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ABSTRACT

Specificity of nucleobase pairing provides essential
foundation for genetic information storage, replica-
tion, transcription and translation in all living organ-
isms. However, the wobble base pairs, where U in
RNA (or T in DNA) pairs with G instead of A, might
compromise the high specificity of the base pairing.
The U/G wobble pairing is ubiquitous in RNA, espe-
cially in non-coding RNA. In order to increase U/A
pairing specificity, we have hypothesized to discrim-
inate against U/G wobble pair by tailoring the steric
and electronic effects at the 2-exo position of
uridine and replacing the 2-exo oxygen with a
selenium atom. We report here the first synthesis
of the 2-Se-U-RNAs as well as the 2-Se-uridine
(SeU) phosphoramidite. Our biophysical and struc-
tural studies of the SeU-RNAs indicate that this
single atom replacement can indeed create a novel
U/A base pair with higher specificity than the natural
one. We reveal that the SeU/A pair maintains a struc-
ture virtually identical to the native U/A base pair,
while discriminating against U/G wobble pair. This
oxygen replacement with selenium offers a unique
chemical strategy to enhance the base pairing
specificity at the atomic level.

INTRODUCTION

DNA and RNA are crucial genetic information carriers
(1,2). The base pairs of DNAs (T/A and C/G) and RNAs
(U/A and C/G) need to be highly specific and accurate for
the purpose of the precise genetic information storage,
replication, transcription and translation. However, the
wobble base pairs, where U in RNA (or T in DNA)
pairs with G instead of A, may compromise the high spe-
cificity of the base pairing. In RNA, especially non-coding
RNA, U/G wobble pair (Figure 1) is ubiquitous (3) and
sometimes it has the similar stability as the Watson–Crick

U/A pair (4,5). U/G wobble pair offers unique structural
and thermodynamic features (3–5). On the one hand, the
U/G pairing increases structure and function diversities of
RNA (6). But on the other hand, it may jeopardize the
pairing specificity and can cause potential mutations in
RNA transcription and protein translation. Codon–anti-
codon mismatch or misreading is observed with an error
frequency at 10�5 or higher, which may affect the accuracy
of synthesized proteins (7–9). For instance, the first
position of the codon–anticodon interaction with wobble
mismatch (U/G) was discovered in Escherichia coli (error
frequency=0.1%) with 100-fold higher than the normal
error level (9). In this mis-incorporation of serine (codon:
AGC) (9), glycine codon (GGC) in mRNA is recognized
by Ser-charged tRNA (anticodon: GCU) instead of
Gly-charged tRNA (anticodon: GCC). Similarly, the
second position of the codon–anticodon interaction with
wobble mismatch (U/G) was also observed, where Lys
(codon: AAA) is mis-incorporated instead of normal
incorporation of Arg (codon: AGA), with much higher
error frequency (5–12%) (10). To avoid the negative
impact of the wobble pairing on the level of protein syn-
thesis, the genetic codes with degeneracy are used to deal
with the consequence of the wobble pairing. Thus, wobble
pairing is often observed at the third codon position
through the codon degeneracy to limit errors. However,
the codons forming the Watson–Crick pairs with tRNA
anticodons are still preferred (11,12). Study shows that the
third codon position with a Watson–Crick base pair can
reduce the frequency of amino acid mis-incorporation by
nearly 10-fold, and it is much more accurate than that
with a wobble pair for the same amino acid (13).
Nevertheless, the 3-nt genetic codes that accommodate
the wobble pairing are used as the most ideal counter-
measure at the level of protein synthesis in living organ-
isms (14). Clearly, on the basis of the chemical principle,
this degeneracy strategy properly guarantees the transla-
tion accuracy at the protein level by tolerating wobble
pairs and silent mutations at the RNA and DNA levels.
Since the 2-exo-oxygen of uridine plays a significant role

in U/G wobble pair, we hypothesized that tailoring the
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steric and electronic effects at this site may discrimin-
ate against the wobble pair, enabling the modified U/A
base pair with higher specificity. Interestingly, selenium
has been discovered in natural tRNAs in the 2-Se-
uridine form, i.e. 5-methylaminomethyl-2-selenouridine
(mnm5se2U), in the wobble position on the anticodon
loop (15,16). The function of such selenium modification
is not completely clear yet, though it was proposed that
such Se derivatization on tRNAs probably improves the
accuracy and efficiency of protein translation (17).
Similarly, the corresponding sulfur modification has
been observed on natural tRNAs (18). Sulfur was chem-
ically introduced to the 2-position of uridine (19,20). The
S-modified U/G pair is slightly less stable than the native
U/G pair (5), while the SU/A is more stable over the native
U/A pair. Thus, we hypothesized that the 2-oxygen
replacement with selenium (SeU, Figure 1) can destabilize
and discriminate against the U/G wobble pair, because the
atomic size of selenium (1.16 Å) is larger than that of
sulfur (1.02 Å) and oxygen (0.73 Å). Moreover, selenium
has the least ability to form a hydrogen bond among O, S
and Se, which weakens the hydrogen bond originally
formed by the 2-oxygen of the wobble pair. Thus, it is
expected that this 2-Se-replacement can largely destabilize
U/G pair by generating a steric hindrance against the pair
and significantly weakening the hydrogen bond.
Furthermore, it is expected that the 2-Se-substitution
does not significantly affect the hydrogen bonds within
the U/A pair, since the 2-oxygen is not directly involved
in the U/A base pairing. Therefore, we decided to incorp-
orate selenium into the 2-position of uridine in RNA, in
order to atom-specifically increase the U/A pair specificity
and disrupt the U/G wobble.

