A facile synthesis of 1,2,3-triazolyl indole hybrids via SbCl₃-catalysed Michael addition of indoles to 1,2,3-triazolyl chalcones

POOVAN SHANMUGAVELAN, MURUGAN SATHISHKUMAR, SANGARAIAH NAGARAJAN and ALAGUSUNDARAM PONNUSWAMY*

Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India e-mail: ramradkrish@yahoo.co.in

MS received 17 December 2011; revised 29 February 2012; accepted 6 March 2012

Abstract. An efficient, facile and environmentally benign synthesis of a library of 1,2,3-triazolyl chalcone hybrids (3a-u) has been accomplished by grinding the reactants at room temperature in excellent yields in very short reaction time. Subsequently, SbCl₃ catalysed Michael addition of indoles to the chalcones afford 1,2,3-triazolyl indole hybrids (5a-l) in excellent yields.

Keywords. Environmentally benign; 1,2,3-triazolyl chalcone; Michael addition; SbCl₃ catalysed; 1,2,3-triazolyl indole.

1. Introduction

Chalcones represent an important group of natural products belonging to the flavonoids family.^{1,2} Compounds with the backbone of chalcones possess interesting biological activities such as cytotoxic,³ antimalarial,⁴ antileishmanial,⁵ antiinflammatory,⁶ antiHIV,⁷ antifungal⁸ and tyrosine kinase inhibitors.⁹

On the other hand, 1,2,3-triazoles have received much attention due to their interesting pharmacological activity profile such as antibiotic, antifungal, antehelmintic,¹⁰ anticancer activity,¹¹ and antiHIV.¹² They also serve as potential chemotherapeutic agents for various diseases.¹³

Indole derivatives continue to receive much attention in organic synthesis because of their biological activities.^{14,15} Among them, 3-substituted indoles are important building blocks for the synthesis of biologically active compounds and natural products.¹⁶

Keeping in view of the potential importance of the above said individual bioactive compounds, it was envisaged that synthesis of molecules containing two of the above said moieties in a single framework is worth the attempt. In this regard, we report here for the first time the synthesis of the hybrid molecules containing the triazole–enone and triazole–indole skeletons.

2. Experimental

All chemicals, reagents and solvents were of commercially high purity grade purchased from Avra Synthesis Pvt. Ltd. and Merck Pvt. Ltd. India. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on Bruker Avance 300 MHz spectrometer and the chemical shifts are reported as δ values in parts per million (ppm) relative to tetramethylsilane, with coupling constant (*J*) values in Hertz (Hz). In ¹H NMR, the abbreviation of splitting refers as s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, dd=doublet of doublet and bs=broad singlet. ¹³C NMR data are reported with the solvent peak (CDCl₃ = 77.00 MHz) as the internal standard. Elemental analyses of all the compounds were performed which were in agreement with the calculated values within $\pm 0.4\%$.

2.1 Synthesis of 4-acetyl-1-benzyl-5-methyl-1,2,3triazole (1)¹⁷

A mixture of benzyl azide (3.00 g, 1.0 equiv), acetyl acetone (2.25 g, 1.0 equiv), potassium carbonate (6.23 g, 2.0 equiv) and absolute ethanol (95%, 15 ml) was taken in a round bottomed flask equipped with stirrer. The reaction mixture was stirred at 75° C for 30 min. The progress of the reaction was monitored by TLC. After the completion of the reaction, the solvent was removed under vacuum and to the residual mass, excess of ice-water was added and neutralized with 10% HCl (20 ml). The product was extracted

^{*}For correspondence

with diethyl ether (20 ml) and the extract was dried over anhydrous sodium sulphate. Evaporation of the solvent gave the crude product, which was purified by column chromatography using petroleum ether: ethylacetate (98:3) as eluent and recrystallized from absolute ethanol. Yield: 3.97g (82%), Mp. 148°C.

2.2 *General procedure for the synthesis of 1,2,3-triazolyl chalcone hybrids (3)*

A mixture of 4-acetyl-1-benzyl-5-methyl-1,2,3-triazole, **1** (0.2 g, 1.0 equiv) and aromatic/heteroaromatic aldehydes, **2** (1.0 equiv) and 50% aqueous sodium hydroxide solution (1 ml) was ground for 4–7 min at room temperature and poured onto excess of crushed ice and neutralized with dilute hydrochloric acid. The chalcone derivatives (**3**) which precipitated as solids were filtered and recrystallized from ethanol. Yield: 97–99%.

