Tetrahedron 69 (2013) 6845-6854

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Stereoselective synthesis of the C13–32 spiroacetal fragment of spirangien A

Claire Gregg, Michael V. Perkins*

School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia

ARTICLE INFO

Article history: Received 27 March 2013 Received in revised form 22 May 2013 Accepted 3 June 2013 Available online 11 June 2013

Keywords: Polyketide Spiroacetal Aldol reaction Cytotoxic Spirangien

ABSTRACT

Stereoselective synthesis of an advanced intermediate towards the highly cytotoxic polyketide metabolite spirangien A was achieved. A key step in the synthesis was installation of the C23 stereocentre by a substrate controlled C22–23 aldol reaction. Comparison of this result with previous literature reports suggests that the facial preference of the aldehyde controls the outcome of the C22–23 aldol coupling and depends on the O27/25 protecting groups when reacting with complex ketones, which contain the C17–15 stereochemistry.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Spirangiens A (1) and B (2) (Scheme 1) are two structurally related polyketide metabolites isolated from the epothiloneproducing myxobacterium *Sorangium cellulosum*, strain So ce90.^{1,2} Spirangien A (1) exhibited potent antifungal activity and was highly cytotoxic against the L929 mouse fibroblast cell line $(IC_{50} 0.7 \text{ ng mL}^{-1})$.³ It was later found to be a potent inhibitor of IL-8 expression $(IC_{50} 7.2\pm0.9 \text{ nM})$.⁴ Spirangiens A (1) and B (2) differ in structure only by an additional methylene unit at C32 in spirangien B and both compounds contain a complex pentaene side-chain, a highly functionalised 6,6-spiroacetal core, 14 stereocentres and a terminal carboxyl group. The absolute configuration of the remote C3 stereocentre was determined by chemical degradation of spirangien A and subsequent fragment analysis by GC.³

Ethylene cross-metathesis of spirangien A (1) afforded a spirangien diene analogue **3** (later named spirangien M522)⁴ (Scheme 1), which retained one tenth the cytotoxic activity of spirangien A (IC_{50} 7 ng mL⁻¹) and is also a potent inhibitor of IL-8 expression (IC_{50} 90.7±19.8 nM).³ X-ray crystal structure analysis of spirangien M522 by Höfle et al.³ allowed for the assignment of the relative configuration of C14–28, while the absolute configuration of spirangiens A and B was later determined by total synthesis of

Scheme 1. Spirangiens A (1) and B (2) and cross-metathesis to produce spirangien M522 (3).

spirangien diene **3** and spirangien A (**1**) by Paterson et al.^{5–7} A number of other reports have emerged describing synthetic efforts towards spirangien A, including our own studies on the stereo-selectivity of the C22–23 aldol coupling for spirangiens A and B.^{5–14} Herein, we describe our synthesis of the C13–32 spiroacetal fragment of spirangien A (**1**).

Tetrahedron

^{*} Corresponding author. Tel.: +61 8 8201 2496; fax: +61 8 8201 2905; e-mail address: mike.perkins@flinders.edu.au (M.V. Perkins).

^{0040-4020/\$ –} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.06.012

We envisaged a synthesis of spirangien A (1) via advanced intermediate **4** that could be used to furnish both spirangien M522 (**3**) and spirangien A (1). Spiroacetal **4** was anticipated to arise from the spirocyclization of linear precursor **5**, which in turn can be prepared by the aldol union of aldehyde **6** and ketone **7** (Scheme 2).

TESC Spirangien A (1) MeO OH TESO TES 4 ĺ TBSC Ō TBS ŌМе Ö **ÓPMB** TES 5 Ũ TBSO Ō Ô Ô **OPMB** TBS TES 6 7

Scheme 2. Retrosynthesis of spirangien A (1) via advanced intermediate 4.

2. Results and discussion

Synthesis of methyl ketone **7** began with preparation of known¹³ alkyne **9** from commercially available (*R*)-Roche ester [(*R*)-**8**] in 59% yield over nine steps (Scheme 3). Cleavage of the PMB ether with DDQ and subsequent Swern¹⁵ oxidation furnished aldehyde **10** (96%, two steps) in preparation for aldol elaboration. The *Z*-enolate of Roche ester derived chiral ketone (*S*)-**11** was generated using modified Ti aldol conditions (Ti(Oi-Pr)Cl₃/i-Pr₂NEt)¹⁶ and the ensuing double stereodifferentiating aldol reaction with chiral aldehyde **10** proceeded in 87% ds and purification gave novel aldol adduct **12** as a single isomer in 81% yield. The C14–17 stereotetrad was completed by directed reduction using Me₄NBH(OAc)₃ to give the *anti*-1,3-diol (O17/15 *anti*) as an 87:13 mixture of isomers,

Scheme 3. Synthesis of ketone 7

which was treated with 2,2-dimethoxypropane/PPTS and after purification acetonide **13** was obtained as a single isomer (81%, two steps). Finally, treatment with $Hg(OAc)_2/PPTS/pH$ 7 buffer in THF brought about hydration of the terminal alkyne, giving ketone **7** (59%).

Synthesis of aldehyde 6 was achieved via the sequence shown in Scheme 4. Palladium-catalysed cross-coupling of zinc homoenolate **14** with (*E*)-2-bromo-2-butene, followed by DIBAL reduction at -78 °C gave ready access to chiral aldehyde **15**.¹⁷ The highly diastereoselective boron mediated aldol addition of Evans' oxazolidinone auxiliary^{18–20} (*R*)-**16** to chiral aldehyde **15** gave the *anti–syn* aldol adduct 17 (>98% ds). TBS protection (TBSOTf/2,6-lutidine)²¹ of the new hydroxyl was followed by reductive cleavage of the auxiliary $(LiBH_4/EtOH)^{22}$ and Swern¹⁵ oxidation to furnish aldehyde **18**. Aldol addition of the other enantiomer of Evans' auxiliary^{18–20} (S)-**16** to aldehyde **18** gave the desired *syn_anti_syn* configuration of the C24-27 stereotetrad of aldol adduct 19 in high selectivity (>98% ds) and afforded the opportunity for differential protection of the anti-1,3-diol (O27/25 anti). To this end, protection of the C25 hydroxyl was achieved (2,6-lutidine/TESOTf), followed by reductive cleavage of the auxiliary and Swern¹⁵ oxidation to give desired aldehyde 6 (11% yield, 10 steps).

The aldol coupling of ketone **7** with aldehyde **6** was achieved using LiHMDS (2 equiv) at -78 °C for 3 h to give adducts **5** and **20** in a 2.5:1 ratio. Diastereomeric aldol adducts **5** and **20** were separable by column chromatography and were treated independently for stereochemical determination.

To elucidate the C23 stereochemistry, the C23 hydroxyl in minor diastereomer **20** was methylated as per the natural product using Meerwein's salt.²³, then subjected to buffered HF–pyridine for 4 h to cleave only the more labile TES protecting group. Cyclisation of the newly liberated hydroxyl onto C21 ensued to afford hemiacetal **21** (Scheme 5).

Analysis of the diagnostic NOE interactions in hemiacetal **21** was indicative of an (*S*)-configuration at C23, the unnatural isomer. Major aldol diastereomer **5** was treated as per the minor isomer to form hemiacetal **22** (Scheme 5). Analysis of the diagnostic NOE correlations in hemiacetal **22** was complicated due to interfering

Scheme 5. Aldol coupling of aldehyde 6 and ketone 7.

NOESY signals for H23 and H25. However, there was a clear NOE interaction between the methoxy protons and the C24 methyl protons, which only occurs in the (23R) configuration. Notably, there was also an absence of NOESY correlations between C24-Me and H23. This was further evidence that the major aldol isomer **5** was the desired (23R) isomer.

In an attempt to complete the preparation of the desired spiroacetals the hemiacetals **21** and **22** were treated with CSA/ MeOH.^{5,12a} However, when minor hemiacetal diastereomer **21** was subjected to these conditions, elimination of MeOH across C22–23 was observed in the resulting spiroacetal **33**, removing the crucial C23 stereocentre. Fortunately, when major hemiacetal diastereomer **22** was treated under the same conditions, there was no elimination of MeOH and spiroacetal **34** resulted (Scheme 5). Again the diagnostic NOE interactions in spiroacetal **34** confirmed the (*R*)stereochemistry at C23, as evident from correlations between C23-OMe and C24-Me, as well as correlations between C23-OMe and both H22a and H22b. An NOE interaction between H23 and H25 was also observed, which is indicative of the (23*R*) isomer.

The selectivity observed (2.5:1) for the aldol coupling of O17/15 acetonide protected ketone **7** with O27/25 silyl protected aldehyde **6** is similar to the results of Kalesse and Lorenz⁹ and Cossy et al.¹² who each obtained a 3:1 dr in favour of the desired isomers (23*R*)-**27** and (23*R*)-**28**, respectively, in the Li mediated aldol reaction of an analogous aldehyde (O27/25 silyl) with an O17/15 silyl protected ketone (Table 1). This suggests that the nature of the O17/15 protecting groups on the ketone does not control the outcome of the aldol reaction. On the other hand, Paterson et al.⁵ obtained the opposite selectivity (3.5:1) in favour of the unnatural isomer (23*S*)-**29** in the Li aldol reaction between cyclic acetonide protected

aldehyde **23c** and ketone **26** (Table 1). Ketone **26** is analogous to our ketone **7**, while our aldehyde **6** has unconstrained silyl protecting groups at O27/25 compared to Paterson's cyclic acetonide, thus implying that the aldehyde facial preference depends on the O27/25 protecting groups and controls the outcome of the aldol reaction.

This contrasts with the results for our model system¹³ (Table 1). We now conclude that in this model Li aldol coupling (with both O27/25 silyl and acetonide protected aldehydes, **30a** and **b**), the 1,4anti preference¹⁰ of the simplified ketone **31** (lacking C17–15) dominates, giving 3.5:1 and 3:1 dr in favour of the unwanted isomers (23S)-**32a** and (23S)-**32b**, respectively. Thus the choice of O27/ 25 protecting groups effects the facial preference of the aldehyde and controls the outcome of the aldol reaction only when reacting with the more complex ketones containing the C17–15 stereocentres, but not the simple ketone **31**.

3. Conclusion

In summary, a stereoselective synthesis of advanced C13–32 spiroacetal fragment **34** towards the synthesis of spirangien A (**1**) and spirangien M522 (**3**) was achieved. A key step in the synthesis was a substrate controlled C22–23 aldol reaction to install the C23 stereochemistry. Notably, protecting group manipulation of spiroacetal **34** would constitute a formal synthesis^{5,7} of spirangien A (**1**) and work will continue to convert this compound to spirangien A (**1**) and spirangien M522 (**3**). Comparison of the C22–23 aldol coupling with previous literature reports^{5,9,12,13} suggests that the facial preference of the aldehyde depends on the O27/25 protecting groups and controls the outcome of the C22–23 aldol

Table 1

Comparison of previous C22–23 aldol coupling results for spirangien A (1)

Authors	Aldehyde	Ketone	Conditions	Product	dr (R):(S)
This work	6 : P^1 =TBS, P^2 =TES	7 : P^3 =TBS; P^4 = P^5 =C(CH ₃) ₂	LiHMDS	5	2.5:1
Lorenz & Kalesse ⁹	23a : $P^1 = P^2 = TES$	24 : $P^3 = P^4 = P^5 = TES$	LiHMDS	27	3:1
Cossy et al. ¹²	23b : $P^1 = P^2 = TBS$	25 : $P^3 = P^4 = P^5 = TBS$	LDA	28	3:1
Paterson et al. ⁵	23c : $P^1 = P^2 = C(CH_3)_2$	26 : P ³ =TES	LDA	29	1:3.5
		$P^4 = P^5 = C(CH_3)_2$	(c-Hex) ₂ BCl/Et ₃ N	29	1:5
			(-)-Ipc ₂ BCl/Et ₃ N	29	2.5:1
Gregg & Perkins ¹³	30a : P^1 =TBS; P^2 =TES	31 : P ³ =TBS	LiHMDS	32a	1:3.5
	30b : $P^1 = P^2 = C(CH_3)_2$	31 : P ³ =TBS	LiHMDS	32b	1:3

coupling when reacting with ketones, which contain the C17–15 stereochemistry.