MATERIALS AND METHODS

Synthesis of 2-Se-uridine phosphoramidite

1-(50-O-4,40-dimethoxytrityl-�-D-ribofuranosyl)-2-
methylthiouridine 7. Five grams of dry compound 6
(its synthesis: Scheme S1 in Supplementary Data) was
dissolved in dry N, N-dimethylformamide (DMF),
followed by addition of iodomethane (5.5ml, 89mmol).
1,8-Diazabicyclo[5.4.0]undec-7-ene (2ml, 13.3mmol) was
then added to the reaction mixture at 0�C. The reaction
was monitored by thin layer chromatography (TLC)
plate (12% methanol in dichloromethane, Rf=0.4) and
completed in 4 h. Ethyl acetate (50ml) was poured into the
mixture and DMF was removed by washing the organic
layer with saturated sodium chloride solution. The organic
phase was dried over anhydrous magnesium sulfate and

evaporated under reduced pressure. The residue was
purified by flash column chromatography (10%
methanol in dichloromethane) and pure compound 7
was obtained in 95% yield. 1H NMR (CDCl3) d: 7.87
(d, J=7.7Hz, 1H, H-6), 7.44–7.20 (m, 9H, Ar), 6.85
(m, 4H, Ar), 6.11 (br, 1H, OH), 5.88 (d, J=6.0Hz, 1H,
H-10), 5.54 (d, J=7.7Hz, 1H, H-5), 4.63 (m, 1H, H-40),
4.44 (m, 1H, H-30), 4.24 (d, J=2.3Hz, 1H, H-20), 3.75 (d,
J=3.1Hz, 6H, OCH3), 3.42 (m, 2H, H-50), 3.40–3.30 (br,
1H, OH), 2.55 (s, 3H, SCH3); 13C NMR (CDCl3) d:
169.19 (C-4), 164.36 (C-2), 158.88 (Ar), 144.49 (Ar),
140.13 (C-6), 135.37 (Ar), 135.22 (Ar), 130.41 (Ar),
130.28 (Ar), 128.32 (Ar), 128.28 (Ar), 127.29 (Ar),
113.54 (Ar), 108.92 (C-5), 91.95 (C-10), 87.35 (C-Ar3),
84.82 (C-40), 75.24 (C-20), 71.63 (C-30), 63.40 (C-50),
55.40 (OCH3), 15.39 (SCH3); High resolution mass
spectra (HRMS) electrospray ionization-time of fight
(ESI-TOF) [M+H+]=577.2003 (calc. 577.2008),
Chemical formula: C31H33N2O7S.

1-(50-O-4,40-dimethoxytrityl-�-D-ribofuranosyl)-2-
selenouridine 8. A solution of NaSeH was generated by
addition of absolute ethanol (50ml) to selenium (6.2 g,
78mmol) and sodium borohydride (NaBH4, 4.43 g,
0.117mol) at 0�C. The reaction was completed in 2 h
and a clear solution was formed. The ethanolic solution
was added to compound 7 (4.5 g, 7.80mmol) and the
mixture was stirred for 8 h under argon. The reaction
mixture was then concentrated under reduced pressure
and ethyl acetate (50ml) was added to the residue. The
organic layer was washed with water several times
(5� 30ml), and then dried over anhydrous magnesium
sulfate. Purification was performed by flash column chro-
matography (4% methanol in dichloromethane) and the
light yellow compound (8) was obtained (85% yield). 1H
NMR (CDCl3) d: 10.95 (s, 1H, NH), 8.24 (d, J=8.2Hz,
1H, H-6), 7.44–7.19 (m, 9H, Ar), 6.84 (m, 4H, Ar), 6.48 (s,
1H, H-10), 5.66 (d, J=8.1Hz, 1H, H-5), 4.48 (m, 2H,
H-40,H-30), 4.22 (m, 1H, H-20), 3.89 (s, 1H, OH), 3.79 (s,
6H, OCH3), 3.58 (dd, J=23.6, 9.2Hz, 2H, H-50), 2.97 (br,
1H, OH); 13C NMR (CDCl3) d: 175.74 (C-2), 159.21
(C-4), 158.98 (Ar), 158.94 (Ar), 144.45 (Ar), 140.82
(C-6), 135.38 (Ar), 135.18 (Ar), 130.35 (Ar), 130.27 (Ar),
128.30 (Ar), 128.28 (Ar), 127.45 (Ar), 113.58 (Ar), 108.37
(C-5), 96.86 (C-10), 87.38 (C-Ar3), 84.41 (C-40), 76.33
(C-20), 69.19 (C-30), 61.20 (C-50), 55.48 (OCH3). HRMS
(ESI-TOF) [M-H+]�=609.1136 (calc. 609.1140),
Chemical formula: C30H29N2O7Se; UV (MeOH):
�max=311 nm (in methanol).

