Bioorganic & Medicinal Chemistry Letters 23 (2013) 1771-1775

Contents lists available at SciVerse ScienceDirect

ELSEVIER

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Steroidal constituents from the leaves of *Hosta longipes* and their inhibitory effects on nitric oxide production

Chung Sub Kim^a, Sun Yeou Kim^b, Eunjung Moon^c, Mi Kyeong Lee^d, Kang Ro Lee^{a,*}

^a Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, 300 Chonchon-dong, Jangan-ku, Suwon, Gyeonggi-do 440-746, Republic of Korea ^b College of Pharmacy, Gachon University, #191 Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, Republic of Korea

^c Graduate School of East-West Medical Science, Kyung Hee University Global Campus, #1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 446-701, Republic of Korea ^d College of Pharmacy, Chungbuk National University, #52 Naesudong-ro, Heungdeok-gu, Cheongju 361-763, Republic of Korea

ARTICLE INFO

Article history: Received 22 October 2012 Revised 2 January 2013 Accepted 15 January 2013 Available online 26 January 2013

Keywords: Hosta longipes Liliaceae Steroid Structural elucidation Nitric oxide Neuroinflammation

ABSTRACT

Hosta longipes (FR. et SAV.) MATSUMURA (Liliaceae) is an edible vegetable in Korea. This study was conducted with the aim of evaluating the potential of *H. longipes* as a functional food for the treatment of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In this respect, the study resulted in the identification of three new steroidal compounds, longipenane (1), longipenane $26-0-\beta-p$ glucopyranoside (2) and neogitogenin $3-0-\alpha-t$ -rhamnopyranosyl- $(1\rightarrow 2)-O-[\beta-p-glucopyranosyl-<math>(1\rightarrow 4)]-\beta$ -p-galactopyranoside (3), along with two known steroidal saponins (4 and 5). The identification and structural elucidation of these compounds were based on 1D and 2D NMR measurements, high-resolution FAB mass spectroscopy (HR-FAB-MS), and chemical methods. A proinflammatory mediator, nitric oxide (NO), in murine microglial BV-2 cells was used to assess the anti-neuroinflammatory effect of the isolated compounds from *H. longipes*. Among them, compounds 4 and 5 showed strong inhibitory effects on NO production without high cell toxicity in lipopolysaccharide-activated BV-2 cells (IC₅₀ = 17.66 and 13.16 μ M, respectively).

© 2013 Elsevier Ltd. All rights reserved.

Neuroinflammation is a defense mechanism in the central nervous system against various harmful infections and injuries. However, substantial evidence supports the idea that neuroinflammation by activated microglia is strongly involved in the pathogenesis and progression of neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease.¹ Microglia cells are the resident immune cells of the central nervous system. Under normal conditions, these cells play a role in homeostasis regulation and defense against injury.² However, in response to abnormal stimuli including environment toxins and neurotoxins, microglia are activated and release various proinflammatory factors including nitric oxide (NO),³ leading to possible exacerbation of neuronal cell death resulting in neurodegenerative diseases.⁴

Hosta longipes (FR. et SAV.) MATSUMURA (Liliaceae) is an edible vegetable in Korea and widely distributed throughout Korea, China, and Japan.⁵ It is called "Bi-Bi-Chu" in Korea, and its young leaves are consumed raw as a salad. This plant has been used as a Korean traditional medicine for the treatment of swelling, inflammation and snake bites.^{5,6} In previous phytochemical and biological activity studies, its EtOH extract showed antioxidant activity⁷ and steroidal saponins isolated from this plant showed

cytotoxic activity towards HeLa cells.⁸ However, little phytochemical and biological investigations on *H. longipes* have been conducted. In our screening procedures, the MeOH extract of leaves of *H. longipes* showed an inhibitory effect on NO production in lipopolysaccharide (LPS)-activated BV-2 cells, a murine microglial cell line. Therefore, as part of a continuing search for bioactive constituents from Korean medicinal plant sources, we attempted to investigate the active constituents of this herb.

The MeOH extract from the leaves of *H. longipes* was suspended in distilled water and then partitioned with *n*-hexane, CHCl₃, EtOAc and BuOH. The CHCl₃ layer showed a considerable inhibitory effect on nitric oxide (NO) production in LPS-activated BV-2 cells, and EtOAc and BuOH layers displayed moderate inhibitory effects in our screening procedures. Chemical investigation of these layers using successive column chromatography over silica gel, Sephadex LH-20, and preparative HPLC resulted in the isolation and identification of three new steroidal compounds **1-3** and two known steroidal saponins **4** and **5** (Fig. 1).