4. Experimental

4.1. General

All reactions were carried out under an atmosphere of nitrogen (N₂) or argon (Ar) in oven-dried glassware. Most commercial starting materials and reagents were used as supplied, or dried and distilled using standard procedures.²⁴ Tetrahydrofuran (THF) was dried using sodium metal and then distilled, as required, from sodium-benzophenone under N₂. Dichloromethane (CH₂Cl₂) was distilled from calcium hydride under N2 as required. Other solvents used for reactions, extractions and purification were distilled prior to use. Room temperature (rt) varied between 20 and 25 °C. Analytical thin layer chromatography (TLC) was conducted on aluminium-backed 0.2 mm thick silica gel 60 F₂₅₄ plates (Merck) and the plates were visualised under a 254 nm UV lamp and/or by treatment with either anisaldehyde dip (*p*-anisaldehyde, 9.2 mL; H₂SO₄, 12.5 mL; CH₃CO₂H, 3.75 mL; EtOH, 338 mL) or potassium permanganate dip (KMnO₄, 3 g; K₂CO₃, 20 g; 5% NaOH, 5 mL; H₂O, 300 mL), followed by heating. Column chromatography was conducted using silica gel 60 (mesh size 0.040-0.063 mm) as the stationary phase and the analytical reagent (AR) solvents indicated. When purifying compounds with acid sensitivity, column chromatography was performed on buffered silica as indicated. Buffered silica was prepared by spinning 100 g of silica gel 60 (mesh size 0.040–0.063 mm) with 10 mL of pH 7 phosphate buffer on a rotary evaporator overnight at atmospheric pressure.

Proton (¹H) and carbon (¹³C) NMR spectra were recorded on a Bruker Avance II spectrometer at 400 or 600 MHz for proton and 100 or 151 MHz for carbon nuclei, respectively. Chemical shifts were recorded as δ values in parts per million (ppm). Spectra were acquired in deuterochloroform (CDCl₃) at ambient temperature and the peak due to residual CHCl₃ (δ 7.26) was used as the internal reference. For proton-decoupled ¹³C NMR spectra recorded in CDCl₃, the central peak (δ 77.16) of the CDCl₃ triplet was used as the internal reference and all data are given as chemical shift (δ).¹H and

¹³C assignments were confirmed by conducting homonuclear (¹H-¹H) correlation spectroscopy (COSY), nuclear Overhauser effect (NOE) spectroscopy (NOESY) and heteronuclear $({}^{1}H-{}^{13}C)$ correlation spectroscopy (HMQC) experiments. Optical rotations were recorded on a PolAAR 21 polarimeter, referenced to the sodium D line (589 nm) at 20 °C, using the spectroscopic grade solvent specified (CHCl₃ or CH₂Cl₂) and at the concentration (c, g/100 mL) indicated. Measurements were carried out in a cell with a 1 dm path length. Infrared (IR) spectra were recorded on either a Perkin-Elmer 1600 series FTIR, BIO-RAD FTS-40-A or Nicolet Avatar 370 DTGS Fourier Transform spectrophotometer, with the absorptions recorded in wavenumbers (n_{max}/cm^{-1}). Liquid samples were analysed as thin films on NaCl discs, with solids being dissolved in CH₂Cl₂ or CHCl₃ before being applied to the discs and the solvent evaporated. High resolution mass spectra were recorded on either a Bruker BioApex II 47e FTMS fitted with an Analytica ESI source (in positive or negative ion mode) or an Agilent G1969A LC-TOF utilising an Agilent 1100 Series LC.

4.2. Preparative procedures

4.2.1. (2S.4S)-4-(tert-Butvldimethylsilvloxy)-2-methyl-hex-5-vnvl-1ol (35). To a stirred solution of PMB ether 9 (481 mg; 1.33 mmol) in CH₂Cl₂ (66 mL) at 0 °C was added pH 7 phosphate buffer (13 mL), followed by DDQ (452 mg; 1.99 mmol) and the resultant slurry was stirred at 0 °C for 3 h. The mixture was diluted with CH₂Cl₂ (75 mL) and quenched with satd aq NaHCO₃ (120 mL). The layers were separated and the organic phase was washed with satd aq NaHCO₃ (150 mL), H_2O (150 mL) and brine (150 mL), then dried (Na_2SO_4) and concentrated in vacuo. Purification by column chromatography (buffered silica, 5% Et₂O/CH₂Cl₂) gave alcohol **35** (313 mg; 97%) as a colourless oil. R_{f} =0.31 (5% Et₂O/CH₂Cl₂); [α]_D²⁰ -56.4 (*c* 1.46, CHCl₃); $\delta_{\rm H}$ (400 MHz; CDCl₃) 4.45 (1H, ddd, *J*=8.3, 5.1, 2.1 Hz, H20), 3.46 (2H, d, J=5.9 Hz, H17), 2.38 (1H, d, J=2.1 Hz, H22), 2.28 (1H, br s, OH), 1.88 (1H, m, H18), 1.82 (1H, ddd, J=13.8, 8.3, 5.6 Hz, H19a), 1.49 (1H, ddd, J=13.7, 7.6, 5.1 Hz, H19b), 0.93 (3H, d, J=6.8 Hz, C18-CH₃), 0.88 (9H, s, SiC(CH₃)₃), -0.13 (3H, s, Si(CH₃)CH₃), -0.10 (3H, s, Si(CH₃)CH₃); δ_C (100 MHz; CDCl₃) 85.9, 72.5, 68.1, 61.2, 42.5, 32.5, 25.8, 18.3, 16.9, -4.4, -5.0; IR (film, cm⁻¹) 3311, 2956, 2930, 2858, 2361, 2338; HRESIMS calculated for $C_{21}H_{36}O_3SiH^+$: 243.1775; found: 243.1783.

4.2.2. (2S,4S)-4-(tert-Butyldimethylsilyloxy)-2-methyl-hex-5-ynal (10). To a stirred solution of DMSO (423 µL; 4.92 mmol) in CH₂Cl₂ (10 mL) at -78 °C was added (COCl)₂ (1.23 mL; 2 M in CH₂Cl₂; 2.46 mmol), dropwise and the resulting solution was stirred at -78 °C for 30 min. Alcohol 35 (399 mg; 1.64 mmol) was added dropwise via cannula (CH₂Cl₂, 3 mL) and the mixture stirred at -78 °C for 45 min before Et₃N (1.37 mL; 9.84 mmol) was added dropwise. The mixture was stirred at -78 °C for a further 30 min before warming to 0 °C for 30 min and the reaction was quenched by addition of satd aq NH₄Cl (25 mL). The product was extracted with CH_2Cl_2 (3×20 mL), the combined organic extracts dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 100% CH₂Cl₂) gave aldehyde **10** (395 mg; 99%) as a colourless oil. $R_{f}=0.56$ (100% CH₂Cl₂); $[\alpha]_{D}^{20}$ -40.5 (c 1.61, CHCl₃); δ_{H} (400 MHz; CDCl₃) 9.63 (1H, d, J=1.6 Hz, H17), 4.46 (1H, ddd, J=7.6, 5.2, 2.0 Hz, H20), 2.62 (1H, m, C18), 2.41 (1H, d, J=2.0 Hz, H22), 2.21 (1H, ddd, *J*=14.4, 7.6, 6.4 Hz, H19a), 1.64 (1H, ddd, *J*=13.6, 6.4, 5.2 Hz, H19b), 1.13 (3H, d, J=7.2 Hz, C18–CH₃), 0.89 (9H, s, SiC(CH₃)₃), 0.14 (3H, s, Si(CH₃)CH₃), 0.11 (3H, s, Si(CH₃)CH₃); δ_{C} (100 MHz; CDCl₃) 204.3, 85.0, 73.2, 60.8, 43.3, 39.4, 25.9, 18.3, 13.8, -4.4, -5.0; IR (film, cm⁻¹) 3309, 2930, 2885, 2858, 2712, 1727.

4.2.3. (3S,5S,6S,7R,9S)-3-(tert-Butyldimethylsilyloxy)-6-hydroxy-10-(4-methoxyphenyl)oxy-5,7,9-trimethyl-8-oxo-dec-1-yne (12). Titanium isopropoxide (135 µL; 456 µmol) was added dropwise to a solution of TiCl₄ (1.37 mL; 914 μ mol) in CH₂Cl₂ (3.3 mL) at 0 °C. The mixture was stirred for 10 min at 0 °C and 10 min at rt and diluted with CH₂Cl₂ (3.3 mL). The resulting colourless solution was added via cannula to a solution of ketone (S)-11 (385 mg; 1.63 mmol) in $CH_2Cl_2(5 \text{ mL})$ at $-78 \degree C$. The pale yellow solution was stirred for 2 min and i-Pr2NEt (312 µL; 1.79 mmol) was added dropwise. The resulting red-orange solution was stirred for 30 min at -78 °C before aldehyde 10 (392 mg; 1.63 mmol) was added via cannula. After 3 h at -78 °C the reaction was guenched by addition of satd aq NH₄Cl (30 mL) and vigorously stirred at rt. The mixture was diluted with Et₂O (40 mL) and washed with H₂O (30 mL), satd aq NaHCO₃ (30 mL) and brine (30 mL). The aqueous layers were extracted with Et₂O (3×40 mL) and the combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo. Crude NMR showed a 87:13 mixture of diastereomers, which were able to be separated by column chromatography (buffered silica, 3% Et₂O/ CH₂Cl₂) to give the single isomer, aldol adduct **12** (627 mg; 81%) as a white amorphous solids. R_{f} =0.28 (3% Et₂O/CH₂Cl₂); $[\alpha]_{D}^{20}$ -13.8 (*c* 1.38, CHCl₃); δ_H (400 MHz; CDCl₃) 7.18 (2H, d, J=8.4 Hz, ArH), 6.86 (2H, d, J=8.8 Hz, ArH), 4.55 (1H, ddd, J=8.0, 5.6, 2.0 Hz, H20), 4.38 (2H, ABq, J=11.6 Hz, OCH₂PMP), 3.79 (3H, s, OCH₃), 3.72 (1H, dd, *J*=9.6, 2.0 Hz, H17), 3.59 (1H, dd, *J*=9.2, 7.9 Hz, H13a), 3.41 (1H, dd, *I*=8.8, 4.8 Hz, H13b), 3.17–3.10 (1H, ddg, *I*=9.2, 6.8, 4.1 Hz, H14), 2.96 (1H, br s, OH), 2.82 (1H, dq, J=7.2, 2.4 Hz, H16), 2.37 (2H, d, J=2.0 Hz, H22), 2.18 (1H, ddd, J=13.2, 8.0, 4.0 Hz, H19a), 1.86-1.75 (1H, m, H18), 1.40 (1H, ddd, J=13.6, 8.0, 5.6 Hz, H19b), 1.05 (3H, d, J=7.2 Hz, C14-CH₃), 1.00 (3H, d, J=6.8 Hz, C16-CH₃), 0.89 (9H, s, SiC(CH₃)₃) 0.84 (3H, d, *J*=6.8 Hz, C18–CH₃), 0.13 (3H, s, Si(CH₃)CH₃), 0.11 (3H, s, Si(CH₃)CH₃); δ_C NMR (100 MHz; CDCl₃) 218.0, 159.5, 129.8, 129.4, 114.0, 86.3, 74.5, 73.3, 73.1, 72.1, 61.6, 55.3, 48.6, 44.4, 42.8, 31.9, 25.9, 18.3, 16.4, 13.9, 7.8, -4.3, -4.9; IR (film, cm⁻¹) 3505, 3307, 2933, 2857, 1711, 1613, 1586, 1513; HRESIMS calculated for C₂₇H₄₄O₅SiCl⁻: 511.2652; found: 511.2655.