1-(20-O-tert-butyldimethylsilyl-50-O-4,40-dimethoxytrityl-�-
D-ribofuranosyl)-2-selenouridine 9a and 1-(30-O-tert-
butyldimethylsilyl-50-O-4,40-dimethoxytrityl-�-D-ribofu-
ranosyl)-2-selenouridine 9b. 50-DMTr-2-selenouridine 8
(0.5 g, 0.82mmol) was dissolved in dry DMF, then tert-
butyldimethylsilyl chloride (TBDMSCl, 0.15 g, 0.98mmol)
and imidazole (0.11 g, 1.64mmol) were added into the
solution under nitrogen gas. The reaction was monitored
by TLC plate (15% ethyl acetate in dichloromethane,
Rf=0.8). The mixture was stirred overnight at room tem-
perature and then directly poured into ethyl acetate

Figure 1. Native and Se-modified U/A pairs and U/G wobble pairs.
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(20ml) and washed with water (2� 20ml). The organic
layer was dried by anhydrous magnesium sulfate and
evaporated under reduced pressure. Two compounds,
9a and 9b, were obtained. The two regional isomers
(ratio 1:1) were purified together by flash column chroma-
tography (10% ethyl acetate in dichloromethane) and
were not further separated. Since, it was both challenging
and unnecessary to separate each isomer, we decided to
move to the next step of synthesis without separation of
these two isomers. HR-MS (ESI-TOF, 9a and 9b)
[M-H+]�=723.1990 (calc. 723.2005). Chemical formula:
C36H43N2O7SeSi.

1-(20-O-tert-butyldimethylsilyl-50-O-4,40-dimethoxytrityl-�-
D-ribofuranosyl)-2-cyanoethylselanyluridine 10a and 1-(30-
O-tert-butyldimethylsilyl-50-O-4,40-dimethoxytrityl-�-D-
ribofuranosyl)-2-cyanoethylselanyluridine 10b. The
mixture (0.52 g, 0.72mmol) of 9a and 9b was dissolved
in dried dichloromethane at 0�C. Iodopropionitrile
(0.78 g, 4.31mmol) was added to the solution, followed by
addition of diisopropylethylamine (0.37ml, 2.15mmol).
The reaction was monitored by TLC plates (30% ethyl
acetate in dichloromethane). After 4-h reaction, the
solvent was removed under reduced pressure and the
residue was partitioned between ethyl acetate (20ml) and
water (20ml). The organic phase was dried over
anhydrous magnesium sulfate and evaporated into
dryness. Two crude products were obtained: 1-(20-O-tert-
butyldimethylsilyl-50-O-4,40-dimethoxytrityl-b-D-ribofur-
anosyl)-2-cyanoethylselanyluridine 10a (Rf=0.35) and 1-
(30-O-tert-butyldimethylsilyl-50-O-4,40-dimethoxytrityl-b-
D-ribofuranosyl)-2-cyanoethylselanyluridine 10b
(Rf=0.30). These two compounds can be separated by
flash column chromatography (15% ethyl acetate in
dichloromethane). 10a was obtained in 0.228 g (41%
yield) and 10b was obtained in 0.235 g (42% yield). 10a:
1H NMR (CDCl3) d: 7.96 (d, J=7.7Hz, 1H, H-6),
7.53–7.11 (m, 9H, Ar), 6.85 (m, 4H, Ar), 5.71

(d, J=7.7Hz, 1H, H-5), 5.60 (d, J=6.5Hz, 1H, H-10),
4.61–4.49 (m, 1H, H-40), 4.31 (m, 2H, H-30, H-20), 3.80
(s, 6H, OCH3), 3.54–3.34 (m, 4H,H-50, SeCH2CH2CN),
3.01 (m, 2H, SeCH2CH2CN), 2.91 (s, 1H, OH), 0.94 (s,
9H, SiCMe3), 0.09 (d, 6H, SiMe2);

13C NMR (CDCl3) d:
167.70 (C-4), 159.04 (C-2), 158.51 (Ar), 144.17 (Ar),
139.19 (C-6), 134.91 (Ar), 134.74 (Ar), 130.26 (Ar),
130.17 (Ar), 128.30 (Ar), 128.11 (Ar), 127.58 (Ar),
118.78 (CN), 113.58 (Ar), 110.61 (C-5), 93.13 (C-10),
87.82 (C-Ar3), 85.39 (C-40), 77.27 (C-20), 72.40 (C-30),
63.82 (C-50), 55.44 (OCH3), 25.84 (SiCMe3), 24.06
(SeCH2CH2CN), 18.89 (SeCH2CH2CN), 18.14 (SiCMe3),
�4.56 (SiCH3), �4.91 (SiCH3). HRMS (ESI-TOF)
[M+H+]+=778.2464 (calc. 778.2427). Chemical formula:
C39H48N3O7SeSi. 10b: 1H NMR (CDCl3) d: 8.09 (d,
J=7.7Hz, 1H, H-6), 7.32 (m, 9H, Ar), 6.88 (m, 4H,
Ar), 5.75 (d, J=7.7Hz, 1H, H-5), 5.65 (d, J=3.7Hz,
1H, H-10), 4.46 (m, 1H, H-20), 4.21 (dd, J=9.3, 5.1Hz,
1H, H-40), 4.18–4.08 (m, 1H, H-30), 3.83 (s, 6H, OCH3),
3.70 (m, 1H, H-50), 3.55 (m, 1H, H-50), 3.41 (m, 2H,
SeCH2CH2CN), 3.22 (d, J=5.5Hz, 1H, OH), 3.08 (m,
2H, SeCH2CH2CN), 0.90 (s, 9H, SiCMe3), 0.11 (d, 6H,
SiMe2).