Compound **1** was obtained as a colorless gum. The molecular formula was determined to be $C_{27}H_{44}O_5$ from the molecular ion peak [M+H]⁺ at *m/z* 449.3266 (calcd for 449.3267) in the positive-ion HR-FAB-MS. The IR spectrum displayed strong OH vibrations at 3382 cm⁻¹ and a carbonyl band at 1660 cm⁻¹. The ¹H NMR spectrum showed the presence of four methyl groups [δ_H 1.08, 0.93 (each 3H, d, *J* = 7.0 Hz), 1.24 and 1.09 (each 3H, s)], three

^{*} Corresponding author. Tel.: +82 31 290 7710; fax: +82 31 290 7730. *E-mail address*: krlee@skku.ac.kr (K.R. Lee).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2013.01.050

4: R = H 5: R = α -L-Rha

Figure 1. Structures of 1-5 from the leaves of H. longipes.

oxygenated methine [$\delta_{\rm H}$ 4.34 (1H, dt, J = 7.0, 4.0 Hz), 4.04 (1H, t, J = 6.0 Hz) and 3.35 (1H, m)], one oxygenated methylene [$\delta_{\rm H}$ 3.44 (1H, dd, J = 5.5, 10.5 Hz), and 3.34 (1H, m)], and one olefinic proton $[\delta_{\rm H} 5.71 (1H, s)]$ signals (Table 1). The ¹³C NMR spectrum indicated 27 carbon resonances, which were classified by DEPT and HMQC experiments as one carbonyl carbon (δ_{C} 201.0), one trisubstituted double bond ($\delta_{\rm C}$ 173.4 and 123.1), three oxygenated methines ($\delta_{\rm C}$ 78.1, 72.9 and 70.9), one oxygenated methylene (δ_c 67.2), four methyls, eight methylenes, six methines and two quaternary carbons. These NMR data were very similar to those of (25S)-16(*S*), 22(*S*), 26-trihydroxycholest-4-en-3-one,⁹ except for the absence of one methylene proton and carbon resonances and the presence of one oxygenated methine [$\delta_{\rm H}$ 3.35 (1H, m); $\delta_{\rm C}$ 78.1]. The HMBC correlation of H-18/C-12 and NOE correlations of H-12/H-9 and H-14 (Fig. 2) confirmed the presence of an OH group at C-12. The relative stereochemistry was assumed to be the same as that of (25S)-16(S),22(S),26-trihydroxycholest-4-en-3-one⁹ based on the J values and confirmed by the NOE correlations of H-8/H-18 and H-19, H-9/H-12 and H-14, H-16/H-14, H-17 and H-21, and H-18/H-20 (Fig. 2). The β -orientiation of the OH group at C-12 was confirmed by the NOE correlations of H-12/H-9 and H-14. The relative configuration of the OH group at C-22 was anti to the Me group at C-20 by comparing the J value of H-22 (t, J = 6.5 Hz) with that of (22S)-bethosides B and C [t, J = 6.9 Hz for H-22 (22 β); ddd, J = 11.1, 3.3, 2.1 Hz for H-22 (22 α)].¹⁰ The absolute configuration at C-25 was confirmed as R by examination of the Mosher esters of **1**; *R* ester **1a** showed a larger difference ($\Delta \delta$ 0.211) between two H-26 signals than that of S ester **1b** ($\Delta \delta$ 0.081 ppm).¹¹ Thus, compound **1** was characterized as (25*R*)- 12β , 16β , 22β , 26-tetrahydroxycholest-4-en-3-one and named longipenane.