4.2.4. (3S,5S,6S,7R,8S,9S)-3-(tert-Butyldimethylsilyloxy)-6,8dihydroxy-10-(4-methoxyphenyl)oxy-5,7,9-trimethyl-dec-1-yne (**36**). To a stirred solution of β -hydroxyketone **12** (52.5 mg; 110 µmol) in a 1:1 mixture of AcOH/CH₃CN (4.4 mL) was added

tetramethylammonium triacetoxyborohydride (467 mg; 2.20 mmol) and the resulting mixture was stirred at rt for 4 days. The mixture was diluted with Et₂O (10 mL) and quenched by careful addition of satd aq NaHCO₃ (15 mL). The layers were separated and the aqueous phase was extracted with Et_2O (4×15 mL), the combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 10% Et₂O/CH₂Cl₂) to give 1,3-diol **36** (45.8 mg; 87%, as a 87:13 anti-syn mix of isomers) as a yellow oil. $R_f=0.48$ (10% Et₂O/CH₂Cl₂); $[\alpha]_D^{2l}$ -23.0 (c 2.14, CHCl₃); δ_H (400 MHz; CDCl₃) 7.23 (2H, d, *J*=8.4 Hz, ArH), 6.87 (2H, d, J=8.4 Hz, ArH), 4.56 (1H, ddd, J=8.4, 5.2, 2.0 Hz, H20), 4.45 (2H, ABq, J=11.2 Hz, OCH₂PMP), 3.80 (3H, s, OCH₃), 3.61 (1H, dd, J=4.0 Hz, H15), 3.60 (1H, dd, J=8.6, 3.3 Hz, H13a), 3.54 (1H, dd, J=9.2, 2.8 Hz, H17), 3.47 (1H, dd, J=8.6, 6.4 Hz, H13b), 2.38 (1H, d, J=2.0 Hz, H22), 2.21 (1H, ddd, J=13.6, 8.8, 4.4 Hz, H19a), 2.16-2.10 (1H, m, H14), 1.86-1.78 (1H, m, H18), 1.82-1.78 (1H, m, H16), 1.43 (1H, ddd, *J*=13.6, 7.6, 5.2 Hz, H19b), 1.25 (1H, br s, OH), 1.03 (3H, d, J=6.8 Hz, C14–CH₃), 0.90 (9H, s, SiC(CH₃)₃), 0.84 (3H, d, J=6.8 Hz, C16-CH₃), 0.80 (3H, d, J=6.8 Hz, C18-CH₃), 0.15 (3H, s, Si(CH₃)CH₃), 0.12 (3H, s, Si(CH₃)CH₃); δ_{C} NMR (100 MHz; CDCl₃) 159.5, 129.7, 129.5, 114.0, 86.3, 82.7, 76.1, 75.4, 73.3, 72.2, 61.8, 55.4, 42.9, 35.9, 34.8, 32.9, 25.9, 18.3, 16.6, 14.3, 10.7, -4.3, -4.9; IR (film, cm⁻¹) 3423, 3309, 2958, 2931, 2856, 1613, 1513; HRESIMS calculated for C₂₇H₄₆O₅SiNa⁺: 501.3007; found: 501.3009.

4.2.5. (3S,5S,6S,7R,8S,9S)-3-(tert-Butyldimethylsilyloxy)-10-(4*methoxyphenyl*)*oxy*-5,7,9-*trimethyl*-6,8-*[(bis-dimethyl-methylene) dioxy]-dec-1-yne* (**13**). To a stirred solution of 1,3-diol **36** (24.3 mg; 50.9 µmol) in CH₂Cl₂ (0.85 mL) was added 2,2-dimethoxypropane (0.85 mL) and a few crystals of PPTS and the resulting solution was stirred at rt for 3 h. The reaction mixture was diluted with CH₂Cl₂ (5 mL), washed with satd aq NaHCO₃ (5 mL) and brine (5 mL), dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 100% CH₂Cl₂) gave acetonide 13 as a single isomer (24.5 mg; 93%) as a clear, colourless oil. $R_f=0.55$ $(100\% \text{ CH}_2\text{Cl}_2); [\alpha]_D^{20} - 7.3 (c \ 1.23, \text{ CHCl}_3); \delta_H (400 \text{ MHz}; \text{CDCl}_3) 7.26$ (2H, d, J=8.8 Hz, ArH), 6.87 (2H, d, J=8.4 Hz, ArH), 4.49 (1H, ddd, J=8.4, 6.0, 2.0 Hz, H20), 4.42 (2H, ABq, J=7.2 Hz, OCH₂PMP), 3.80 (3H, s, OCH₃), 3.55 (1H, dd, J=9.2, 4.8 Hz, H13a), 3.32 (1H, dd, J=8.8, 6.8 Hz, H13b), 3.29 (1H, dd, J=10.8, 5.2 Hz, H15), 3.22 (1H, dd, J=6.8, 5.6 Hz, H17), 2.37 (1H, d, J=2.0 Hz, H22), 2.11 (1H, ddd, J=13.2, 8.8, 4.4 Hz, H19a), 1.96-1.85 (1H, m, H14), 1.93-1.86 (1H, m, H16), 1.83–1.74 (1H, m, H18), 1.27 (1H, m, H19b), 1.27 (6H, s, C(CH₃)₂), 1.00 (3H, d, J=6.8 Hz, C14-CH₃), 0.90 (9H, s, SiC(CH₃)₃), 0.84 (3H, d, J=6.8 Hz, C16-CH₃), 0.83 (3H, d, J=6.8 Hz, C18-CH₃), 0.14 (3H, s, Si(CH₃)CH₃), 0.11 (3H, s, Si(CH₃)CH₃); δ_C NMR (100 MHz; CDCl₃) 159.2, 131.0, 129.3, 113.8, 100.4, 76.6, 74.0, 72.9, 72.2, 72.0, 61.6, 55.4, 42.8, 38.0, 35.3, 29.1, 25.9, 25.4, 23.7, 18.3, 15.8, 14.4, 12.5, -4.2, -4.9; IR (film, cm⁻¹) 3309, 2959, 2932, 2856, 1613, 1586, 1513; HRESIMS calculated for C₃₀H₅₀O₅SiH⁺: 519.3500; found: 519.3505.

4.2.6. (35,55,65,7R,85,95)-3-(tert-Butyldimethylsilyloxy)-10-(4methoxyphenyl)oxy-5,7,9-trimethyl-6,8-[(bis-dimethyl-methylene) dioxy]-decan-2-one (**7**). To a stirred solution of alkyne **13** (21.5 mg; 41.4 µmol) in THF (0.8 mL) was added sequentially PPTS (15.6 mg; 62.2 µmol), pH 7 buffer (2 µL; 111 µmol) and Hg(OAc)₂ (4.0 mg; 12.4 µmol) and the resulting mixture was stirred at 45 °C for 48 h. The reaction was quenched by addition of satd aq NaHCO₃ (2 mL) and the mixture was extracted with Et₂O (3×5 mL), the combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 10% EtOAc/ hexanes) gave methyl ketone **7** (13.2 mg, 59%) as a colourless oil. R_f =0.31 (10% EtOAc/hexanes); [α]²⁰_D -8.1 (*c* 1.24, CHCl₃); δ _H (400 MHz; CDCl₃) 7.25 (2H, d, *J*=8.8 Hz, ArH), 6.87 (2H, d, *J*=8.8 Hz, ArH), 4.41 (2H, ABq, *J*=11.6 Hz, OCH₂PMP), 4.07 (1H, dd, *J*=9.6, 3.6 Hz, H2O), 3.80 (3H, s, OCH₃), 3.54 (1H, dd, *J*=9.2, 4.8 Hz, H13a), 3.31 (1H, dd, *J*=9.2, 7.2 Hz, H13b), 3.25 (1H, dd, *J*=10.8, 4.0 Hz, H15), 3.22 (1H, dd, *J*=6.8, 5.6 Hz, H17), 2.16 (3H, s, H22), 2.05 (1H, ddd, *J*=13.2, 9.6, 2.8 Hz, H19a), 1.94–1.85 (1H, m, H14), 1.89 (1H, ddd, *J*=13.6, 6.8, 3.6 Hz, H19b), 1.77–1.69 (2H, m, H16 and H18), 1.27 (3H, s, C(CH₃)CH₃), 1.23 (3H, s, C(CH₃)CH₃), 0.99 (3H, d, *J*=6.8 Hz, C14–CH₃), 0.92 (9H, s, SiC(CH₃)₃), 0.83 (3H, d, *J*=6.8 Hz, C16–CH₃), 0.80 (3H, d, *J*=6.8 Hz, C18–CH₃), 0.05 (3H, s, Si(CH₃)CH₃), 0.04 (3H, s, Si(CH₃)CH₃); δ_{C} (100 MHz; CDCl₃) 212.8, 159.2, 131.0, 129.3, 113.9, 100.5, 77.6, 76.7, 73.5, 72.9, 72.2, 55.4, 38.1, 38.0, 35.3, 28.7, 25.9, 25.3, 25.1, 23.6, 18.3, 15.4, 14.3, 12.5, -4.6, -4.9; IR (film, cm⁻¹) 3411, 2957, 2932, 2857, 1715, 1612, 1586, 1513; HRESIMS calculated for C₃₀H₅₂O₆SiNa⁺: 559.3425; found: 559.3427.

4.2.7. (2R,4E)-Methyl-2,4-dimethyl-hexanoate (37). To a stirred solution of (E)-2-bromo-2-butene (500 µL; 4.93 mmol) in THF (100 mL) at 0 °C was added dropwise over 1 min a solution of (R)-3methoxy-2-methyl-3-oxopropylzinc bromide (14) (11.8 mL; 0.5 M in THF; 5.90 mmol). $Pd(PPh_3)_2Cl_2$ (97 mg; 246 μ mol) was then added in one portion and the mixture stirred at 0 °C for 10 min, followed by rt for 24 h. The reaction was quenched by addition of satd aq NH₄Cl (100 mL) and the product extracted with Et_2O (3×100 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 50% hexanes/CH₂Cl₂) gave methyl ester **37** (526 mg; 68%) as a colourless oil. $R_f=0.30$ (50% hexanes/CH₂Cl₂); $[\alpha]_D^{20}$ +3.92 (*c* 1.02, CH₂Cl₂); δ_H (600 MHz; CDCl₃) 5.20 (1H, q, J=6.6 Hz, H31), 3.62 (3H, s, OCH₃), 2.59 (1H, ddq, *J*=7.2, 7.2, 6.6 Hz, H28), 2.34 (1H, dd, *J*=13.2, 7.2 Hz, H29a), 2.00 (1H, dd, *J*=13.8, 7.8 Hz, H29b), 1.55 (3H, s, C30–CH₃), 1.54 (3H, d, I = 6.6 Hz, H32, 1.06 (3H, d, $I = 6.6 \text{ Hz}, \text{C28}-\text{CH}_3$); δ_C (151 MHz; CDCl₃) 177.2, 132.9, 121.1, 44.0, 38.0, 16.6, 15.4, 13.5 (two carbons).

4.2.8. (2R,4E)-2,4-Dimethyl-hexanal (15). To a stirred solution of ester 37 (449 mg; 2.87 mmol) in CH₂Cl₂ (14 mL) at -78 °C was added dropwise a solution of DIBAL (3.01 mL; 1 M in hexanes; 3.01 mmol). The resulting solution was stirred at -78 °C for 1 h, quenched with satd aq NH₄Cl (20 mL) and warmed to rt. A mixture of satd ag potassium sodium tartrate (20 mL) and Et₂O (20 mL) was then added with vigorous stirring for 10 min. Layers were separated and the aqueous layer extracted with Et_2O (3×20 mL). The combined organic extracts were washed with brine (20 mL), dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 100% CH₂Cl₂) gave aldehyde 15 (256 mg; 71%) as a colourless oil. $R_{f}=0.39 (100\% \text{ CH}_2 \text{Cl}_2); [\alpha]_D^{20} + 6.79$ (c 2.80, CH₂Cl₂); $\delta_{\rm H}$ (400 MHz; CDCl₃) 9.60 (1H, d, J=2.0 Hz, H27), 5.25 (1H, m, H31), 2.49 (1H, dddq, J=13.6, 8.0, 6.8, 2.0 Hz, H28), 2.40 (1H, m, H29a), 1.97 (1H, m, H29b), 1.59 (3H, m, C30-CH₃), 1.57 (3H, m, H32), 1.02 (3H, d, J=7.2 Hz, C28-CH₃); δ_C (100 MHz; CDCl₃) 205.4, 132.3, 121.6, 44.6, 41.0, 15.7, 13.5, 13.3.