13C NMR (CDCl3) d: 167.90 (C-4), 159.05 (C-2),
157.82 (Ar), 143.99 (Ar), 138.96 (C-6), 135.02 (Ar), 134.89
(Ar), 130.35 (Ar), 130.34 (Ar), 128.37 (Ar), 128.29 (Ar),
127.58 (Ar), 118.95 (CN), 113.56 (Ar), 113.53 (Ar), 110.49
(C-5), 93.84 (C-10), 87.57 (C-Ar3), 84.72 (C-40), 76.17
(C-20), 71.05 (C-30), 61.71 (C-50), 55.48 (OCH3), 25.82
(SiCMe3), 24.12 (SeCH2CH2CN), 18.92 (SeCH2CH2CN),
18.17 (SiCMe3), �4.59 (SiCH3), �4.60 (SiCH3). HRMS
(ESI-TOF) [M+H+]+=778.2401 (calc. 778.2427).
Chemical formula: C39H48N3O7SeSi.

1-[20-O-tert-butyldimethylsilyl-30-O-(2-cyanoethyl-N,N-
diisopropylamino) phosphoramidite-50-O-(4,40-dime-
thoxytrityl-�-D-ribofuranosyl)]-2-cyanoethylselanyluridine
11. Diisopropylethylamine (15.5mg, 0.12mmol)
and 2-cyanoethylN,N-diisopropylchlorophosphoramidite
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Scheme 1. Synthesis of SeU-phosphoramidite 11 and RNAs (12). Reagents and conditions: (a) CH3I, DBU, DMF; (b) Se, NaBH4, EtOH;
(c) TBDMS-Cl, imidazole, DMF; (d) ICH2CH2CN, (i-Pr)2NEt, CH2Cl2; (e) (i-Pr2N)2P(Cl)OCH2CH2CN, (i-Pr)2NEt, CH2Cl2; (f) solid-phase
synthesis.
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(26mg, 0.11mmol) were added to a solution of 10a
(100mg, 0.10mmol) in dry dichloromethane (5ml)
at room temperature under nitrogen gas. The mixture
was monitored by TLC (15% ethyl acetate in
dichloromethane). When the reaction was completed in
4 h, rapid Al2O3 column chromatography (dichloro-
methane as the eluent) was performed to remove the
organic salts. The solvent was then evaporated under
reduced pressure and the residue was dissolved in 0.5ml
dichloromethane and precipitated in dry hexane under
vigorous stirring. The precipitate was collected by filtra-
tion, dried under reduced pressure and directly used for
solid-phase synthesis. 1H NMR (CDCl3) d: 7.95
(d, J= 7.7Hz, 1H, H-6), 7.30 (m, 9H, Ar), 6.84 (m,4H,
Ar), 5.82 (d, J=7.6Hz, 1H, H-10), 5.63 (d, J=7.7Hz,
1H, H-5), 4.68 – 4.43 (m, 1H, H-40), 4.43 – 4.29 (m,
1H,), 4.24 (s, 1H), 3.98 (dd, J=15.6, 8.4Hz, 2H), 3.80
(s, 6H, OCH3), 3.63 (dd, J=19.8, 7.3Hz, 4H), 3.42
(dd, J=19.3, 8.7Hz, 5H), 3.01 (s, 2H), 2.70
(d, J=5.8Hz, 2H), 1.20 (d, J=6.7Hz, 18H), 1.08
(d, J=6.5Hz, 6H), 0.92 (s, 13H), 0.14 – 0.02 (m, 9H);
13C NMR (CDCl3) d: 167.83 (C-4), 159.04 (C-2), 158.71
(Ar), 144.16 (Ar), 139.02 (Ar), 134.96 (Ar), 134.74 (Ar),
130.21 (Ar), 130.14 (Ar), 128.38 (Ar), 128.04 (Ar), 127.58
(Ar), 118.86 (SeCH2CH2CN), 117.75 (OCH2CH2CN),
113.67 (Ar), 110.69 (C-5), 92.50 (C-10), 87.92 (C-Ar3),
85.43 (C-40), 77.15 (C-20), 72.81 (C-30), 63.72 (C-50),
59.39 (OCH2CH2CN), 55.48 (OCH3), 43.22-43.10
(NCMe2), 29.90 (OCH2CH2CN), 26.12-25.97 (NCMe2),
24.85 (SiCMe3), 24.02 (SeCH2CH2CN), 18.94
(SeCH2CH2CN), 18.37 (SiCMe3), �4.35 (SiCH3), �4.56
(SiCH3);

31P NMR (CDCl3) d: 148.81, 152.30. HRMS
(ESI-TOF) [M+H+]+=978.3528 (calc. 978.3505).
Chemical formula: C48H65N5O8PSeSi.