2.2a (*E*)-1-(1-Benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-3-phenylprop-2-en-1-one (**3a**): Yield 0.27 g (97%), white solid, mp.157–158°C. ¹H NMR spectrum (CDCl₃, 300 MHz), δ , ppm: 2.55 s (3H, CH₃); 5.57 s (2H, N-CH₂), 7.20–7.72 m (10H, ArH), 7.87 d (1H, =CH, *J* = 15.9 Hz), 8.05 d (1H, =CH, *J* = 15.9 Hz). ¹³C NMR spectrum (CDCl₃, 75 MHz), δ , ppm: 9.31, 51.75, 123.16, 127.25, 128.60, 128.71, 128.85, 129.14, 130.41, 134.07, 135.09, 137.95, 143.53, 144.36, 184.40. Found, %: C 75.27, H 5.65, N 13.84. C₁₉H₁₇N₃O. Calculated, %: C 75.23, H 5.65, N 13.85.

2.3 *General procedure for the synthesis of 1,2,3-triazolyl indole hybrids* (5)

To a solution of 1-benzyl-5-methyl-1,2,3-triazol-4-yl-3arylprop-2-en-1-one, **3** (0.2 g, 1.0 equiv) and indole/2methylindole, **4** (1.0 equiv) in CH₃CN (3–5ml) was added SbCl₃ (10 mol%) and the mixture was refluxed for 3–4 h. After completion of reaction as indicated by TLC, the catalyst was filtered and the filtrate was concentrated under reduced pressure to give the crude product, which was triturated with petroleum ether. The triazolyl indole hybrids (5) which precipitated as solids were filtered recrystallized from ethanol. Yield: 95–98%.

2.3a *1-(1-Benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-3-(1H-indol-3-yl)-3-phenylpropan-1-one* (*5a*): Yield: 0.37 g (96%), colourless solid, mp.138–139°C. ¹H NMR spectrum (CDCl₃, 300 MHz), δ , ppm, 2.32 s (3H, CH₃), 3.88 dd (1H, CH₂, J = 7.8 and 16.2 Hz), 4.01 dd (1H, CH₂, J = 7.5 and 16.2 Hz), 5.09 t (1H, CH, J = 7.8 Hz), 5.53 s (2H, N-CH₂), 6.97–7.50 m (14H, ArH), 8.02 s (1H, NH). ¹³C NMR spectrum (CDCl₃, 75 MHz), δ , ppm, 9.08, 38.23, 46.29, 51.66, 110.94, 119.34, 119.49, 119.61, 121.55, 122.03, 126.11, 126.94, 127.26, 128.29, 128.58, 129.12, 134.00, 136.61, 137.09, 143.93, 144.51, 194.85. Found, %: C 77.09, H 5.76, N 13.31. C₂₇H₂₄N₄O. Calculated, %: C 77.12, H 5.75, N 13.32.

The analytical data of all the synthesized compounds are presented in the supplementary information.

3. Results and discussion

Traditionally, chalcones could be obtained via Claisen-Schmidt condensation carried out in acidic or basic media under homogeneous conditions, with many drawbacks, such as catalyst recovery and waste disposal problems.¹⁸ As a potential alternative, heterogeneous catalysts have also been used for Claisen-Schmidt condensation, including Lewis acids,¹⁹ Bronsted acids,²⁰ solid acids,²¹ and solid bases.²² In addition, ionic liquids²³ and microwave²⁴ have also been tried to enhance the yields of the chalcones. But all these reported methods make use of organic solvents during condensation and during isolation of products by way of extraction. These organic solvents have been considered to be hazardous to human health and the environment due to their volatile nature. Hence, development of organic reactions under solvent-free conditions being eco-friendly has attained much importance. In particular, organic reactions in water medium are of current interest.

To the best of our knowledge, though there are very few reports on triazolyl chalcone synthesis in organic

Scheme 1. Reaction optimization for the synthesis of 1,2,3-triazolyl chalcone hybrid (3a).

Scheme 2. Synthesis of 1,2,3-triazolyl chalcone hybrids (3a–u).

solvents,²⁵ perusal of literature suggests the lack of any report on the synthesis of 1,2,3-triazolyl chalcone hybrids in water which forms the first part of the present study. Here, it is notable that the yield of the hybrids in the organic solvent *viz*. ethanol and in water medium is comparable.