4.2.9. [[3-(2R,3S,4S,6E)-4R]-3-(3-Hydroxy-2,4,6-trimethyl-1-oxooct-6-enyl)-4-(phenylmethyl)]-2-oxazolidinone (17). To a stirred solution of oxazolidinone (S)-16 (1.57 g; 6.74 mmol) in CH₂Cl₂ (10 mL) at 0 °C was added Bu₂BOTf (8.09 mL; 1 M in CH₂Cl₂; 8.09 mmol) dropwise giving a red solution. After 30 min Et₃N (1.22 mL; 8.76 mmol) was added and the resulting yellow solution was stirred for a further 30 min before cooling to -78 °C. Aldehyde **15** (850 mg; 6.74 mmol) in CH₂Cl₂ (4 mL) was added dropwise via cannula and the reaction mixture stirred at -78 °C for 30 min and then at 0 °C for 4 h, at which time the reaction was quenched by addition of pH 7 buffer (10 mL) and MeOH (10 mL). A solution of 2:1 MeOH/ H_2O_2 (20 mL) was then added and the mixture stirred at rt for 1 h. The volatiles were removed in vacuo and the resulting slurry was extracted with CH_2Cl_2 (3×20 mL), the combined organic extracts washed with satd aq NaHCO₃ (20 mL) and brine (20 mL), dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 5% Et₂O/CH₂Cl₂) gave aldol adduct **17** (1.32 g; 55%, >98% ds) as a white solid. R_f =0.42 (5% Et₂O/CH₂Cl₂); [α]_D²⁰ -45.9 (*c* 0.68, CHCl₃); $\delta_{\rm H}$ (600 MHz; CDCl₃) 7.35–7.32 (2H, m, ArH), 7.29–7.26 (1H, m, ArH), 7.22–7.20 (2H, m, ArH), 5.24 (1H, q, *J*=6.6 Hz, H31), 4.69 (1H, m, CHCH₂Ph), 4.23 (1H, dd, *J*=9.0, 7.2 Hz, CHCH_AH_BO), 4.19 (1H, dd, *J*=9.0, 2.4 Hz, CHCH_AH_BO), 3.97 (1H, dq, *J*=6.6, 2.4 Hz, H26), 3.62 (1H, ddd, *J*=8.4, 2.4, 2.4 Hz, H27), 3.27 (1H, dd, *J*=13.8, 3.6 Hz, CH_AH_BPh), 2.95 (1H, d, *J*=3.0 Hz, OH), 2.79 (1H, dd, *J*=13.2, 9.6 Hz, CH_AH_BPh), 2.52 (1H, d, *J*=12.6 Hz, H29a), 1.78–1.72 (1H, m, H28), 1.70 (1h, dd, *J*=13.2, 9.6 Hz, H29b), 1.60 (3H, s, C30–CH₃), 1.58 (3H, d, *J*=6.6 Hz, H32), 1.25 (3H, d, *J*=7.2 Hz, C28–CH₃), 0.80 (3H, d, *J*=6.6 Hz, C26–CH₃); $\delta_{\rm C}$ (151 MHz; CDCl₃) 177.7, 153.1, 135.2, 135.0, 129.6, 129.1, 127.6, 120.7, 76.2, 66.3, 55.4, 44.2, 40.0, 37.9, 34.0, 15.7, 15.4, 13.5, 9.7; IR (film, cm⁻¹) 3523, 2968, 2919, 1781, 1696; HRESIMS calculated for C₂₁H₂₉NO₄H⁺: 360.2169; found: 360.2170.

4.2.10. [[3-(2R,3S,4S,6E)-4R]-3-(3-[tert-Butyldimethylsilyloxy]-2,4,6trimethyl-1-oxo-oct-6-enyl)-4-(phenylmethyl)]-2-oxazolidinone (38). The procedure used for the preparation of TBS ether 9 was followed with alcohol 17 (1.32 mg; 3.68 mmol), 2,6-lutidine (857 µL; 7.36 mmol), TBSOTf (1.27 mL; 5.52 mmol) and CH₂Cl₂ (37 mL). Purification by column chromatography (buffered silica, 50% hexanes/ CH_2Cl_2) gave TBS ether **38** (1.74 g; 99%) as white solid. $R_f=0.39$ (50%) hexanes/CH₂Cl₂); $[\alpha]_D^{20}$ +20.7 (*c* 1.02, CHCl₃); δ_H (400 MHz; CDCl₃) 7.36–7.31 (2H, m, Ar*H*), 7.30–7.25 (1H, m, Ar*H*), 7.23–7.20 (2H, m, ArH), 5.14 (1H, q, J=6.0 Hz, H31), 4.63 (1H, m, CHCH₂Ph), 4.19-4.13 (2H, m, CHCH₂O), 3.97 (1H, dq, J=6.4, 6.4 Hz, H26), 3.95 (1H, dd, *J*=6.4, 3.6 Hz, H27), 3.27 (1H, dd, *J*=13.2, 3.2 Hz, CH_AH_BPh), 2.77 (1H, dd, *J*=13.6, 9.6 Hz, CH_AH_BPh), 2.19 (1H, d, *J*=13.2 Hz, H29a), 1.76–1.69 (1H, m, H28), 1.60 (1H, dd, *J*=13.2, 10.8 Hz, H29b), 1.55 (3H, d, *I*=6.8 Hz, H32), 1.51 (3H, s, C30–CH₃), 1.24 (3H, d, *I*=6.8 Hz, C26-CH₃), 0.93 (9H, s, OSi(CH₃)₃), 0.85 (3H, d, *J*=6.4 Hz, C28-CH₃), 0.08 (3H, s, OSi(CH₃)CH₃), 0.05 (3H, s, OSi(CH₃)CH₃); δ_C (100 MHz; CDCl₃) 176.3, 153.0, 135.5, 134.3, 129.6, 129.1, 120.3, 76.9, 66.1, 55.8, 42.6, 41.3, 37.8, 36.8, 27.1, 26.3, 15.9, 15.5, 14.2, 14.1, 13.5, -3.6, -3.9; IR (film, cm⁻¹) 3531, 3062, 3028, 2928, 2856, 1783, 1681; HRESIMS calculated for C₂₇H₄₃O₄NSiNa⁺: 496.2854; found: 496.2880.

4.2.11. (2S,3S,4S,6E)-3-(tert-Butyldimethylsilyloxy)-2,4,6-trimethyloctan-1-ol (**39**). To a stirred solution of oxazolidinone **38** (254 mg; 536 μ mol) in Et₂O (5.4 mL) at -10 °C was added EtOH (75 μ L; 1.29 mmol) and LiBH₄ (643 µL; 1 M in THF; 1.29 mmol) and the resulting mixture was stirred at -10 °C for 4 h. The reaction mixture was warmed to 0 °C and quenched by addition of 1 M NaOH (10 mL). The mixture was poured into brine (10 mL) and extracted with Et_2O (4×15 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 50% CH₂Cl₂/hexanes) gave alcohol 39 (126 mg; 78%) as a colourless oil. R_f=0.40 (50% CH₂Cl₂/hexanes); $[\alpha]_{D}^{20}$ +7.88 (*c* 1.02, CHCl₃); δ_{H} (600 MHz; CDCl₃) 5.20–5.16 (1H, m, H31), 3.58 (1H, dd, J=5.4, 2.4 Hz, H27), 3.57 (1H, dd, J=10.8, 7.8 Hz, H25a), 2.46 (1H, dd, *J*=10.8, 6.6 Hz, H25b), 2.44 (1H, dd, *J*=13.2, 3.6 Hz, H29a), 1.93-1.87 (1H, m, H26), 1.85-1.77 (1H, m, H28), 1.73 (1H, br s, OH), 1.66 (1H, dd, J=13.2, 10.2 Hz, H29b), 1.57 (3H, d, J=9.0 Hz, H32), 1.57 (3H, s, C30-CH₃), 0.90 (9H, s, OSi(CH₃)₃) 0.88 (3H, d, J=7.2 Hz, C26–CH₃), 0.80 (3H, d, J=6.6 Hz, C28–CH₃), 0.06 $(3H, s, OSi(CH_3)CH_3), 0.06 (3H, s, OSi(CH_3)CH_3); \delta_C(151 \text{ MHz}; CDCl_3)$ 134.6, 120.4, 76.8, 66.8, 43.9, 38.7, 35.3, 26.2, 18.5, 16.2, 15.5, 13.3, 12.0, -3.8, -4.1; IR (film, cm⁻¹) 3332, 2957, 2929, 2857; HRESIMS calculated for C₁₇H₃₆O₂SiH⁺: 301.2557; found: 301.2562.

4.2.12. (2R,3S,4S,6E)-3-(*tert-Butyldimethylsilyloxy*)-2,4,6-*trimethyloctanal* (**18**). The procedure used for the preparation of aldehyde **10** was followed with alcohol **39** (111 mg; 369 µmol), DMSO (79 µL; 1.11 mmol), (COCl)₂ (277 µL; 2 M in CH₂Cl₂; 554 µmol), Et₃N (309 µL; 2.21 mmol) and CH₂Cl₂ (4 mL). Purification by column chromatography (buffered silica, 100% CH₂Cl₂) gave aldehyde **18** (110 mg; 100%) as a colourless oil. R_f =0.70 (100% CH₂Cl₂); $[\alpha]_D^{20}$ -24.5 (*c* 1.35, CHCl₃); δ_H (400 MHz; CDCl₃) 9.70 (1H, d, *J*=1.2 Hz, H25), 5.17–5.14 (1H, m, H31), 3.97 (1H, dd, *J*=5.2, 3.2 Hz, H27), 2.49 (1H, ddq, *J*=6.8, 3.6, 0.8 Hz, H26), 2.18–2.14 (1H, m, H29a), 1.88–1.76 (1H, m, H28), 1.67 (1H, dd, *J*=13.2, 10.0 Hz, H29b), 1.56 (3H, m, H32), 1.54 (3H, s, C30–CH₃), 1.10 (3H, d, *J*=7.2 Hz, C26–CH₃), 0.90 (9H, s, OSi(CH₃)₃) 0.81 (3H, d, *J*=7.2 Hz, C28–CH₃), 0.06 (3H, s, OSi(CH₃)CH₃), -0.02 (3H, s, OSi(CH₃)CH₃); δ_C (100 MHz; CDCl₃) 205.4, 134.0, 120.7, 75.0, 50.1, 43.3, 35.8, 26.0, 18.4, 15.7, 15.4, 13.5, 8.6, -4.0, -4.1; IR (film, cm⁻¹) 3435, 2929, 2857, 2708, 1727, 1691.

4.2.13. [[3-(2S,3R,4S,5S,6S,8E)-4S]-3-(5-[tert-Butyldimethylsilyloxy]-3-hydroxyl-2,4,6,8-tetramethyl-1-oxo-dec-8-enyl)-4-(phenylmethyl)]-2-oxazolidinone (19). The procedure used for the preparation of aldol adduct **17** was followed with oxazolidinone (S)-**16** (112 mg; 481 μmol), Bu₂BOTf (577 μL; 1 M in CH₂Cl₂; 577 μmol), Et₃N (87 $\mu L;~625~\mu mol),$ aldehyde 18 (144 mg; 481 $\mu mol)$ and CH_2Cl_2 (1 mL). Purification by column chromatography (buffered silica, 100% CH₂Cl₂) gave aldol adduct 19 (182 mg; 71%) as a white solid. R_{f} =0.56 (100% CH₂Cl₂); $[\alpha]_{D}^{20}$ +20.7 (*c* 1.02, CHCl₃); δ_{H} (600 MHz; CDCl₃) 7.34-7.31 (2H, m, ArH), 7.28-7.26 (1H, m, ArH), 7.22-7.20 (2H, m, ArH), 5.18 (1H, q, J=6.6 Hz, H31), 4.71 (1H, m, CHCH₂Ph), 4.21 (1H, dd, J=8.4, 7.8 Hz, CHCH_AH_BO), 4.17 (1H, dd, J=9.0, 3.0 Hz, CHCH_AH_BO), 3.93 (1H, d, J=10.2 Hz, H27), 3.87 (1H, dq, J=6.6, 1.8 Hz, H24), 3.80 (1H, dd, J=6.0, 1.2 Hz, H25), 3.61 (1H, br s, OH), 3.10 (1H, dd, J=13.8, 3.6 Hz, CH_AH_BPh), 2.77 (1H, dd, J=13.8, 9.6 Hz, CH_AH_BPh), 2.38 (1H, d, J=13.2 Hz, H29a), 1.85-1.78 (2H, m, H26 and H28), 1.57 (1H, m, H29b), 1.57 (3H, d, *J*=6.6 Hz, H32), 1.55 (3H, s, C30–CH₃), 1.21 (3H, d, *I*=7.2 Hz, C24–CH₃), 0.90 (9H, s, OSi(CH₃)₃), 0.87 (3H, d, *I*=7.2 Hz, C26–CH₃), 0.79 (3H, d, *I*=7.2 Hz, C28–CH₃), 0.09 (3H, s, OSi(CH₃)CH₃), 0.08 (3H, s, OSi(CH₃)CH₃); δ_C (151 MHz; CDCl₃) 177.4, 153.1, 135.4, 134.7, 129.6, 129.1, 127.5, 120.3, 72.3, 66.3, 55.6, 44.2, 40.0, 39.0, 37.9, 34.8, 26.2, 26.0, 18.4, 16.4, 15.5, 13.5, 11.4, 8.7, -3.9, -4.1; IR (film, cm⁻¹) 3531, 3062, 3028, 2928, 2856, 1783, 1681; HRESIMS calculated for C₃₀H₄₉NO₅Si: 532.3453; found: 532.3454.