Solid-phase synthesis of the 2-Se-functionalized RNAs

ABI3400 DNA/RNA Synthesizer was used for all the
RNA oligonucleotides synthesis (1.0 mmol scale). All the
non-modified nucleoside phosphoramidite reagents used
were ultra-mild (Glen Research). RNA oligonucleotides
were synthesized in DMTr-on form, cleaved from the
beads and deprotected by the treatment of 0.05 M
K2CO3 methanol solution for 10 h at room temperature.
After evaporating the solution to dryness, the 20-TBDMS
deprotection was performed in TBAF (0.5ml, 1M) for
14 h at room temperature. Then the RNAs were treated
with 1M Tris–HCl buffer (0.5ml, pH 7.5) for 5min,
followed by concentrating to 0.5ml and desalting using
G-25 Sephadex column. The 50-DMTr deprotection was
then performed using Glen-Pek RNA column, followed
by desalting using Sep-Pak Vas column.

HPLC analysis and purification

The RNA oligonucleotides were analyzed and purified by
reversed-phase high performance liquid chromatography
(RP-HPLC), flow rate 6ml/min [buffer A: 20mM
triethylammonium acetate (TEAAc, pH 7.1) in water;
buffer B: 20mM TEAAc (pH 7.1) in 50% acetonitrile].
The HPLC analysis was performed with a linear
gradient from buffer A to 100% buffer B in 20min.

Native RNAs were purchased from Integrated DNA
Technologies. The concentrations of the native,
Se-modified RNAs were adjusted to 1.0mM in water.
The Se-RNA samples were characterized by matrix
assisted laser desorption/ionization-time of fight mass
spectrometry (MALDI-TOF MS) (Table 1) and HPLC
(Figure 2).

pH titration curve of 2-selenouridine

2-Selenouridine was prepared through detritylation of
1-(50-O-4,40-dimethoxytrityl-b-D-ribofuranosyl)-2-selenour
idine (8) by acid treatment. The 2-selenouridine solutions

Figure 2. HPLC analysis of 2-Se-U modified RNA 12-mer
(50-rAUCACCSeUCCUUA-30). (A) The crude DMTr-on Se-RNA,
retention time was 12.2min. (B) The pure DMTr-off Se-RNA with
same gradient and buffer, retention time was 7.1min. Samples were
eluted with a linear gradient from buffer A (20mM triethylammonium
acetate, pH 7.1) to 70% buffer B (50% acetonitrile, 20mM
triethylammonium acetate, pH 7.1) in 10min, to 100% buffer B in
12min and continuous 100% buffer B to 20min.

Table 1. MALDI-TOF MS of 2-Se-U RNAs

Entry Oligonucleotide
molecular formula

Measured (calc.) m/z

1 50-rGUAUASeUAC-30 [M+H]+=2558.7 (2558.5)
C76H94N29O53P7Se

2 50-rAUCACCSeUCCUUA-30 [M+H]+=3740.3 (3740.2)
C111H141N38O82P11Se

3 50-rAAUGCSeUGCACUG-30 [M+H]+=3859.4 (3859.3)
C114H142N45O81P11Se
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were adjusted to desired pH values in the buffer of 50mM
Na2HPO4 at room temperature. The UV–Vis spectra were
recorded every 0.1 pH unit between pH 6–8 and every 0.2–
0.5 pH unit between pH 4–6 and pH 8–10. The pH of each
solution was measured before and after its UV–Vis
spectrum collection and the error was within±0.02 pH
unit. The titration data was plotted and shown in Figure 3.

Thermodenaturization of duplex RNAs

The UV-melting temperature studies were carried out by
Cary 300 UV–Vis Spectrophotometer and a temperature
control module. The samples (2 mM RNA duplexes) were
dissolved in buffer of 150mM NaCl, 2mM MgCl2 and
10mM Na2HPO4–NaH2PO4 (pH 6.8). The samples were
heated to 80�C and cooled to room temperature slowly
and then kept in 4�C overnight. The heating rate of

melting experiment was 0.5�C per min. The melting tem-
perature data and curves of the matched and mismatched
duplexes are presented in Table 2 and Figure 4.

Crystallization

The purified RNA oligonucleotide (50-GUAUA-SeU-AC-
30, 1mM) was heated to 80�C for 2min, and cooled down
slowly to room temperature. The Nucleic Acid Mini
Screen Kit (Hampton Research) was applied to screen
the crystallization conditions at different temperatures
(10, 20 and 25�C) using the hanging-drop method by
vapor diffusion.

Data collection

Perfluoropolyether was used as a cryoprotectant during
the crystal mounting, and data collection was taken
under the liquid nitrogen stream at �174�C. The
Se-RNA crystal data were collected at beam line X12B
and X12C in NSLS of Brookhaven National
Laboratory. A number of crystals were screened to

Figure 4. Normalized UV-melting curves of RNA duplexes. (A) Native
RNA (50-rAAUGCUGCACUG-30) paired with matched and
mismatched strands. (B) Se-RNA (50-rAAUGCSeUGCACUG-30) with
matched and mismatched strands.

