 5Hz; J_{5,6} = 6Hz; J_{1,7} = 6Hz

8: <u>9a</u>: N.M.R. ¹H δ (ppm) :4.05 - 3.7(*AB* : J = 12.5Hz, *CH*₂*Ph*); 3.8(*m*, *H* - 5); 3.55(*t*, *H* - 6);3.5 (*m*, *H* - 2); 3.4(*m*, *H* - 1) 2.55(*dd*, *H* - 7); 1.95(*m*, *H* - 4_{as}); 1.75(*dd*, *H* - 7'); 1.6(*m*, *H* - 3_{as}); 1.4(*m*, *H* - 3_{as}); 1.35(*m*, *H* - 4_{eq})

 $\begin{array}{l} J_{4ax,5} = 3Hz; \ J_{4eg,5} = 5Hz; \ J_{4ax,4eg} = 14Hz; \ J_{1,2} = 2.5Hz; \ J_{1,7} = 5Hz; \ J_{6,7'} = 6Hz; \ J_{6,7} = 6Hz; \ J_{1,7} = 5Hz; \ J_{3eg,4ax} = 4Hz; \ J_{3ax,4ax} = 12Hz; \ J_{2,3eg} = 3Hz; \ J_{2,7} = 1Hz \end{array}$

<u>9b:</u> N.M.R. ¹H δ (ppm) :4.0 - 3.7(*AB* : *J* = 12.5*Hz*, *CH*₂*Ph*); 3.75(*m*, *H* - 5); 3.5(*t*, *H* - 6); 3.45(*m*, *H* - 2); 3.3(*m*, *H* - 1) 2.3(*dd*, *H* - 7); 2.15(*dd*, *H* - 7'); 1.85(*m*, *H* - 4_{az}); 1.6(*m*, *H* - 3_{eq}); 1.4(*m*, *H* - 3_{az}); 1.35(*m*, *H* - 4_{eq})

 $J_{4ax,5} = 3Hz; J_{4eq,5} = 5Hz; J_{4ax,4eq} = 14Hz; J_{1,2} = 2.5Hz; J_{1,7} = 5Hz; J_{6,7'} = 6Hz; J_{6,7} = 6Hz; J_{1,7} = 5Hz; J_{3eq,4as} = 4Hz; J_{3ax,4as} = 12Hz; J_{2,3ax} = 4.5Hz$

(Received in France 29 November 1989)