Compound **2** was obtained as a colorless gum. The molecular formula was determined to be $C_{33}H_{54}O_{10}$ from the molecular ion peak [M+H]⁺ at m/z 611.3795 (calcd for 611.3795) in the

positive-ion HR-FAB-MS. The IR spectrum displayed strong OH vibrations at 3382 cm⁻¹ and a carbonyl band at 1656 cm⁻¹. The ¹H NMR spectrum of **2** showed an anomeric proton at $\delta_{\rm H}$ 4.23 (1H, d, J = 8.0 Hz, H-1'), which is a characteristic signal for a β glucopyranosyl unit, and six oxygenated protons attributed to a sugar at $\delta_{\rm H}$ 3.87 (1H, dd, I = 12.0, 2.0 Hz, H-6'a), 3.66 (1H, dd, I = 12.0, 10.5 Hz, H-6'b), 3.34 (1H, m, H-3'), 3.29 (1H, m, H-4'), 3.27 (1H, m, H-5') and 3.18 (1H, dd, I = 9.0, 8.0 Hz, H-2'). The ¹³C NMR spectrum of **2** showed signals for a β -glucopyranosyl unit (δ_{C} 103.4, 76.8, 76.6, 73.9, 70.5 and 61.5) and the other signals in the 1 H and 13 C NMR spectra were fairly similar to those of 1. The chemical shifts of C-26 in **2** [$\delta_{\rm H}$ 3.74, 3.38 (each 1H, dd *J* = 10.5, 6.5 Hz); $\delta_{\rm C}$ 74.9] were downfield shifted compared with those of C-26 in 1, indicating the location of the β -glucopyranosyl unit at C-26. This was confirmed by the HMBC correlation of H-1'/C-26 (Fig. 3). The enzymatic hydrolysis of **2** with β -glucosidase (Almonds) yielded the aglycone **2a**, whose ¹H NMR spectrum was in good agreement with that of **1**, and D-glucose { $[\alpha]_D^{25}$ +62.2 (*c* = 0.05, H₂O)}. Thus, compound **2** was characterized as (25R)-12 β ,16 β ,22 β ,26-(β -D-glucopyranosyl)-tetrahydroxycholest-4-en-3-one and named longipenane 26-O-β-D-glucopyranoside.

Compound **3** was obtained as a white powder. The molecular formula was determined to be $C_{45}H_{74}O_{18}$ from the molecular ion peak $[M+H]^+$ at m/z 903.4954 (calcd for 903.4953) in the positive-ion HR-FAB-MS. The ¹H NMR spectrum indicated the presence of two tertiary methyl groups [δ_H 0.93 and 0.81 (each 3H, s)], two secondary methyl groups [δ_H 1.14 and 1.08 (each 3H, d, *J* = 7.0 Hz)], typical steroid methyls, and three anomeric proton [δ_H 6.27 (1H, br s), 5.20 and 4.97 (each 1H, d, *J* = 7.5 Hz)] signals showing HSQC correlations with three anomeric carbon signals [δ_C 102.8, 107.6 and 101.4, respectively] (Table 2). Comparison of the signals from the aglycone part of **3** in the ¹H and ¹³C NMR spectra with those from the aglycone part of cistocardin¹² showed that the aglycone part of **3** was the same as that of cistocardin, and this was confirmed

Table 1 ¹H (500 MHz) and ¹³C NMR (125 MHz) data of compounds 1 and 2 in CD₃OD (δ in ppm, / values in parentheses)^a

Position	1		2		
	$\delta_{\rm H}$	δ_{C}	$\delta_{\rm H}$	δ_{C}	
1	2.07 m, 1.71 m	35.5 t	2.08 m, 1.71 m	35.5 t	
2	2.50 m, 2.30 m	33.4 t	2.50 m, 2.30 m	33.5 t	
3		201.0 s		201.1 s	
4	5.71 s	123.1 d	5.72 s	123.1 d	
5		173.4 s		172.8 s	
6	2.51 m, 2.33 m	32.7 t	2.51 m, 2.33 m	32.7 t	
7	1.89 m, 1.01 m	31.4 t	1.89 m, 1.01 m	30.7 t	
8	1.68 m	33.9 d	1.68 m	33.8 d	
9	1.07 m	53.0 d	1.05 m	53.0 d	
10		38.6 s		38.6 s	
11	1.66 m, 1.46 m	30.1 t	1.66 m, 1.46 m	30.1 t	
12	3.35 m	78.1 d	3.36 m	78.1 d	
13		47.3 s		47.5 s	
14	0.84 m	52.5 d	0.82 m	52.5 d	
15	2.26 m, 1.35 m	35.5 t	2.27 m, 1.36 m	35.8 t	
16	4.32 dt, (7.0, 4.0)	70.9 d	4.33 dt, (7.5, 4.0)	70.8 d	
17	1.44 m	62.9 d	1.44 m	63.0 d	
18	1.09 s	9.5 q	1.10 s	9.5 q	
19	1.24 s	16.3 q	1.25 s	16.3 q	
20	2.44 m	37.0 d	2.45 m	36.9 d	
21	1.08 d (7.0)	12.1 q	1.07 d (7.0)	12.0 q	
22	4.04 t (6.0)	72.9 d	4.05 t (6.0)	72.6 d	
23	1.52 m	32.9 t	1.52 m	32.7 t	
24	1.12 m	30.0 t	1.66 m, 1.15 m	30.5 t	
25	1.57 m	35.9 d	1.77 m	33.5 d	
26a	3.44 dd (10.5, 5.5)	67.2 t	3.74 dd (10.0, 6.5)	74.9 t	
26b	3.34 m		3.38 dd (10.0, 6.5)		
27	0.93 d (6.5)	15.9 q	0.95 d (6.5)	16.1 q	
1′			4.23 d (8.0)	103.4 d	
2'			3.18 dd (9.0, 8.0)	73.9 d	
3′			3.34 m	76.8 d	
4′			3.29 m	70.5 d	
5′			3.27 m	76.6 d	
6′a			3.87 dd (12.0, 2.0)	61.5 t	
6′b			3.66 dd (12.0, 10.5)		