At the outset, a mixture of 1,2,3-triazolylketone (1a, 1.0 equiv), benzaldehyde (2a, 1.1 equiv) and 50% NaOH in ethanol (5 ml) was stirred at room temperature (scheme 1). The reaction was completed in 5 min

affording the 1,2,3-triazolyl chalcone hybrid (**3a**) in 97% yield. On the other hand, grinding the heterogenous reaction mixture in minimum amount of water at room temperature gave identical yield of **3a** in comparable reaction time, i.e., 4 min. The later protocol avoiding the organic solvent viz. ethanol is greener.

The broad scope of the above said protocol involving water as media was established via the synthesis of a library of 1,2,3-triazolyl chalcone hybrids (**3a–u**, scheme 2) in excellent yields (97–99%, table 1).

		1,2,3-triazolyl	Solvent (ethanol)		Water (grinding)	
Entry	Aldehydes (2a–u)	chalcones (3a–u)	Time (min)	Yield (%)	Time (min)	Yield (%)
1	2a		3	97	4	97
2	2b	$\bigcup_{N \\ N \\ O \\ Show \\ Show$	2	97	4	98
3	2c	$ \begin{array}{c} \overset{CH_{3}}{\overbrace{N^{z}_{N}}} & \overset{Br}{\overbrace{N^{z}_{N}}} & 3c \end{array} $	2	98	4	98
4	2d	$ N \\ N \\ N \\ N \\ N \\ N \\ O $	2	99	4	98

 Table 1. Synthesis of 1,2,3-triazolyl chalcone hybrids (3a–u).

		1,2,3-triazolyl	Solvent (ethanol)		Water (grinding)	
Entry	Aldehydes (2a–u)	chalcones (3a–u)	Time (min)	Yield (%)	Time (min)	Yield (%)
5	2e	CH ₃ CH ₃ C	3	98	5	99
6	2f		3	96	4	97
7	2g	(H_3)	4	98	6	97
8	2h	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	4	98	7	98
9	2i	CH_{3}	4	97	7	98
10	2j		4	97	7	97
11	2k	CH ₃ OCH ₃ N ² N ⁰ OCH ₃	3	98	7	97
12	21	$CH_3 \qquad NO_2 \qquad NO_2 \qquad 3I$	4	98	7	97
13	2m	CH_{3}	3	98	6	98
14	2n		3 n	97	6	97

		1,2,3-triazolyl	Solvent (ethanol)		Water (grinding)	
Entry	Aldehydes (2a–u)	chalcones (3a–u)	Time (min)	Yield (%)	Time (min)	Yield (%)
15	20	$() \qquad (H_3) \qquad (CH_3) \qquad (CH_3)$	4	98	7	98
16	2р	CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	4	97	7	97
17	2q	CH_{3}	4	96	7	97
18	2r		4	97	7	97
19	2s	$\bigcup_{N=N}^{CH_3} \bigcup_{H_3C}^{O} 3s$	2	98	5	98
20	2t	$\bigcup_{N=N}^{CH_3} \bigcup_{0}^{O} 3t$	2	97	5	97
21	2u	$\bigcup_{N=N}^{CH_3} \bigcup_{0}^{S} 3u$	2	97	5	97

The X-ray crystal structure of compounds, $3a^{26}$ and $3d^{27}$ proved their structures unequivocally.

3.1 *Micheal addition of indoles to 1,2,3-triazolyl chalcone hybrids*

Three substituted indoles exhibit numerous biological activities²⁸ and are also used as building blocks for the synthesis of natural products and therapeutic agents.²⁹

Among the various approaches for preparing threesubstituted indoles, ^{30,31} Michael addition^{32,33} of indoles to electron-deficient olefins or α,β -unsaturated ketones being direct method is very elegant. This conjugate addition is facilitated in the presence of various catalysts, ³⁴ protic³⁰ and/or Lewis acid. ³¹ As the strong acid catalysed Michael addition is associated with the side reactions resulting in dimerization and polymerization, utility of efficient catalysts in the conjugate addition has attained importance.

Scheme 3. Catalyst screening in the synthesis of 1,2,3-triazolyl indole hybrid (5a).

Reaction condition Reaction time (h) Yield (%) Entry Catalyst 1 FeCl₃ 10 70 2 AlCl₃ 12 60 3 SbCl₃ 3 96 4 SnCl₃ > 125 PTSA > 12

Table 2. Catalyst screening in the synthesis of 1,2,3-triazolylindole hybrid (5a).