Table 2. Melting temperatures (Tm) of the native, S- and Se-modified

RNA duplexes

Entry Sequences Base pairs Tm (�C)

1 I: 50-rAUCACCUCCUUA-30

2 I+30-rUAGUGGAGGAAU-50 U/A 62.8
3 I+30-rUAGUGGGGGAAU-50 U/G 62.5
4 I+30-rUAGUGGCGGAAU-50 U/C 50.6
5 I+30-rUAGUGGUGGAAU-50 U/U 48.8

6 II: 50-rAUCACCSeUCCUUA-30

7 II+30-rUAGUGGAGGAAU-50 SeU/A 65.8
8 II+30-rUAGUGGGGGAAU-50 SeU/G 58.5
9 II+30-rUAGUGGCGGAAU-50 SeU/C 50.3
10 II+30-rUAGUGGUGGAAU-50 SeU/U 57.3
11 III: 50-rAAUGCUGCACUG-30

12 III+30-rUUACGACGUGAC-50 U/A 64.1
13 III+30-rUUACGGCGUGAC-50 U/G 59.4
14 III+30-rUUACGCCGUGAC-50 U/C 52.0
15 III+30-rUUACGUCGUGAC-50 U/U 51.5

16 IV: 50-rAAUGCSeUGCACUG-30

17 IV+30-rUUACGACGUGAC-50 SeU/A 66.5
18 IV+30-rUUACGGCGUGAC-50 SeU/G 55.5
19 IV+30-rUUACGCCGUGAC-50 SeU/C 51.9
20 IV+30-rUUACGUCGUGAC-50 SeU/U 58.0

Bold and underlined sequences indicate the pairing and mis-pairing sites.

Figure 3. Plot of wavelength (nm) versus pH for 2-selenouridine
nucleoside. The fitted titration curve yields the pKa value (7.29±0.02).
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identify the one with strong anomalous scattering at the
K-edge absorption of selenium. The distance of the
detector to the crystals was set to 150mm. The wavelength
of 0.9795 Å was chosen for selenium SAD phasing. The
crystals were exposed for 10 or 15 s/image with 1� oscilla-
tion, and a total of 180 images were taken for each data
set. All the data were processed using HKL2000 and
DENZO/SCALEPACK (21).

Structure determination and refinement

The structure of the Se-RNA [50-GUAUA-SeU-AC-30]2
was solved by molecular replacement with both CNS
(22) and Phaser (23). The refinement protocol includes
simulated annealing, positional refinement, restrained
B-factor refinement, and bulk solvent correction.
The stereo-chemical topology and geometrical restrain
parameters of DNA/RNA (24) have been applied.
The topologies and parameters for modified uridine with
2-selenium (US) were constructed and applied.
After several cycles of refinement, a number of highly
ordered waters were added. Finally, the occupancies of
selenium were adjusted. Cross-validation (25) with a
5–10% test set was monitored during the refinement.
The sA-weighted maps (26) of the (2 mjFoj�DjFcj) and
the difference (mjFoj�DjFcj) density maps were
computed and used throughout the model building
(Table 3).

RESULTS AND DISCUSSION

Synthesis of 2-Se-uridine phosphoramidite

Though selenium was incorporated into uridine four
decades ago (27,28), RNA containing 2-Se-uridine (SeU)
has not been synthesized because of the synthetic chal-
lenge. Recently, our laboratory has successfully developed
a novel strategy to incorporate the selenium functionality

to the 2-position of thymidine in DNA (29). This success-
ful strategy has encouraged us to introduce the selenium
functionality to the 2-position of uridine in RNA. Herein,
we report the first synthesis of the 2-selenouridine deriva-
tives and RNAs. The synthesis (Scheme S1 in
Supplementary Data) started from the glycosidation (30)
of the acylated ribofuranose (1) with silylated 2-thiouracil
(3), followed by benzoyl deprotection and trityl protection
of the 50-hyroxyl group to offer 6 (31). After methylation
of 6 to activate the 2-thio-functionality (29), NaSeH was
used to displace the 2-S-functionality and offer the
2-Se-uridine 8 in 85% yield. Following the protections
of the 20-hydroxyl group and the 2-Se-functionality
with ICH2CH2CN, the Se-phosphoramidite 11
was synthesized by phosphitylation of 10 a (29,32,33).
The SeU-phosphoramidite was finally incorporated
into RNAs by solid-phase synthesis. The synthesized
SeU-RNAs (12) were deprotected, purified and con-
firmed by HPLC and MS (Table 1 and Figure 2).
The characterization of the Se-nucleosides and
Se-nucleotides is presented in Supplementary Figures
S1–S23.

Characterization of the 2-Se-functionalized RNA

After cleavage from solid support and deprotection, the
crude DMTr-on RNAs were purified by RP-HPLC and
lyophilized to dryness. As shown in Figure 2A, the
coupling yield is �90%. The 50-DMTr deprotection of
the oligonucleotides was then performed using Glen-Pek
RNA column. The HPLC analysis of the DMTr-off RNA
was shown in Figure 2B. All the pure seleno-RNA oligo-
nucleotides were characterized by MALDI-TOF
MS (Table 1).

