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a b s t r a c t

Aza-cyclization of a,b-unsaturated carbonyl moieties with free amine has been studied. An azepine alka-
loid, hexahydroapoerysopine, has been synthesized from an enone-ester in a concise manner through the
aza-cyclization followed by reductions.
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Scheme 1.
Polycyclic hetero-compounds containing nitrogen are frequently
encountered in natural alkaloid compounds, and the structurally re-
lated products containing synthetic drugs have shown numerous
physiological activities.1 Especially, the azepine compounds ar-
ranged with other rings around have been attracted by many syn-
thetic chemists because of skeletal challenges as well as biological
applications.2,3 Most of the approaches toward the azepine com-
pounds have been focused on the efficient formation of the central
seven-membered ring (Fig. 1). As an extension of our interests on
the synthesis of the azepine natural products,4 we want to explore
an aza-cyclization reaction by free amine. The free amine addition
to the carbonyl or olefin of a,b-unsaturated carbonyl derivatives
for the formation of azepine ring has been rarely applied in natural
alkaloid synthesis.5

Preliminarily, we tested the selectivity of cyclization pathways
on compound 3, condensation to intermediate 5, or addition to 4.
Compound 3 would be obtained by the deprotection of N-Boc
protected precursor of 3. The precursor could be readily prepared
by the known Suzuki coupling reaction pathway.6,7 Upon refluxing
the precursor with CF3CO2H in toluene followed by addition of
K2CO3 and concentration, an unstable intermediate was obtained,
and the crude product was reduced readily with NaCNBH3 to enam-
ine compound 6 in quantitative yield in three steps. We assumed
that the product would be formed from intermediate 5 via pathway
b. However, the product 6 might be also formed from intermediate 4
via pathway a through reduction of ketone to alcohol followed by
elimination (Scheme 1).
ll rights reserved.

: +82 42 821 8896.
In order to confirm the reaction route, we tried to synthesize a
known azepine compound,5 hexahydroapoerysopine 11 using
enone-ester 9 which could induce a sequential cyclization. The
compound 9 was synthesized from 76,8 by the Suzuki coupling
reaction with vinyl iodide 8 in 78% yield. The iodide compound 8
was prepared from the corresponding enone by iodination
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followed by elimination.9 Application of the same conditions to 9
provided 10 in 80% yield, which showed that the initial cyclization
should be carried out by amine–carbonyl condensation. Hydroge-
nation followed by hydride reduction of 10 provided the known
11 in 97% yield (Scheme 2).10

Additionally we want to examine the amine cyclization with con-
jugate ester and imide moieties. First, we prepared a few substrates
to figure out the addition reaction aspects on the a,b-unsaturated
carbonyl compounds. The substrates 14 could be readily prepared
through Suzuki coupling between 7 and vinyl bromide 13 in moder-
ate yields. Although the yields were not satisfactory, we just wanted
to find the results of the next reaction instead of optimizing the reac-
tion with vinyl iodide derivatives of 13. Upon treatment of 14a or
14b with CF3COOH in CH2Cl2 at rt followed by concentration and
basification with K2CO3 in CH2Cl2, Michael addition has been found
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to proceed at rt to afford seven-membered azepine ring products
15a12 or 15b as a single isomer in 99% or 70% yield respectively
(Table 1: entries 1 and 2). However, for imide derivatives, 14c or
14d, six-membered ring compounds 15c or 15c0 containing a quater-
nary center were formed favorably via 6-exo addition mode over the
seven-membered ring compound 15d or 15d0 in 2:1 ratio (entries 3
and 4) in 98% combined yields.13 As expected, ester or imide moie-
ties allowed only Michael type addition reactions differently from
a,b-unsaturated carbonyl compounds.

In summary, we could synthesize a tricyclic azepine compound,
hexahydroapoerysopine 11 via an aza-cyclization reaction through
free amine–carbonyl condensation of a,b-unsaturated ketone
followed by sequential reduction. The cyclization of conjugate esters
and imides has been investigated under the same condition. In the
case of a,b-unsaturated esters, Michael type addition was exclusive
to afford the seven-membered ring, however, a,b-unsaturated imi-
des have afforded six-membered ring compounds dominantly via
exo-type Michael addition. Further synthetic application is under
study.
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