Scheme 4. Synthesis of 1,2,3-triazolyl indole hybrids (5a–l).

Here, we report for the first tme the synthesis of hybrid compounds containing 1,2,3-triazole and indole skeleton via. SbCl₃ catalysed conjugate addition of indoles to 1,2,3-triazolyl chalcones, the details of which are presented *vide infra*.

In the preliminary study, for the purpose of screening of the catalyst, FeCl_3 (10 mol%) was used as catalyst in the Michael addition of indole (**4**, 1.0 equiv) to the chalcone (**3a**, 1.0 equiv) which gave the product (**5a**) in 60% yield in 10 h (scheme 3). The reaction was then performed by varying the catalysts (table 2, entry 1–5). This screening study indicated that SbCl₃ (table 2, entry 3) is the best catalyst affording 96% of **5a** in short reaction time (3 h). Further, to establish the broad scope of the catalyst, synthesis of a series of 1,2,3-triazole-indole hybrids (5) has been accomplished via the Michael addition of indole/2-methylindole (4) with 1,2,3-triazolyl chalcones (3) in the presence of SbCl₃(10 mol%) in CH₃CN (scheme 4). Generally, after completion of the reaction as indicated by TLC, the catalyst was filtered and the filtrate concentrated under reduced pressure to give the crude product, which on triturating with petroleum ether afford the 1,2,3-triazolyl indole hybrids (5a–l) as solids in excellent yields (95–98%, table 3). The products were recrystallized from ethanol.

The synthesized compounds were characterized by NMR (1D and 2D), IR and mass spectral techniques.

Entry	Chalcone (3)	Indole (4)	1,2,3-triazolyl indole hybrid (5a–l)	Time (h)	Yield (%)
1	3a	HNN	N=N N+O CH ₃ 5a	3	96
4	3c	H N	N=N N CH ₃ Br 5b	3.5	95
2	3e	H	N=N N CH ₃ O CH ₃ 5c	3	98
3	3g	H	N=N N+ CH ₃ NO ₂ 5d	3.5	95
5	30	H N	N=N N CH ₃ Cl Cl Cl 5e	4	95
6	3 s	H N	N=N N=N CH ₃ 5f	4	97
7	3 a	H N CH ₃	N=N CH ₃ CH ₃ 5g	3.5	97

 Table 3.
 Synthesis of 1,2,3-triazolyl indole hybrids (5a–l).

Entry	Chalcone (3)	Indole (4)	1,2,3-triazolyl indole hybrid (5a–l)	Time (h)	Yield (%)
10	Зс	H N CH ₃	N=N CH ₃ Br 5h	3.5	96
8	3e		N=N CH ₃ CH ₃ CH ₃ 5i	3	98
9	3g		N=N N CH ₃ NO ₂ 5j	3.5	95
11	30		N=N CH ₃ CH ₃ Cl 5k	4	95
12	3s		N=N N+ CH ₃ 51	4	95

Figure 1. Selected ¹H and ¹³C NMR chemical shift values.

Selected ¹H and ¹³C NMR chemical shift values of representative compounds **3a** and **5a** are presented *vide infra* (figure 1).

4. Conclusion

In conclusion, we have reported for the first time a facile, rapid, mild and environmentally benign, green protocol for the synthesis of a library of 1,2,3-triazolyl chalcone hybrids by just grinding the reactants and SbCl₃ catalysed synthesis of a series of 1,2,3-triazolyl indole hybrids via Michael addition in excellent yields.

Supplementary information

The supplementary information can be seen in www.ias.ac.in/chemsci.

Acknowledgements

The authors thank Intensification of Research in High Priority Areas (IRHPA), the Department of Science and Technology (DST), India for providing 300 MHz NMR instrument for recording the NMR spectra for the compounds synthesized and the University Grants Commission (UGC), India for giving financial support.