 $^{\rm a}$ The assignments were based on DEPT, $^1{\rm H}{\rm -}^1{\rm H}$ COSY, HMQC and HMBC experiments.

through 1D and 2D NMR spectra (¹H and ¹³C NMR, DEPT, ¹H–¹H COSY, HSQC, HMBC and NOESY). The sugar parts were assumed to be $0-\alpha$ -L-rhamnopyranosyl-(1 \rightarrow 2)-0-[β -D-glucopyranosyl-(1 \rightarrow 4)]- β -D-galactopyranosyl unit by comparing the ¹H and ¹³C NMR spectra with those of gitogenin 3-0-{ $0-\alpha$ -L-rhamnopyranosyl-(1 \rightarrow 2)-0-[β -D-glucopyranosyl-(1 \rightarrow 4)]- β -D-galactopyranosyl-(1 \rightarrow 4)]- β -D-galacto

of the aglycone part were determined by NOE correlations (Fig. 4). The 25S configuration was confirmed through the comparison characteristic chemical shifts for C-23, C-24, C-25, C-26 and C-27 with those for C-23, C-24, C-26 and C-27 (27.3 ± 0.3, 26.1 ± 0.3, 65.1 ± 0.1, and 16.2 ± 0.2 ppm, respectively, 25S) and for C-23, C-24, C-25 and C-26 (31.3 ± 0.3, 28.8 ± 0.3, 30.3 ± 0.3 and 66.9 ± 0.2, respectively, 25*R*) in previously reported data.^{15–17} Thus, the structure of **3** was established as neogitogenin 3-O-α-L-rhamnopyranosyl-(1→2)-O-[β-D-glucopyranosyl-(1→4)]-β-D-galactopyranoside.

Compounds **4** and **5** were identified by comparing the ¹H and ¹³C NMR, and MS spectra with the literature. They were determined to be gitogenin 3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D-xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranoside} (**4**) and gitogenin 3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-glucopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranosyl-(1 \rightarrow 3)]-O- β -D-galactopyranosyl-(1 \rightarrow 3)]-

Neuroinflammation by overactivated microglia has been known to contribute to progressive neuronal damage in many neurodegenerative diseases.¹ In this study, we tested the anti-neuroinflammatory effects of compounds (1-5) isolated from H. longipes via measurement of NO levels using a bacterial endotoxin, LPS, in murine microglia BV-2 cells.^{19,20} The inhibitory activities of the isolated compounds on NO production were expressed as 50% inhibition concentration (IC₅₀). As shown in Table 3, compounds 2, 3, 4, and 5 decreased NO production. Among them, the IC₅₀ values of compounds **3**, **4**, and **5** were determined to be below than 20 μ M. They exhibited inhibitory activity with an IC₅₀ of 2.70, 17.66, and 13.16 µM, respectively. It was shown that compound 3 strongly reduced the cell viability of BV-2 cells [38.9 ± 2.2% at a concentration of 20 µM compared with LPS only treatment group, median lethal dose (LD_{50}) of 3.12 μ M]. We suggest that the inhibitory effect of compound **3** on NO production may be influenced by its high cytotoxic activities, although the percentage of inhibition of NO production was more than that of cell cytotoxicity. Compounds 4 and **5** had no influence on cell viability at concentrations up to 20 µM. These compounds had shown the cell viability of BV-2 cells with $89.6 \pm 5.5\%$ and $86.4 \pm 5.8\%$ at a concentration of 20 µM. respectively. The results indicate that statistically significant differences were not shown between LPS-only treatment group and each compound at 20 µM. Therefore, compounds 4 and 5 inhibited LPS-induced NO production in BV-2 cells without the influence of cytotoxicity. And these results indicate that steroidal saponins (4 and **5**) may be the main active compounds of *H. longipes*, exhibiting strong anti-neuroinflammatory properties. Moreover, these compounds isolated from *H. longipes* can be candidates for treatment of various neurodegenerative diseases associated with neuroinflammation via regulation of activated microglia.