4.2.14. [[3-(2S,3R,4R,5S,6S,8E)-4S]-3-(5-[tert-Butyldimethylsilyloxy]-3-triethylsilyloxyl-2,4,6,8-tetramethyl-1-oxo-dec-8-enyl)-4-(phenylmethyl)]-2-oxazolidinone (40). The procedure used for the preparation of silyl ether 9 was followed with alcohol 19 (492 mg; 925 µmol), 2,6-lutidine (215 µL; 1.85 mmol), TESOTf (314 µL; 1.39 mmol) and CH₂Cl₂ (9 mL). Purification by column chromatography (buffered silica, 50% CH₂Cl₂/hexanes) gave TES ether 40 (567 mg; 95%) as a clear, colourless liquid. $R_{f}=0.49$ (50% CH₂Cl₂/ hexanes); $[\alpha]_{D}^{20}$ +20.0 (*c* 1.15, CHCl₃); δ_{H} (600 MHz; CDCl₃) 7.36–7.33 (2H, m, ArH), 7.30-7.26 (1H, m, ArH), 7.23-7.22 (2H, m, ArH), 5.18 (1H, m, H31), 4.60 (1H, m, CHCH₂Ph), 4.18 (1H, dd, J=9.6, 2.4 Hz, CHCH_AH_BO), 4.13 (1H, dd, J=9.0, 7.2 Hz, CHCH_AH_BO), 4.07 (1H, dd, J=6.6, 3.6 Hz, H27), 3.95 (1H, dq, J=6.6, 4.2 Hz, H24), 3.57 (1H, dd, J=3.6, 3.0 Hz, H25), 3.27 (1H, dd, J=13.8, 3.0 Hz, CH_AH_BPh), 2.78 (1H, dd, *J*=13.2, 9.6 Hz, CH_AH_BPh), 2.15 (1H, d, *J*=10.2 Hz, H29a), 1.86–1.80 (2H, m, H26 and H28), 1.72 (1H, m, H29b), 1.58 (3H, d, *J*=6.0 Hz, H32), 1.58 (3H, s, C30-CH₃), 1.21 (3H, d, J=7.2 Hz, C24-CH₃), 0.99 (9H, t, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.93 (3H, d, J=7.2 Hz, C26–CH₃), 0.91 (9H, s, OSi(CH₃)₃), 0.77 (3H, d, J=6.6 Hz, C28-CH₃), 0.64 (6H, q, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.05 (3H, s, OSi(CH₃)CH₃), 0.05 (3H, s, OSi(CH₃)CH₃); $\delta_{\rm C}$ (151 MHz; CDCl₃) 175.9, 152.9, 135.4, 134.5, 129.6, 129.1, 127.5, 120.0, 76.3, 74.8, 66.0, 55.9, 42.2, 41.8, 40.8, 37.7, 36.9, 34.8, 26.3, 18.7, 16.3, 15.6, 13.5, 11.8, 7.3, 5.7, -3.2, -3.6; IR (film, cm⁻¹) 3027, 2956, 2878, 2857, 1784, 1701; HRESIMS calculated for C₃₆H₆₃NO₅Si₂Na⁺: 668.4137; found: 668.4127.

4.2.15. (2R,3S,4R,5S,6S,8E)-5-(tert-Butyldimethylsilyloxy)-3triethylsilyloxyl-2,4,6,8-tetramethyl-dec-8-en-1-ol (**41**). The procedure used for the preparation of alcohol **39** was followed with oxazolidinone **40** (143 mg; 221 μ mol), EtOH (31 μ L; 531 μ mol), LiBH₄

(265 µL; 2 M in THF; 531 µmol) and Et₂O (3 mL). Purification by column chromatography (buffered silica, 50% CH₂Cl₂/hexanes) gave alcohol **41** (76.9 mg; 74%) as a colourless oil. *R*_f=0.40 (50% CH₂Cl₂/ hexanes); $[\alpha]_D^{20} - 7.44$ (*c* 1.21, CHCl₃); δ_H (600 MHz; CDCl₃) 5.19 (1H, q, J=6.6 Hz, H31), 3.77 (1H, d, J=7.2 Hz, H27), 3.57 (1H, dd, J=3.0, 3.0 Hz, H25), 3.52 (1H, dd, *J*=10.0, 7.8 Hz, H23a), 3.46 (1H, dd, *J*=10.0, 6.0 Hz, H23b), 2.11 (1H, d, J=10.0 Hz, H29a), 1.84-1.81 (1H, m, H26), 1.84-1.81 (1H, m, H24), 1.75 (1H, d, *J*=10.0 Hz, H29b), 1.76–2.74 (1H, m, H28), 1.57 (3H, d, J=6.6 Hz, H32), 1.57 (3H, s, C30-CH₃), 1.53 (1H, br s, OH), 0.97 (9H, t, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.92 (9H, s, OSi(CH₃)₃), 0.88 (3H, d J=6.6 Hz, C24–CH₃) 0.87 (3H, d, J=6.6 Hz, C26–CH₃), 0.78 (3H, d, *J*=6.0 Hz, C28–CH₃), 0.63 (6H, q, *J*=7.8 Hz, OSi(CH₂CH₃)₃), 0.07 (3H, s, OSi(CH₃)CH₃), 0.06 (3H, s, OSi(CH₃)CH₃); δ_C (151 MHz; CDCl₃) 134.5, 120.1, 77.0, 74.8, 67.2, 42.0, 41.3, 38.0, 37.1, 26.3, 18.7, 15.9, 15.7, 14.3, 13.5, 11.2, 7.2, 5.7, -3.4, -3.4; IR (film, cm⁻¹) 3355, 2957, 2878, 2858; HRESIMS calculated for C₂₆H₅₆O₃Si₂Na⁺: 495.3660; found: 495.3661.

4.2.16. (2S,3R,4R,5S,6S,8E)-5-(tert-Butyldimethylsilyloxy)-3*triethylsilyloxyl-2,4,6,8-tetramethyl-dec-8-en-1-al* (**6**). The procedure used for the preparation of aldehyde **10** was followed with the above alcohol 41 (23.2 mg; 49.1 mmol), DMSO (10 µL; 147 µmol), (COCl)₂ (37 µL; 2 M in CH₂Cl₂; 73.7 mmol), Et₃N (41 µL; 295 µmol) and CH₂Cl₂ (0.5 mL). Purification by column chromatography (buffered silica, 50% hexanes/CH₂Cl₂) gave aldehyde 6 (23.1 mg; 100%) as a colourless oil. *R*_f=0.66 (50% hexanes/CH₂Cl₂); $[\alpha]_{D}^{20}$ +18.2 (c 1.16, CH₂Cl₂); δ_{H} (600 MHz; CDCl₃) 9.69 (1H, s, H23), 5.19 (1H, q, J=6.6 Hz, H31), 4.17 (1H, dd, J=7.2, 1.8 Hz, H27), 3.61 (1H, dd, J=3.6, 3.0 Hz, H25), 2.45 (1H, dq, J=7.2, 1.8 Hz, H24), 2.10 (1H, d, *J*=10.8 Hz, H29a), 1.82 (1H, ddq, *J*=7.2, 6.6, 2.4 Hz, H26), 1.78–1.72 (1H, m, H28), 1.71 (1H, d, *J*=10.8 Hz, H29b), 1.58 (3H, d, *J*=9.0 Hz, H32), 1.57 (3H, s, C30-CH₃), 1.12 (3H, d, J=7.2 Hz, C24-CH₃), 0.93 (9H, t, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.90 (9H, s, OSi(CH₃)₃), 0.86 (3H, d, J=7.2 Hz, C26–CH₃), 0.78 (3H, d, J=6.0 Hz, C28–CH₃), 0.57 (6H, q, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.07 (3H, s, OSi(CH₃)CH₃), 0.06 (3H, s, OSi(CH₃)CH₃); δ_C (151 MHz; CDCl₃) 205.5, 134.2, 120.2, 76.2, 73.2, 49.7, 42.6, 41.0, 37.6, 26.2, 18.6, 15.6, 15.5, 13.5, 11.9, 7.7, 7.1, 5.6, -3.4, -3.6; IR (film, cm⁻¹) 2957, 2878, 2858, 2706, 1728.

4.2.17. (2S,3S,4R,5S,6S,8S,11R,12R,13S,14R,15S,16S,18E)-1-(8,15-Bis(tert-butyldimethylsilyloxy)-13-triethylsilyloxy-11-hydroxy-4methoxybenzyl)oxy-2,4,6,12,14,16,18-heptameth3-dimethyl-methylene)dioxy]-icos-18-en-9-one (5) and (2S,3S,4R,5S,6S,8S,11S,12R,13S, 14R,15S,16S,18E)-1-(8,15-bis(tert-butyldimethylsilyloxy)-13triethylsilyloxy-11-hydroxy-4-methoxybenzyl)oxy-2,4,6,12,14,16,18heptamethyl-3,5-[(bis-dimethyl-methylene)dioxy]-icos-18-en-9-one (20). To a stirred solution of ketone 7 (79 mg; 147 µmol) in THF (0.4 mL) at -78 °C was added LiHMDS (294 μ L; 1 M in THF; 294 μ mol) dropwise and the mixture stirred at -78 °C for 1 h. Aldehyde 6 (70 mg; 148 µmol) was added dropwise via cannula and the reaction mixture was stirred at -78 °C for 5 h. The reaction mixture was diluted with Et₂O (3 mL) and guenched with NaHCO₃ (3 mL). The layers were separated and the aqueous layer extracted with Et_2O (3×5 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 100% CH₂Cl₂) gave aldol diastereomer 5 (51.2 mg; 35%) and aldol isomer 20 (21.8 mg, 15%) (NB on one occasion when the reaction was performed on a larger scale \sim 130 mg ketone 7 the selectivity was observed to be reduced to \sim 1.5:1. This was apparently due to lack of temperature control in this latter reaction). Compound **5**: $R_f=0.57$ (100% CH₂Cl₂); $[\alpha]_D^{2l}$ -2.20 (*c* 0.91, CHCl₃); $\delta_{\rm H}$ (600 MHz; CDCl₃) 7.26 (2H, d, J=9.0 Hz, ArH), 6.87 (2H, d, J=8.4 Hz, ArH), 5.20 (1H, q, J=6.0 Hz, H31), 4.42 (2H, ABq, J=11.4 Hz, OCH₂PMP), 4.13 (1H, d, J=7.2 Hz, H27), 4.11 (1H, dd, J=9.0, 3.6 Hz, H20), 3.80 (3H, s, OCH₃), 3.77 (1H, m, H23), 3.61 (1H, dd, J=3.0, 3.0 Hz, H25), 3.54 (1H, dd, J=9.0, 4.8 Hz, H13a), 3.32 (1H, s, OH), 3.31 (1H, dd, J=9.0, 7.2 Hz, H13b), 3.25 (1H, dd, J=10.8,