References

- 1. Nowakowska Z 2007 Eur. J. Med. Chem. 42 125
- 2. Akihisa T, Tokuda H, Hasegawa D, Ukiya M, Kimura Y and Enjo F 2006 *J. Nat. Pro.* **69** 38
- Modzelewska A, Pettit C, Achanta G, Davidson N E, Huang, P and Khan S R 2006 *Bioorg. Med. Chem.* 14 3491
- Dominguez J N, Leon C, Rodrigues J, Gamboa de Dominguez N, Gut J and Rosenthal P J 2005 J. Med. Chem. 48 3654
- Nielsen S F, Christensen S B, Cruciani G, Kharazmi A and Liljefors T 1998 J. Med. Chem. 41 4819
- 6. Yang H M, Shin H R, Cho S H, Bang S C, Song G Y and Ju J H 2007 *Bioorg. Med. Chem.* **15** 104
- Cheenpracha S, Karalai C, Ponglimanont C, Subhadhirasakul S and Tewtrakul S 2006 *Bioorg. Med. Chem.* 14 1710
- Svetaz L, Tapia A, Lopez S N, Furlan R L F, Petenatti E and Pioli R 2004 J. Agri. Food Chem. 52 3297
- 9. Nerya R, Musa S, Khatib S, Tamir and Vaya J 2004 *Phytochemistry* **65** 1389
- (a) Aufort M, Herscovici J, Bouhours P, Moreau N and Girard C 2008 *Bioorg. Med. Chem. Lett.* 18 1195; (b) Wang X L, Wan K and Zhou C H 2010 *Eur. J. Med. Chem.* 45 4631; (c) Odlo K, Hentzen J, Chabert J F D, Ducki S, Gani, O A B S M, Sylte I, Skrede M, Florenes V A and Hansen T V 2008 *Bioorg. Med. Chem.* 16 4829
- 11. Li W T, Wu W H, Tang C H, Tai R and Chen S T 2011 Combinatorial. Sci. 13 72

- Alvarez R, Velazquez S, San-Felix A, Aquaro S, De Clerq E, Perno C F, Karlsson A, Balzarini J and Camarasa M J 1994 J. Med. Chem. 37 4194
- Wang S, Wang Q, Wang Y, Liu L, Weng X, Zhang G L X and Zhou X 2008 *Bioorg. Med. Chem. Lett.* 18 6505
- (a) Aubry C, Patel A, Mahale S, Chaudhuri B, Marechal J D, Sutcliffe M J and Jenkins P R 2005 *Tetrahedron. Lett.* 46 1423; (b) Marugan J J, Manthey C, Anaclerio B, Lafrance L, Lu T, Markotan T, Leonard K. A, Crysler C, Eisennagel S, Dasgupta M and Tomczuk B 2005 *J. Med. Chem.* 48 926; (c) Fukuyama, T and Chen X Q 1994 *J. Am. Chem. Soc.* 116 3125
- (a) Zhang H C, Ye H, Moretto A F, Brumfield K K and Maryanoff B E 2000 Org. Lett. 2 89; (b) Faul M M, Winneroski L L and Krumrich C A 1998 J. Org. Chem. 63 6053; (c) Tani M, Matsumoto S, Aida Y, Arikawa S, Nakane A, Yokoyama Y and Murakami Y 1994 Chem. Pharm. Bull. 42 443
- 16. (a) Gribble G W 2000 J. Chem. Soc. Perkin Trans. 1 1045; (b) Moore R E, Cheuk C, Yan X Q, Patterson G M L, Bonjouklian R, Smitka T A, Mynderse J S, Foster, R S, Jones N D, Swartzendruber, J K and Deeter, J B 1987 J. Org. Chem. 52 1036; (c) Moore R E, Cheuk C, Patterson G M L 1984 J. Am. Chem. Soc. 106 6456
- 17. Kamalraj V R, Senthil S and Kannan P 2008 J. Mol. Struct. 892 210
- 18. Dhar D N 1981 New York: Wiley
- (a) Iranpoor N, Kazemi F, Iranpoor N and Kazemi E 1998 *Tetrahedron*. **54** 9475; (b) Narender T and Reddy K P 2007 *Tetrahedron*. *Lett.* **48** 3177
- 20. Szell T and Sohar I 1969 Can. J. Chem. 47 1254
- 21. (a) Drexler M T and Amiridis J 2003 J. Catal. 214 136; (b) Choudary B M, Ranganath K V, Yadav, J and Kantam M L 2005 Tetrahedron Lett. 46 1369; (c) Saravanamurugan S, Palanichamy M, Arabindoo B and Murugesan V 2004 J. Mol. Catal. A: Chem. 218 101
- 22. (a) Daskiewicz J B, Comte G, Barron D, Pietro A D and Thomasson F 1999 *Tetrahedron Lett.* 40 7095; (b) Sebti S, Solhy A, Smahi A, Kossir A and Oumimoun H 2002 *Catal. Commun.* 3 335; (c) Wang X and Cheng S 2006 *Catal. Commun.* 7 689
- 23. (a) Yang S D, Wu L Y, Yan ZY, Pan Z L and Liang Y M 2007 *J. Mol. Catal. A: Chem.* 268 107; (b) Dong F, Jian C, Hao F Z, Kai G and Liang L Z 2008 *Catal. Commun.* 9 1924; (c) Pilar F and Antonio G 2004 *J. Mol. Catal., A: Chem.* 214 137; (d) Shen J H, Wang H, Liu H C, Sun Y and Liu Z M 2008 *J. Mol. Catal. A: Chem.* 280 24
- 24. Gupta R, Gupta A K, Paul S and Kachroo P L 1995 Indian J. Chem. 34 61
- 25. (a) Funiss B S, Hannford A J, Smith P W G Tatchell A R 2004 Vogel's Textbook of practical organic chemistry, fifth edition 19 1032; (b) Guantai, Kanyile Ncokazi E M, Timothy E J, Jiri Gut, Rosenthal, P J, Smith, P J and Kelly Chibale 2010 Bioorg. Med. Chem. 18 8243; (c) Ahmed Kamal S, Prabhakar M, Janaki Ramaiah P, Venkat Reddy, Ratna Reddy A, Mallareddy Nagula Shankaraiah T, Lakshmi Narayan Reddy S, Pushpavalli N C and Manika Pal Bhadra V L 2011 Eur. J. Med. Chem. 46 3820