In conclusion, this study indicates that steroidal constituents are the main components of the leaves of *H. Longipes*. Additionally,

Figure 2. HMBC, ¹H-¹H COSY and NOESY correlations of 1.

Figure 3. HMBC, ¹H-¹H COSY and NOESY correlations of 2.

Table 2 ¹H (500 MHz) and ¹³C NMR (125 MHz) data of compounds **3** in pyridine- d_5 (δ in ppm, J values in parentheses)^a

Position	Aglycone		Position	Sugar	
	$\delta_{\rm H}$	δ_{C}		$\delta_{\rm H}$	δ_{C}
1	2.27 m, 1.19 m	46.2 t	1′(Gal)	4.97 d (7.5)	101.4 d
2	4.13 m	71.0 d	2′	4.58 m	77.2 d
3	3.89 m	85.4 d	3′	4.37 m	76.9 d
4	2.02 m, 1.83 m	33.9 t	4′	4.59 m	81.0 d
5	1.03 m	45.1 d	5′	4.14 m	76.1 d
6	1.24 m, 1.13 m	28.6 t	6′	4.60 m, 4.32 m	61.5 t
7	1.53 m, 0.82 m	32.6 t	1"(Rha)	6.27 br s	102.8 d
8	1.42 m	35.1 d	2″	4.81 m	72.8 d
9	0.62 br t (11.0)	54.8 d	3″	4.60 m	73.2 d
10		37.3 s	4″	4.33 m	74.5 d
11	1.50 m, 1.25 m	21.9 t	5″	4.87 m	69.9 d
12	1.63 m, 1.03 m	40.5 t	6″	1.63 d (6.5)	19.0 q
13		41.2 s	1‴(Glc)	5.20 d (7.5)	107.6 d
14	1.02 m	56.8 d	2‴	4.15 m	76.0 d
15	2.03 m, 1.41 m	32.7 t	3‴	4.23 m	79.4 d
16	4.57 m	81.8 d	4‴	4.11 m	72.6 d
17	1.79 m	63.3 d	5‴	4.00 m	79.1 d
18	0.81 s	17.0 q	6‴	4.59 m, 4.22 m	63.5 t
19	0.93 s	14.0 q			
20	1.91 m	42.9 d			
21	1.14 d (6.5)	15.3 q			
22		110.2 s			
23	1.24 m, 1.12 m	28.6 t			
24	1.90 m, 1.45 m	26.8 t			
25	1.36 m	26.7 d			
26	4.07 m, 3.38 m	65.5 t			
27	1.08 d (7.0)	16.8 q			

^a The assignments were based on DEPT, ¹H-¹H COSY, HSQC and HMBC

three new steroidal compounds, longipenane (1), longipenane 26-O- β -D-glucopyranoside (2), and neogitogenin 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-O-[β -D-glucopyranosyl-(1 \rightarrow 4)]- β -D-galactopyranoside

HMBC

HO HO HO HO HO HO HO HO HO OH

Table 3 Effects of compounds 1–5 on NO production and cell viability in LPS-activated BV-2 cells

Compound	IC_{50}^{a} (μM)	Cell viability ^b (%)
1	>200	93.4 ± 2.0
2	46.30	94.8 ± 1.5
3	2.70	38.9 ± 2.2*
4	17.66	89.6 ± 5.5
5	13.16	86.4 ± 5.8
l-NMMA ^c	14.29	102.3 ± 3.7

 $^a~IC_{50}$ value of each compound was defined as the concentration ($\mu M)$ causing 50% inhibition of NO production in LPS-activated BV-2 cells.