4.2 Hz, H17), 3.22 (1H, dd, *I*=7.2, 6.0 Hz, H15), 2.96 (1H, dd, *I*=18.6, 1.8 Hz, H22a), 2.49 (1H, dd, J=18.6, 9.0 Hz, H22b), 2.13 (1H, d, J=12.0 Hz, H29a), 2.08 (1H, ddd, J=13.2, 9.6, 3.0 Hz, H19a), 1.93-1.88 (1H, m, H14), 1.91-1.86 (1H, m, H16), 1.81-1.76 (1H, m, H28), 1.79-1.75 (1H, m, H26), 1.74-1.68 (1H, m, H18), 1.73 (1H, dd, J=12.6, 10.8, H29b), 1.63 (1H, dd, J=9.0, 6.6 Hz, H24), 1.58 (3H, d, J=7.2 Hz, H32), 1.57 (3H, s, C30–CH₃), 1.27 (3H, s, C(CH₃)CH₃), 1.23 (3H, s, C(CH₃)CH₃), 1.08 (1H, ddd, *J*=13.2, 9.6, 4.2 Hz, H19b), 0.99 (3H, *J*=6.6 Hz, C14–CH₃), 0.97 (9H, t, *J*=7.8 Hz, OSi(CH₂CH₃)₃), 0.92 (9H, s, OSiC(CH₃)₃), 0.90 (9H, s, OSiC(CH₃)₃), 0.84 (3H, d, J=7.2 Hz, C28-CH₃), 0.83 (3H, d, *J*=6.6 Hz, C16-CH₃), 0.81 (3H, d, *J*=6.6 Hz, C18-CH₃), 0.78 (3H, d, J=6.6 Hz, C26-CH₃), 0.77 (3H, d, J=6.6 Hz, C24-CH₃), 0.65 (3H, q, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.64 (3H, q, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.08 (3H, s, OSi(CH₃)CH₃), 0.07 (3H, s, OSi(CH₃)CH₃), 0.06 (3H, s, OSi(CH₃)CH₃), 0.04 (3H, s, OSi(CH₃)CH₃); $\delta_{\rm C}$ (151 MHz; CDCl₃) 216.7, 159.2, 134.6, 130.9, 129.2, 119.9, 113.8, 100.5, 77.6, 76.7, 76.6, 73.4, 72.9, 72.1, 69.2, 55.38, 55.36, 42.0, 41.6, 41.3, 39.9, 38.07, 38.02, 37.4, 35.3, 28.8, 26.3, 25.9, 25.8, 25.4, 23.6, 18.7, 18.20, 18.17, 15.8, 15.6, 15.4, 13.5, 12.4, 12.41, 12.1, 10.6, 7.3, 5.8, -3.4, -3.5, -4.6, -4.9; IR (film, cm⁻¹) 3527, 2957, 1706, 1613, 1586, 1513; HRESIMS calculated for C₅₆H₁₀₆O₉Si₃Na⁺: 1029.7037; found: 1029.7045. Compound **20**: $R_f=0.40$ (100% CH₂Cl₂); $[\alpha]_D^{20}$ -16.0 (c 0.38, CHCl₃); δ_H (600 MHz; CDCl₃) 7.25 (2H, d, J=8.4 Hz, ArH), 6.87 (2H, d, J=9.0 Hz, ArH), 5.20 (1H, q, J=6.6 Hz, H31), 4.41 (2H, ABq, J=11.4 Hz, OCH₂PMP), 4.11 (1H, dd, J=9.6, 3.6 Hz, H20), 4.06 (1H, ddd, J=8.4, 4.2, 4.2 Hz, H23), 3.84 (1H, dd, J=5.4, 1.2 Hz, H27), 3.80 (3H, s, OCH₃), 3.53 (1H, dd, *J*=9.0, 4.8 Hz, H13a), 3.49 (1H, dd, *J*=4.8, 1.2 Hz, H25), 3.31 (1H, dd, *J*=9.0, 7.2 Hz, H13b), 3.24 (1H, dd, *J*=10.2, 3.6 Hz, H17), 3.22 (1H, dd, *J*=6.0, 5.4 Hz, H15), 3.02 (1H, s, OH), 2.73 (1H, dd, *J*=18.0, 4.3 Hz, H22a), 2.66 (1H, dd, *J*=18.0, 8.4 Hz, H22b), 2.09 (1H, d, J=9.6 Hz, H29a), 2.06 (1H, ddd, J=13.8, 7.8, 3.0 Hz, H19a), 1.93-1.89 (1H, m, H14), 1.91-1.87 (1H, m, H16), 1.90-1.84 (1H, m, H28), 1.80–1.72 (1H, m, H26), 1.79–1.76 (1H, dd, J=12.6, 10.8, H29b), 1.76-1.70 (1H, m, H18), 1.72-1.67 (1H, m, H24), 1.59 (3H, s, C30–CH₃), 1.58 (3H, d, J=7.2 Hz, H32), 1.26 (3H, s, C(CH₃) CH₃), 1.22 (3H, s, C(CH₃)CH₃), 1.07 (1H, ddd, J=13.2, 10.2, 3.6 Hz, H19b), 0.99 (3H, J=7.2 Hz, C14-CH₃), 0.97 (9H, t, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.93 (3H, d, J=6.6 Hz, C24-CH₃), 0.91 (9H, s, OSiC(CH₃)₃), 0.90 (9H, s, OSiC(CH₃)₃), 0.90 (3H, d, J=7.2 Hz, C28-CH₃), 0.83 (3H, d, J=6.6 Hz, C16-CH₃), 0.82 (3H, d, J=6.0 Hz, C18-CH₃), 0.78 (3H, d, J=6.0 Hz, C26-CH₃), 0.64 (6H, q, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.06 (6H, s, OSi(CH₃)CH₃), 0.05 (3H, s, OSi(CH₃)CH₃), 0.04 (3H, s, OSi(CH₃)CH₃); δ_C (151 MHz; CDCl₃) 214.4, 159.2, 134.3, 130.9, 129.3, 120.2, 113.86, 100.4, 98.9, 77.3, 76.58, 76.55, 73.3, 72.9, 72.1, 71.4, 55.4, 42.01, 41.98, 41.7, 39.0, 38.0, 37.9, 36.2, 35.3, 33.1, 28.9, 26.3, 25.9, 25.4, 23.6, 18.7, 18.3, 16.1, 15.7, 15.3, 14.3, 13.5, 12.5, 12.3, 9.1, 7.2, 5.76, 5.74, -3.30, -3.35, -4.4, -4.9; IR (film, cm⁻¹) 3504, 2951, 1712, 1613, 1586, 1513; HRESIMS calculated for C₅₆H₁₀₆O₉Si₃Na⁺: 1029.7037; found: 1029.7040.

4.2.18. (2S,3S,4R,5S,6S,8S,11S,12R,13S,14R,15S,16S,18E)-1-(8,15-Bis(tert-butyldimethylsilyloxy)-13-triethylsilyloxy-11-methoxy-4methoxybenzyl)oxy-2,4,6,12,14,16,18-heptamethyl-3,5-[(bis-dimethyl-methylene)dioxy]-icos-18-en-9-one (42). To a stirred solution of aldol diastereomer 20 (53.5 mg; 53.1 µmol) in CH₂Cl₂ (1.1 mL) at 0 °C was added sequentially 4 Å molecular sieves (100 mg), proton sponge (68.3 mg; 319 µmol) and Me₃OBF₄ (47.2 mg; 319 µmol). The reaction was warmed to rt for 1 h, before quenching by addition of satd aq NaHCO₃ (2 mL). The layers were separated and the aqueous phase was extracted with CH₂Cl₂ $(3 \times 5 \text{ mL})$. The combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 100% CH₂Cl₂) gave methyl ether **42** (41.4 mg; 76%). $R_{f}=0.52$ (100% CH₂Cl₂); $[\alpha]_{D}^{20}$ -11.0 (*c* 1.00, CHCl₃); δ_{H} (600 MHz; CDCl₃) 7.25 (2H, d, J=9.0 Hz, ArH), 6.87 (2H, d, J=9.0 Hz, ArH), 5.20 (1H, q, J=6.0 Hz, H31), 4.42 (2H, ABq, J=11.4 Hz, OCH₂PMP), 4.16 (1H, dd, *J*=10.2, 3.0 Hz, H20), 3.82 (1H, d, *J*=5.4 Hz, H27), 3.80 (3H, s, ArOCH₃), 3.62 (1H, ddd, *J*=7.8, 4.8, 3.0 Hz, H23), 3.54 (1H, dd, *J*=9.6, 5.4 Hz, H13a), 3.47 (1H, d, J=5.4 Hz, H25), 3.32 (1H, dd, J=9.0, 6.6 Hz, H13b), 3.26 (1H, dd, J=9.6, 3.6 Hz, H17), 3.25 (3H, s, C23–OCH₃), 3.23 (1H, dd, *J*=6.6, 6.0 Hz, H15), 2.80 (2H, dd, *J*=18.0, 8.4 Hz, H22a), 2.55 (1H, dd, J=18.0, 3.0 Hz, H22b), 2.09 (1H, d, *J*=10.2 Hz, H29a), 2.04 (1H, ddd, *J*=12.6, 9.6, 1.8 Hz, H19a), 1.94–1.88 (1H, m, H14), 1.91–1.85 (1H, m, H24), 1.90–1.84 (1H, m, H16), 1.85-1.80 (1H, m, H26), 1.85-1.80 (1H, m, H28), 1.83-1.78 (1H, m, H29b), 1.77–1.72 (1H, m, H18), 1.58 (3H, d, J=6.6 Hz, H32), 1.57 (3H, s, C30CH₃), 1.26 (3H, s, C(CH₃)CH₃), 1.22 (3H, s, C(CH₃)CH₃), 1.12 (1H, ddd, *I*=12.6, 10.2, 4.8 Hz, H19b), 1.00 (3H, d, *I*=6.6 Hz, C14-CH₃), 0.98 (9H, t, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.91 (9H, s, OSiC(CH₃)₃), 0.91 (9H, s, OSiC(CH₃)₃), 0.89 (3H, d, J=6.6 Hz, C26-CH₃), 0.87 (3H, d, J=7.2 Hz, C24–CH₃), 0.83 (3H, d, J=6.6 Hz, C18–CH₃), 0.81 (3H, d, J=6.6 Hz, C28–CH₃), 0.79 (3H, d, J=6.6 Hz, C16–CH₃), 0.65 (6H, q, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.07 (3H, s, OSi(CH₃)CH₃), 0.06 (3H, s, OSi(CH₃)CH₃), 0.05 (3H, s, OSi(CH₃)CH₃), 0.03 (3H, s, OSi(CH₃)CH₃); $\delta_{\rm C}$ (151 MHz; CDCl₃) 212.5, 159.2, 134.4, 131.0, 129.3, 120.0, 113.8, 100.4, 80.0, 77.5, 77.2, 76.6, 73.4, 72.9, 72.5, 72.2, 58.0, 55.4, 42.9, 41.1, 39.5, 38.1, 37.4, 37.2, 35.8, 35.3, 28.9, 26.3, 25.9, 25.2, 23.5, 18.7, 18.4, 16.6, 15.6, 15.0, 14.3, 13.5, 12.5, 12.2, 11.3, 7.4, 5.9, -3.3, -4.4, -4.96, -5.03; IR (film, cm⁻¹) 2957, 2857, 1716, 1700, 1615, 1514.