- Fun H K, Hemamalini M, Shanmugavelan P, Ponnuswamy A and Jagatheesan R 2011 Acta Cryst. E67 02707
- Fun H K, Hemamalini M, Shanmugavelan P, Ponnuswamy A and Jagatheesan R 2011 Acta Cryst. E67 02776
- 28. Sundberg R J 1996 *The Chemistry of Indoles*, New York: Academic Press 113
- (a) Saxton J E 1997 Nat. Prod. Rep. 14 559; (b) Toyota M and Ihara N 1998 Nat. Prod. Rep. 15 327
- 30. (a) Szmuszkovicz J 1957 J. Am. Chem. Soc. 79 2819;
 (b) Iqbal Z, Jackson AH, Rao and KRN 1988 Tetrahedron Lett. 29 2577; (c) Tahir R, Banert K, Solhy A, Sebt S. 2006 J. Mol. Catal. A. 39 246; (d) Zhou W, Xu L W, Yang L, Zhao P Q and Xia C G 2006 Eur. J. Org. Chem. (23) 5225
- 31. (a) Zhan Z P and Lang K 2005 Synlett (10) 1551; Yadav J S, Reddy B V S, Baishya G, Reddy K V and Narsaiah A V 2005 Tetrahedron 61 9541; (b) Zhan Z P, Yang R F and Lang K 2005 Tetrahedron Lett. 46 3859

- 32. Noland W E, Christensen G M, Sauer G L and Dutton G G S 1955 *J. Am. Chem. Soc.* **77** 456
- 33. (a) Harrington P and Kerr M A 1998 Can. J. Chem.
 76 1256; (b) Loh T P and Wei L L 1998 Synlett (9) 975; (c) Loh T P, Pei J and Lin M 1996 Chem. Commun. (20) 2315; (d) Yadav J S, Abraham S, Reddy BVS and Sabitha G 2001 Synthesis. (14) 2165; (e) Bandini M, Cozzi PG, Giacomini M, Melchiorre P, Selva S and Umani-Ronchi A 2002 J. Org. Chem. 67 3700
- 34. (a) Tahir R, Banert K, Solhy A and Sebti S 2006 J. Mol. Catal. A Chem. 246 39; (b) Ko S K Lin C C, Tu Z J, Wang Y F, Wang C C and Yao, C F 2006 Tetrahedron Lett. 47 487; (c) Bandini M, Cozzi P G, Giacomini M, Melchiorre P and Selva S 2002 J. Org. Chem. 67 3700; (d) Ji S J and Wang S Y 2005 Sonochem. 12 339; (e) Srivastava N and Banik B K 2003 J. Org. Chem. 68 2109; (f) Ekbote S S, Panda, A G, Bhor M D and Bhanage B M 2009 Catal. Commun. 10 1569; (g) Li D P, Guo Y C, Ding Y and Xiao W J 2006 Chem. Commun. 37 799