^b Cell viability after treatment with 20 μ M of each comound was expressed as a percentage (%) of the LPS only treatment group. The results are averages of three independent experiments, and the data are expressed as mean ± SD. (Student's *t*-test, **p*-value <0.05)

^c L-NMMA as a positive control.

(3) were isolated from this plant source. Two main steroidal saponins (4 and 5) of this plant, which significantly inhibited nitric oxide (NO) production in LPS-activated BV-2 cells, were also investigated. The present study thus indicates that these compounds would be good candidates for further research as anti-neuroinflammatory agents and show the potential of *H. longipes* as a functional food for the treatment of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (20100029358). We are thankful to the Korea Basic Science Institute (KBSI) for the measurements of NMR and MS spectra.

1774

Figure 4. Key HMBC and NOESY correlations and of 3.

Supplementary data

9. Achenbach, H.; Hübner, H.; Reiter, M. Phytochemistry 1996, 41, 907.

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmcl.2013.01. 050.

References and notes

- 1. Dickson, D. W.; Lee, S. C.; Mattiace, L. A.; Yen, S. H.; Brosnan, C. Glia 1993, 7, 75.
- 2. Perry, V. H.; Gordon, S. Trends Neurosci. 1988, 11, 273.
- 3. Minghetti, L.; Levi, G. Prog. Neurobiol. 1998, 54, 99.
- 4. Liu, B.; Hong, J. S. J. Pharmacol. Exp. Ther. 2003, 304, 1.
- 5. Cho, J. Y.; Heo, B. G.; Yang, S. Y. Korean J. Org. Agric. 2005, 13, 389.
- Han, H. Y.; Kim, Y. B.; Chang, K. J.; Park, C. H.; Lee, K. C. Korean J. Plant Res. 2000, 13, 62.
- Kim, M. S.; Hwang, H. R.; Cho, J. E.; Yoon, M. H.; Kim, K. H.; Kim, Y. J.; Kim, J. H.; Choi, J. J.; Yook, H. S. *Abstract of Papers*, 30th Annual Meeting of the Korean Society of Food Preservation, Daejeon, Republic of Korea; The Korean Society of Food Preservation: Daegu, Republic of Korea, 2009; Abstract P3–5.
- Mimaki, Y.; Kanmoto, T.; Kuroda, M.; Sashida, Y.; Satomi, Y.; Nishino, A.; Nishino, H. Phytochemistry 1996, 42, 1065.

- Challinor, V. L.; Hayes, P. Y.; Bernhardt, P. V.; Kitching, W.; Lehmann, R. P.; De Voss, J. J. J. Org. Chem. 2011, 76, 7275.
- Ivanchina, N. V.; Kicha, A. A.; Kalinovsky, A. I.; Stonik, V. A. Russ. Chem. Bull. Int. Ed. 2004, 53, 2639.
- 12. Achenbach, H.; Hübner, H.; Brand, W.; Reiter, M. Phytochemistry 1994, 35, 1527.
- 13. Temraz, A.; El Gindi, O. D.; Kadry, H. A.; De Tommasi, N.; Braca, A. *Phytochemistry* **2006**, 67, 1011.
- 14. Jiang, W.; Li, W.; Han, L.; Liu, L.; Zhang, Q.; Zhang, S.; Nikaido, T.; Koike, K. J. Nat. Prod. **2006**, 69, 1577.
- 15. Agrawal, P. K.; Jain, D. C.; Gupta, R. K.; Thakur, R. S. *Phytochemistry* **1985**, *24*, 2479.
- 16. Agrawal, P. K.; Jain, D. C.; Pathak, A. K. Magn. Reson. Chem. 1995, 33, 923.
- 17. Haraguchi, M.; Mimaki, Y.; Motidome, M.; Morita, H.; Takeya, K.; Itokawa, H.; Yokosuka, A.; Sashida, Y. *Phytochemistry* **2000**, *55*, 715.
- Mimaki, Y.; Kameyama, A.; Kuroda, M.; Sashida, Y.; Hirano, T.; Oka, K.; Koike, K.; Nikaido, T. Phytochemistry 1997, 44, 305.
- Colasanti, M.; Persichini, T.; Di Pucchio, T.; Gremo, F.; Lauro, G. M. Neurosci. Lett. 1995, 200, 144.
- 20. Reif, D. W.; McCreedy, S. A. Arch. Biochem. Biophys. 1995, 1, 170.