4.2.19. (2S,3S,4R,5S,6S,8S,11S,12R,13S,14R,15S,16S,18E)-1-(8,15-Bis(tert-butyldimethylsilyloxy)-13-triethylsilyloxy-11-methoxy-4methoxybenzyl)oxy-2,4,6,12,14,16,18-heptamethyl-3,5-[(bis-di*methyl-methylene*)*dioxy*]*-icos-18-en-9-one* (**43**). The procedure used for the preparation of methyl ether 42 was followed with aldol diastereomer 5 (68.4 mg; 67.9 µmol) 4 Å molecular sieves (130 mg), proton sponge (87.3 mg; 407 μmol), Me₃OBF₄ (60.2 mg; 407 μmol) and CH₂Cl₂ (1.4 mL). Purification by column chromatography (buffered silica, 100% CH₂Cl₂) gave methyl ether **43** (53.9 mg; 78%). $R_{f}=0.43$ (100% CH₂Cl₂); δ_{H} (600 MHz; CDCl₃) 7.25 (2H, d, J=8.4 Hz, ArH), 6.87 (2H, d, J=8.4 Hz, ArH), 5.20 (1H, q, J=6.6 Hz, H31), 4.42 (2H, ABq, *J*=11.4 Hz, OCH₂PMP), 4.17 (1H, dd, *J*=9.6, 3.0 Hz, H20), 3.83 (1H, d, J=5.4 Hz, H27), 3.80 (3H, s, ArOCH₃), 3.64 (1H, ddd, *J*=10.2, 7.8, 3.0 Hz, H23), 3.54 (1H, dd, *J*=9.0, 4.8 Hz, H13a), 3.53 (1H, m, H25), 3.31 (1H, dd, J=9.0, 6.6 Hz, H13b), 3.25 (1H, dd, J=9.0, 3.6 Hz, H17), 3.22 (3H, s, C23–OCH₃), 3.22 (1H, m, H15), 2.80 (1H, dd, J=17.4, 8.4 Hz, H22a), 2.55 (1H, dd, J=17.4, 3.0 Hz, H22b), 2.10 (1H, ddd, J=13.2, 10.2, 2.4 Hz, H19a), 2.08 (1H, d, J=8.4 Hz, H29a), 1.93–1.89 (1H, m, H14), 1.92–1.86 (1H, m, H24), 1.86–1.81 (3H, m, H16), 1.84–1.79 (1H, m, H26), 1.82–1.77 (1H, m, H28), 1.79 (1H, d, *J*=7.8 Hz, H29b), 1.77–1.71 (1H, m, H18), 1.59 (3H, d, *J*=5.4 Hz, H32), 1.58 (3H, s, C30-CH₃), 1.26 (3H, s, C(CH₃)CH₃), 1.22 (3H, s, C(CH₃) CH₃), 1.10 (1H, ddd, *J*=13.8, 10.2, 3.6 Hz, H19b), 0.99 (3H, d, *J*=6.6 Hz, C14-CH₃), 0.97 (9H, t, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.92 (9H, s, OSiC(CH₃)₃), 0.91 (9H, s, OSiC(CH₃)₃), 0.89 (3H, d, J=7.2 Hz, C26–CH₃), 0.83 (3H, d, J=6.6 Hz, C24–CH₃), 0.83 (3H, d, J=6.6 Hz, C18-CH₃), 0.80 (3H, d, *J*=6.0 Hz, C28-CH₃), 0.79 (3H, d, *J*=7.2 Hz, C16-CH₃), 0.63 (6H, q, J=7.8 Hz, OSi(CH₂CH₃)₃), 0.07 (6H, s, OSi(CH₃)CH₃), 0.06 (3H, s, OSi(CH₃)CH₃), 0.04 (3H, s, OSi(CH₃)CH₃); $\delta_{\rm C}$ (151 MHz; CDCl₃) 212.4, 159.2, 134.4, 131.0, 129.3, 120.1, 113.8, 100.4, 79.8, 77.7, 76.6, 76.2. 73.7, 73.4, 72.9, 72.2, 57.2, 55.4, 42.5, 41.7, 40.2, 38.1, 37.7, 37.5, 36.8, 35.3, 28.9, 26.3, 26.0, 25.2, 23.6, 18.7, 18.3, 16.0, 15.7, 15.1, 14.3, 13.5, 12.5, 11.9, 10.3, 7.3, 5.8, -3.4, -3.6, -4.4, -5.0; IR (film, cm⁻¹) 2925, 1717, 1613, 1586, 1513; HRESIMS calculated for C₅₇H₁₀₈O₉Si₃Na⁺: 1043.7193; found: 1043.7197.

4.2.20. (2R,4S,5R,6S)-2-[(1S,3S,4S,5R,6S,7S)-1-(tert-Butyldimethylsilyloxy)-8-(4-methoxyphenyl)oxy-3,5,7-trimethyl-4,6-[(bis-dimethylmethylene)dioxy]-octanyl]-5-[(1S,2S,3S,5E)-2-(tert-butyldimethylsilyloxy)-1,3,5-trimethyl-hept-5-enyl]-2-hydroxy-4-methoxyl-5methyl-tetrahydro-2H-pyran (**21**). To a Teflon cylinder containing TES ether **42** (41.4 mg; 40.5 μmol) was added buffered pyridinium hydrofluoride (1 mL) from a stock solution containing dry THF (10 mL), pyridine (5 mL), pyridinium hydrofluoride (2.1 g) and H₂O (32 μ L). The resulting solution was stirred at rt for 5 days, then diluted with Et₂O (15 mL), washed with satd aq CuSO₄ (10 mL), satd aq NaHCO₃ (10 mL) and brine (10 mL), dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 15% EtOAc/hexanes) gave hemiacetal 21 (6.1 mg; 17%) as a clear, colourless oil. The low yield of this reaction was in part attributed to the limited solubility of the product in the extraction solvent. $R_f=0.54$ (100% CH₂Cl₂); $[\alpha]_D^{20}$ +6.57 (c 0.31, CHCl₃); δ_H (600 MHz; CDCl₃) 7.25 (2H, d, *J*=9.0 Hz, ArH), 6.87 (2H, d, *J*=9.0 Hz, ArH), 5.17 (1H, q, J=6.6 Hz, H31), 4.92 (1H, s, C21-OH), 4.42 (2H, ABq, J=11.4 Hz, OCH₂PMP), 3.92 (1H, d, J=5.4 Hz, H23), 3.90 (1H, d, J=9.0 Hz, H25), 3.80 (3H, s, ArOCH₃), 3.54 (1H, dd, J=9.0, 4.8 Hz, H13a), 3.51 (1H, d, J=3.0 Hz, H27), 3.47 (1H, d, J=9.0 Hz, H20), 3.35 (3H, s, C23–OCH₃), 3.32 (1H, dd, *J*=9.0, 7.2 Hz, H13b), 3.22 (1H, dd, J=9.6, 3.0 Hz, H17), 3.21 (1H, dd, J=6.6, 5.4 Hz, H15), 2.31 (1H, d, J=12.6 Hz, H29a), 1.95–1.90 (1H, m, H24), 1.94–1.89 (1H, m, H14), 1.93-1.87 (1H, m, H19a), 1.89-1.85 (1H, m, H22a), 1.88-1.84 (1H, m, H16), 1.71-1.66 (4H, m, H18, H22b, H26 and H28), 1.60-1.55 (1H, m, H29b), 1.57 (3H, d, J=7.2 Hz, H32), 1.55 (3H, s, C30–CH₃), 1.27–1.23 (1H, m, H19b), 1.24 (3H, s, OC(CH₃)CH₃), 1.24 (3H, s, OC(CH₃)CH₃), 0.99 (3H, d, J=6.6 Hz, C14-CH₃), 0.90 (9H, s, OSiC(CH₃)₂), 0.89 (9H, s, OSiC(CH₃)₂), 0.87 (3H, d, J=7.2 Hz, C24-CH₃), 0.84 (3H, d, J=6.6 Hz, C16-CH₃), 0.79 (3H, d, J=7.2 Hz, C28-CH₃), 0.77 (3H, d, J=6.6 Hz, C18-CH₃), 0.75 (3H, d, J=6.6 Hz, C26-CH₃), 0.12 (3H, s, OSi(CH₃)CH₃), 0.08 (3H, s, OSi(CH₃)CH₃) 0.08 (6H, s OSi(CH₃)CH₃); $\delta_{\rm C}$ (151 MHz, CDCl₃) 159.2, 134.9, 131.0, 129.3, 120.0, 113.8, 100.3, 98.7, 81.6, 77.6, 75.8, 72.9, 72.3, 61.8, 56.5, 55.4, 43.9, 38.2, 37.5, 36.9, 35.4, 29.9, 29.4, 26.5, 26.4, 25.8, 25.3, 23.6, 18.8, 18.6, 15.7, 15.5, 15.0, 14.3, 14.2, 13.5, 12.9, 10.1, 9.9, -3.0, -3.82, -3.88, -4.3; IR (film, cm⁻¹) 3488, 2930, 2856, 1731, 1613, 1586, 1513.

4.2.21. (2R,4R,5R,6S)-2-[(1S,3S,4S,5R,6S,7S)-1-(tert-Butyldimethylsilyloxy)-8-(4-methoxyphenyl)oxy-3,5,7-trimethyl-4,6-[(bis-dimethylmethylene)dioxy]-octanyl]-5-[(1S,2S,3S,5E)-2-(tert-butyldimethylsilyloxy)-1,3,5-trimethyl-hept-5-enyl]-2-hydroxy-4-methoxyl-5methyl-tetrahydro-2H-pyran (22). The procedure used for the preparation of minor hemiacetal 21 was followed with TES ether 43 (53.9 mg; 52.8 µmol), HF/pyr/pyr (1 mL) and H₂O (40 µL). Purification by column chromatography (buffered silica, 15% EtOAc/ hexanes) gave hemiacetal 21 (6.5 mg; 14%) as a clear, colourless oil. The low yield of this reaction was in part attributed to the limited solubility of the product in the extraction solvent. $R_{f}=0.43$ (15%) EtOAc/hexanes); $[\alpha]_{D}^{20}$ +22.2 (*c* 0.36, CHCl₃); δ_{H} (600 MHz; CDCl₃) 7.25 (2H, d, J=9.0 Hz, ArH), 6.87 (2H, d, J=8.4 Hz, ArH), 5.14 (1H, q, J=6.6 Hz, H31), 4.41 (2H, ABq, J=11.4 Hz, OCH₂PMP), 3.82 (1H, d, J=5.4 Hz, H25), 3.80 (3H, s, ArOCH₃), 3.69 (1H, ddd, J=11.4, 4.8, 4.2 Hz, H23), 3.58 (1H, dd, J=10.2, 1.2 Hz, H27), 3.53 (1H, dd, J=9.0, 4.8 Hz, H13a), 3.51 (1H, dd, J=9.0, 1.8 Hz, H20), 3.35 (3H, s, C23-OCH₃), 3.31 (1H, dd, J=9.0, 6.6 Hz, H13b), 3.21 (1H, d, J=10.8 Hz, H17), 3.18 (1H, dd, J=12.6, 1.8 Hz, H15), 2.18 (1H, d, J=13.2 Hz, H29a), 2.08 (1H, m, H22a), 2.03 (1H, ddd, J=14.4, 9.0, 3.0 Hz, H19a), 1.94-1.88 (1H, m, H14), 1.89-1.84 (1H, m, H16), 1.73-1.68 (5H, m, H18, H22b, H24, H26 and H28), 1.55-1.50 (1H, m, H29b), 1.55 (3H, d, J=6.6 Hz, H32), 1.54 (3H, s, C30–CH₃), 1.20 (3H, s, OC(CH₃)CH₃), 1.18 (3H, s, OC(CH₃)CH₃), 1.09 (1H, ddd, J=14.4, 10.2, 1.8 Hz, H19b), 0.99 (3H, d, J=6.6 Hz, C14-CH₃), 0.92 (9H, s, OSiC(CH₃)₂), 0.90 (9H, s, OSiC(CH₃)₂), 0.83 (3H, d, J=6.6 Hz, C16–CH₃), 0.79 (3H, d, J=6.6 Hz, C24–CH₃), 0.76 (3H, d, J=7.2 Hz, C28-CH₃), 0.74 (6H, d, J=6.6 Hz, C18-CH₃), 0.74 (3H, d, J=6.6 Hz, C26-CH₃), 0.09 (6H, s, OSi(CH₃)CH₃), 0.06 (3H, s, OSi(CH₃)CH₃) 0.02 (3H, s OSi(CH₃)CH₃); δ_C (151 MHz; CDCl₃) 159.2, 134.7, 131.0, 129.3, 120.0, 113.8, 100.4, 97.8, 77.4, 76.6, 76.5, 75.1, 73.8, 73.1, 72.9, 72.2, 55.44, 55.41, 44.1, 38.2, 38.1, 36.6, 36.0, 35.3, 31.9, 31.5, 29.5, 26.23, 26.19, 25.9, 25.1, 23.6, 23.3, 18.5, 18.4, 15.7, 15.6, 15.5, 14.7, 14.3, 13.5, 12.8, 10.7, 3.8, -3.68, -3.72, -3.9, -4.3; IR (film, cm⁻¹) 3377, 2930, 2857, 1717, 1613, 1513; HRESIMS calculated for $C_{51}H_{94}O_9Si_2Na^+$: 929.6329; found: 929.6323.