Thermodenaturization study of 2-Se-uridine RNAs
containing match and mismatch base pairs

UV-melting temperatures (Tm) of the native and
Se-modified duplexes with match and mismatch sequences
are shown in Table 2, Figures 4 and 5. Tm of the Se-RNA
duplex containing the SeU/A Watson–Crick pair was
3.0�C higher for one duplex (or 2.4�C higher for the
other duplex) than those of the corresponding duplexes
containing native U/A pair (Table 2). Comparing with
native U/G, the SeU/G pair is �4�C less stable than the
native U/G pair, suggesting that SeU discourages the SeU/
G pair formation. While the SeU/C mis-pair is slightly less
stable than the native U/C mis-pair, the SeU/U mis-pair is
more stable than the native U/U mis-pair. The higher
stability may be attributed to the higher acidity of the
imino group (3-NH) of SeU [pKa=7.29±0.02,
Figure 3, compared to that of the native uridine
(pKa=9.18±0.02) (34)], which may promote U/U inter-
action via hydrogen bond. In addition, considering a
selenium atom is 0.43 Å larger in atomic radius than an
oxygen atom, the 2-Se atom may strengthen the stacking
interaction between SeU and its 30-nucleobase
(Supplementary Figure S24).When directly comparing
the Watson–Crick base pairs (U/A and SeU/A) with
their own corresponding mis-pairs, it is clear that SeU/A
pair has the balanced discrimination against all mis-pairs,

Table 3. Data collection and refinement statistics of SeU-RNA

Structure (PDB ID) GUAUA-SeU-AC (3S49)

Data collection
Space group R32
Cell dimensions: a, b, c (Å),
a, b, g (�C)

47.095, 47.095, 424.655,
90, 90, 120

90, 90, 120
Resolution range (Å) (last shell) 50.0–2.28 (2.37–2.28)
Unique reflections 9870 (959)
Completeness (%) 99.8 (99.4)
Rmerge (%) 7.7 (23.5)
I/s(I) 21.0 (3.9)
Redundancy 18.8 (10.7)

Refinement
Resolution range (Å) 30.0–2.3
Rwork(%) 21.4
Rfree (%) 26.9
Number of reflections 8206
Number of atoms
Nucleic acid (double) 1162
Heavy atoms and ion 7 Se
Water 71
RMS deviations
Bond length (Å) 0.007
Bond angle 1.169
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with the Tm differences of SeU/G (7.3�C for one duplex or
11�C for the other in Table 2, and Figure 5), SeU/C
(15.5�C or 14.6�C), and SeU/U (8.5�C for both sequences).
While maintaining fine discrimination against U/C pair
(Tm difference: 12.2 or 12.1�C) and U/U pair
(Tm difference: 14 or 12.6�C), the native U/A pair
poorly discriminates against U/G wobble pair (the Tm dif-
ferences: 0.3 or 4.7�C in Figure 5 and Table 2). Therefore,
in general, SeU/A has higher base pair fidelity than the
native U/A pair.

Since the Tm differences between the native U/A pair
and U/G wobble pair were relatively small (0.3 and 4.7�C
in Figure 5). The small Tm differences indicate possible
changes between U/A and U/G pairs without a significant
decrease in duplex stability. This is consistent with the
ubiquitous presence of U/G wobble pair in RNAs,
which diversifies the structure and function of RNAs,
especially non-coding RNAs. Such small thermostability
difference between native U/A pair and U/G wobble pair
has been previously observed in the literature (4,5). On the
contrary, the Tm differences between the SeU/A and SeU/G
pairs were significant, such as 7.3�C (versus 0.3�C in the
native) and 11�C (versus 4.7�C in the native) in Figure 5.
The single selenium atom replacement directly decreases
the thermal stability of the U/G wobble pair by 4.0 and
3.9�C in RNA duplexes (Table 2). This experimental ob-
servation reveals that the U/G wobble pair can be greatly
discriminated by incorporating a selenium atom to the
2-position of uridine. The strong discrimination against
U/G pair is mainly attributed to the selenium disruption
of the hydrogen bond formed by the 2-oxygen (Figure 1)
and to the steric effect of the bulky selenium atom at the
2-position. Our results indicate that the 2-Se-modification
on uridine significantly increases the high specificity of the
U/A base pair.