4.2.22. (2S,3R,7R,9S,11S)-2-[(1S,2S,3S,5E)-2-(tert-Butyldimethylsilyloxy)-1,3,5-trimethyl-hept-5-enyl]-8-[(1S,2S,3S)-4-(2-hydroxy-(4methoxyphenyl)oxy-1,3-dimethyl)-11-(tert-butyldimethylsilyloxy)-3.9-dimethyl-1.7-dioxaspirol6.6lundec-4-ene (33). To a stirred solution of hemiacetal 21 (6.1 mg; 6.72 µmol) in MeOH (0.5 mL) was added a few crystals of CSA and the resulting solution stirred at rt for 16 h before quenching by addition of satd aq NaHCO₃ (5 mL). The mixture was extracted with $CH_2Cl_2(3\times 5 \text{ mL})$ and the combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (buffered silica, 100% CH₂Cl₂) gave elimination product **33** (1.1 mg; 20%). *R*_f=0.61 (100%) CH₂Cl₂); $\delta_{\rm H}$ (600 MHz; CDCl₃) 7.23 (2H, d, J=8.4 Hz, ArH), 6.84 (2H, d, J=9.0 Hz, ArH), 5.96 (1H, dd, J=10.2, 6.6 Hz, H23), 5.76 (1H, dd, J=10.2, 0.6 Hz, H22), 5.20 (1H, q, J=6.6 Hz, H31), 3.84 (1H, dd, J=10.2, 1.2 Hz, H25), 3.79 (1H, dd, J=6.6, 1.8 Hz, H17), 3.79 (3H, s, OCH₃), 3.56 (1H, dd, *J*=8.4, 4.8 Hz, H13a), 3.56–3.53 (1H, m, H27), 3.54 (1H, dd, *J*=9.0, 3.0 Hz, H15), 3.47 (1H, dd, *J*=6.6, 6.0 Hz, H13b), 3.38 (1H, dd, J=3.6, 1.8 Hz, H20), 3.29 (1H, br s, OH), 2.19 (1H, d, J=16.2 Hz, H29a), 2.17–2.10 (1H, m, H18), 2.06–2.00 (2H, m, H24 and H28), 1.90-1.86 (3H, m, H14, H16 and H26), 1.76 (1H, ddd, *J*=14.4, 13.2, 1.8 Hz, H19a), 1.71 (1H, dd, *J*=13.2, 10.2 Hz, H29b), 1.58 (3H, s, H32), 1.58 (3H, s, C30–CH₃), 1.50 (1H, ddd, J=13.2, 3.6, 3.0 Hz, H19b), 1.25 (6H, s, OC(CH₃)₂), 1.05 (3H, d, J=6.6 Hz, C14-CH₃), 0.96 (3H, d, J=7.2 Hz, C16-CH₃), 0.90 (9H, s, OSiC(CH₃)₃), 0.89 (9H, s, OSiC(CH₃)₃), 0.86 (3H, d, *I*=7.2 Hz, C24–CH₃), 0.84 (3H, d, *I*=6.6 Hz, C28-CH₃), 0.78 (6H, d, J=6.6 Hz, C18-CH₃ and C26-CH₃), 0.02 (3H, s, OSi(CH₃)CH₃), 0.00 (3H, s, OSi(CH₃)CH₃), 0.00 (3H, s, OSi(CH₃) CH₃), -0.01 (3H, s, OSi(CH₃)CH₃).

4.2.23. (2S,3R,7R,9S,11S)-2-[(1S,2S,3S,5E)-2-(tert-Butyldimethylsilyloxy)-1,3,5-trimethyl-hept-5-enyl]-8-[(1S,2S,3S)-2-hydroxy-4-(4methoxyphenyl)oxy-1,3-dimethyl]-11-(tert-butyldimethylsilyloxy)-4methoxy-3,9-dimethyl-1,7-dioxaspiro[6,6]undecane (34). The procedure used for the preparation of spiroacetal 23 was followed with hemiacetal 22 (6.4 mg; 7.05 µmol), CSA (a few crystals) and MeOH (0.5 mL). Purification by column chromatography (buffered silica, 100% CH₂Cl₂) gave spiroacetal **34** (1.3 mg; 22%) as a clear, colourless oil. Rf=0.37 (100% CH₂Cl₂); δ_H (600 MHz; CDCl₃) 7.23 (2H, d, J=9.0 Hz, ArH), 6.85 (2H, d, J=8.4 Hz, ArH), 5.19 (1H, q, J=6.6 Hz, H31), 4.42 (2H, ABq, J=11.4 Hz, OCH₂PMP), 3.79 (3H, s, ArOCH₃), 3.78 (2H, d, J=7.8 Hz, H25), 3.73 (1H, dd, J=10.8, 1.2 Hz, H17), 3.64 (1H, dd, J=9.0, 4.8 Hz, H13a), 3.50 (1H, m, H23), 3.50 (1H, m, H27), 3.48 (1H, m, H13b), 3.45 (1H, m, H15), 3.37 (1H, br s, H20), 3.31 (3H, s, C23-OCH₃), 3.02 (1H, d, J=7.8 Hz, OH), 2.15 (1H, d, J=12.6 Hz, H29a), 2.14-2.09 (1H, m, H26), 2.09-2.04 (1H, m, H18), 2.00 (1H, dd, J=13.2, 4.8 Hz, H22a), 1.95-1.90 (1H, m, H28), 1.93-1.88 (1H, m, H14), 1.92–1.87 (1H, m, H24), 1.80 (1H, dq, J=7.2, 6.6 Hz, H16), 1.74 (1H, dd, *J*=12.6, 1.8 Hz, H19a), 1.71 (1H, dd, *J*=13.2, 6.0 Hz, H29b), 1.57 (3H, d, J=6.6 Hz, H32), 1.55 (3H, s, C30-CH₃), 1.49 (1H, ddd, J=13.2, 3.6, 3.0 Hz, H19b), 1.17 (1H, dd, J=12.6, 12.6 Hz, H22b), 1.09 (3H, d, J=7.2 Hz, C14–CH₃), 0.91 (3H, d, J=6.6 Hz, C16–CH₃), 0.89 (9H, s, OSiC(CH₃)₃), 0.89 (9H, s, OSiC(CH₃)₃), 0.84 (3H, d, J=7.2 Hz, C28–CH₃), 0.77 (6H, d, J=6.6 Hz, C18–CH₃ and C24–CH₃), 0.74 (3H, d, J=6.6 Hz, C26-CH₃), 0.04 (3H, s, OSi(CH₃)CH₃), 0.04 (3H, s, OSi(CH₃)CH₃), -0.01 (3H, s, OSi(CH₃)CH₃), -0.03 (3H, s, OSi(CH₃) CH₃); δ_C (600 MHz; CDCl₃) 130.7, 129.3, 119.5, 113.8, 112.8, 98.5, 76.8, 76.7, 73.3, 72.2, 70.8, 55.4, 55.2, 53.6, 40.2, 38.1, 37.9, 36.8, 36.0, 35.7, 33.3, 32.4, 29.9, 26.3, 25.9, 24.3, 18.7, 18.6, 18.1, 17.8, 16.2, 15.6, 13.6, 12.5, 11.0, 4.2, -3.2, -4.3, -4.2, -4.8; HRESIMS calculated for $C_{48}H_{88}O_8Si_2Na^+$: 871.5910; found: 871.5910. δ_H (600 MHz, C_6D_6) δ 7.16 (2H, d, *J*=9.0 Hz, ArH), 6.81 (2H, d, *J*=9.0 Hz, ArH), 5.44 (1H, q, J=6.6 Hz, H31), 4.27 (1H, d, J=12.0 Hz, OCH_AH_BPMP), 4.26 (1H, s, OH), 4.24 (1H, d, *I*=5.4 Hz, H25), 4.17 (1H, dd, *I*=10.8, 1.8 Hz, H17), 4.16 (1H, d, J=11.4 Hz, OCH_AH_BPMP), 3.97 (1H, dd, J=10.2, 1.8 Hz, H27), 3.86 (1H, ddd, *J*=11.4, 4.8, 4.2 Hz, H23), 3.77 (1H, ddd,=9.0, 9.0, 3.6 Hz, H15), 3.66 (1H, dd, J=3.0, 2.4 Hz, H20), 3.62 (1H, dd, J=9.0, 3.6 Hz, H13a), 3.32 (3H, s, ArOCH₃), 3.27 (1H, dd, J=9.0, 3.0 Hz, H13b), 3.12 (3H, s, C23-OCH₃), 2.53 (1H, d, 13.8 Hz, H29a), 2.46 (1H, dd, J=13.2, 4.2 Hz, H22a), 2.37-2.31 (1H, m, H28), 2.31-2.26 (1H, m, H18), 2.30-2.25 (1H, m, H26), 2.24-2.18 (1H, m, H24), 2.11 (1H, dd, *J*=13.8, 10.2 Hz, H29b), 2.08 (1H, ddd, *J*=13.2, 13.2, 1.2 Hz, H19a), 1.89-1.86 (1H, m, H16), 1.86-1.83 (1H, m, H14), 1.70 (3H, s, C30–CH₃), 1.66 (1H, ddd, *J*=13.2, 3.6, 2.4 Hz, H19b), 1.59–1.55 (1H, m, H22b), 1.57 (3H, d, J=6.6 Hz, H32), 1.30 (3H, d, *I*=7.2 Hz, C14–CH₃), 1.26 (3H, d, *J*=7.2 Hz, C28–CH₃), 1.13 (9H, s, OSiC(CH₃)₃), 1.04 (3H, d, J=7.2 Hz, C24-CH₃), 1.03 (3H, d, J=7.2 Hz, C18-CH₃), 1.00 (9H, s, OSiC(CH₃)₃), 0.99 (3H, d, J=7.2 Hz, C16-CH₃), 0.89 (3H, d, J=7.8 Hz, C26-CH₃), 0.33 (3H, s, OSi(CH₃)CH₃), 0.21 (3H, s, OSi(CH₃)CH₃), 0.01 (6H, s, OSi(CH₃)CH₃).

Acknowledgements

The authors thank the Australian Research Council (Grant DP0771098) and Flinders University for financial support. C.G. acknowledges the receipt of an Australian Post Graduate Research Award.

Supplementary data

Copies of NMR spectra for all new compounds are available. Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.tet.2013.06.012.

References and notes

- 1. Höfle, G.; Bedorf, N.; Gerth, K.; Reichenbach, H. Chem. Abstr. 1993, 119, 180598.
- Höfle, G.; Bedorf, N.; Gerth K.; Reichenbach, H. DE-4211055, Germany, 1993.
 Niggemann, L.; Bedorf, N.; Florke, U.; Steinmetz, H.; Gerth, K.; Reichenbach, H.;
- Niggemann, J.; Bedorf, N.; Florke, U.; Steinmetz, H.; Gerth, K.; Reichenbach, H.; Höfle, G. Eur. J. Org. Chem. 2005, 23, 5013–5018.
- Reboll, M. R.; Ritter, B.; Sasse, F.; Niggemann, J.; Frank, R.; Nourbakhsh, M. ChemBioChem 2012, 13, 409–415.
- Paterson, I.; Findlay, A. D.; Anderson, E. A. Angew. Chem., Int. Ed. 2007, 46, 6699–6702.
- 6. Paterson, I.; Findlay, A. D.; Noti, C. Chem. Commun. 2008, 6408-6410.
- 7. Paterson, I.; Findlay, A. D.; Noti, C. Chem.—Asian J. 2009, 4, 594–611.
- 8. Lorenz, M.; Kalesse, M. Tetrahedron Lett. 2007, 48, 2905–2907.
- 9. Lorenz, M.; Kalesse, M. Org. Lett. 2008, 10, 4317-4374.
- Lorenz, M.; Bluhm, N.; Kalesse, M. Synthesis 2009, 18, 3061–3066.
 Reymond, S.; Ferrie, L.; Guerinot, A.; Capdevielle, P.; Cossy, J. Pure Appl. Chem. 2008, 80, 1683–1691.
- 2000, 80, 100 103 -
- 13. Gregg, C.; Perkins, M. V. Tetrahedron 2013, 69, 387-394.
- Gregg, C.; Gunawan, C.; Ng, A. W. Y.; Wimala, S.; Wickremasinghe, S.; Rizzacasa, M. A. Org. Lett. 2013, 15, 516–519.
- 15. Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480-2482.
- 16. Solsona, J. G.; Nebot, J.; Romea, P.; Urpi, F. J. Org. Chem. 2005, 70, 6533-6536.
- 17. Corría, I. R.; Pilli, R. A. Angew. Chem., Int. Ed. 2003, 42, 3017–3020.
- 18. Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129.
- 19. Evans, D. A. Aldrichimica Acta 1982, 15, 23-32.
- 20. Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 77–91.
- Corey, E. J.; Cho, H.; Ruecker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455–3458.
- Penning, T. D.; Djuric, S. W.; Haack, R. A.; Kalish, V. J.; Miyashiro, J. M.; Rowell, B. W.; Yu, S. S. Synth. Commun. **1990**, 20, 307–312.
- Evans, D. A.; Ratz, A. M.; Huff, B. E.; Sheppard, G. S. Tetrahedron Lett. 1994, 35, 7171–7172.
- Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon: Oxford, UK, 1988.