Crystallization and data collection of Se-RNA

Consistently, our crystal structure study of the SeU-RNA
[50-rGUAUA-SeU-AC-30] supports the biophysical results

of SeU/A pairing. Similar to the native, the Se-RNA
crystal is also in rhombohedral space group R32. The
Se-RNA structure, determined at 2.3 Å resolution, is
virtually identical to the native one (35) (at 2.2 Å reso-
lution, Figure 6). Interestingly, the Se-RNA crystals
grew much faster than the native ones. In six days, the
Se-RNA formed diffraction-quality crystals in decent
sizes (approximately 0.05� 0.05mm), while the
corresponding native did not crystallize in 3–4 weeks
under the same conditions. Moreover, the Se-RNA
crystals could form in broader buffer conditions (12 out
of 24 conditions in Hampton buffers) than the
corresponding native (2 out of 24 conditions). This
observation of faster crystal growth of the Se-RNA is
consistent with the Se-facilitated duplex stability. As
shown in Figure 6A, there are seven self-complementary
RNA molecules in a unit cell, and the overall shape of the
duplexes is almost linear (�8� inclination to the screw
axes). Although this assembling pattern results in the
discontinued backbones and grooves, the duplexes stack
on top of each other in a head-to-tail fashion, and a
peudo-fiber is formed. The data collection and structure
refinement statistics are summarized in Table 3.
Since 2-exo-oxygen of uridine is not involved in the

hydrogen bond interactions of U/A pairing, it’s expected
that the U/A pair will accommodate the larger selenium
atom at this position (Figures 1 and 6C). The
Se-modification also leads to the acidity increase of the
3-imino group (NH) in the 2-Se-uridine, which strengthens
the hydrogen bond between N3 of U6 and N1 of A11.
Indeed, after the selenium modification, the U/A
hydrogen bond length between N3 of U6 and N1 of
A11 is shortened from the native distance (3 Å) to the
Se-modified distance (2.81 Å). Moreover, after the
Se-modification (Figure 6D), the U/A hydrogen bond
length between O4 of U6 and N6 of A11 decreases by
0.47 Å from the native distance (3.39 Å) to the
Se-modified distance (2.92 Å). The shortened H-bond
lengths indicate stronger H-bonds, which may explain

Figure 5. Differencesa of melting temperatures (Tm) of the native and Se-modified U/A pairs and their corresponding mis-pairs. Native (white bar)
refers to the Tm difference between the native U/A pair and the other mis-pairs (U/G, U/C and U/U); Se-Modified (gray bar) refers to the Tm

difference between the SeU/A pair and the other modified mis-pairs (SeU/G, SeU/C and SeU/U).
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the increase of duplex stability after the Se-modification.
On the contrary, the distance between Se2 of U6 and C2 of
A11 in the Se-modified duplex is slightly increased. This
distance increase is likely due to a steric effect. This steric
clash at the position 2 of the Se-uridine can be a driving
force to increase SeU/A pair specificity. Consistent with
our biophysical study, our structure study has
indicated that the selenium bulkiness at the uridine
2-postion discourages the U/G wobble pairing.
Moreover, due to the electronic effect of a selenium
atom, the inability of a Se atom to form a stable
hydrogen bond is another main factor responsible for
the discrimination against U/G wobble pair.

CONCLUSIONS

In summary, we have first synthesized the SeU-RNAs as
well as the SeU-phosphoramidite. Our biophysical and
structural studies on the SeU-RNAs indicate that the
native and Se-modified structures are virtually identical.
Moreover, the 2-Se-modification can largely discriminate
against the U/G wobble pair without significant impact on

U/A pair, thereby providing a unique chemical strategy to
further enhance base pair fidelity. Furthermore, the
2-Se-modification will provide a useful tool in X-ray
crystal structure studies of RNAs and their protein
complexes. The atom-specific mutagenesis with selenium
opens a new research avenue for investigating base-pair
recognition, fidelity and RNA modification. This novel
base pair (SeU/A) with higher specificity likely enables bet-
ter preservation of genetic information at the RNA level.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–24 and Supplementary Methods.
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30. Vorbrüggen,H. and Strehlke,P. (1973) Nucleosidsynthesen, VII.
Eine einfache Synthese von 2 Thiopyrimidin nucleosiden.
Chem. Ber., 106, 3039–3061.

31. Kumar,R.K. and Davis,D.R. (1997) Synthesis and studies on the
effect of 2-thiouridine and 4-thiouridine on sugar conformation
and RNA duplex stability. Nucleic Acids Res., 25, 1272–1280.

32. Salon,J., Jiang,J.S., Sheng,J., Gerlits,O.O. and Huang,Z. (2008)
Derivatization of DNAs with selenium at 6-position of guanine
for function and crystal structure studies. Nucleic Acids Res., 36,
7009–7018.

33. Salon,J., Sheng,J., Jiang,J.S., Chen,G.X., Caton-Williams,J. and
Huang,Z. (2007) Oxygen replacement with selenium at the
thymidine 4-position for the Se base pairing and crystal structure
studies. J. Am. Chem. Soc., 129, 4862–4863.

34. Knobloch,B., Da Costa,C.P., Linert,W. and Sigel,H. (2003)
Stability constants of metal ion complexes formed with
N3-deprotonated uridine in aqueous solution.
Inorg. Chem. Commun., 6, 90–93.

35. Wahl,M., Ban,C., Sekharudu,C., Ramakrishnan,B. and
Sundaralingam,M. (1996) Structure of the purine-pyrimidine
alternating RNA double helix, r (GUAUAUA) d (C), with a
30-terminal deoxy residue. Acta Crystallogr. D: Biol. Crystallogr.,
52, 655–667.

Nucleic Acids Research, 2012, Vol. 40, No. 11 5179

 at K
ainan U

niversity on M
arch 15, 2015

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/

