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Figure 1. Structures of some of the new natural produ
co-workers from sun-cured Greek tobacco leaves.
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A total synthesis of a Greek tobacco lactonic natural product and three of its analogues has been achieved
using a commercially available starting material and our furan approach to oxacyclic systems, the proven
scope of which is thus broadened.
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Wahlberg and co-workers isolated in 1993,1 13 lactones from
an extract of sun-cured leaves of Greek tobacco. Nine of these lac-
tones were new natural products, some of them are depicted in
Figure 1.
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The bicyclic lactone (3aR,5R,7aR)-7a-methyl-5-(prop-1-en-2-
yl)hexahydro-2H-furo[3,2-b]pyran-2-one (1) was isolated in race-
mic form due to the fact that its proposed biogenesis is not an
enantioselective process. Clark et al.2 published in 2007 the first to-
tal synthesis of 1, completed its characterization and confirmed its
relative stereochemistry.

As outlined in Scheme 1, we anticipated that lactone 1 could be
synthesized using a methodology we developed in our laboratories
and which we coined the furan approach to oxacyclic systems.3

Accordingly, 4-hydroxybutenolide (9) was prepared as shown
in Scheme 2.

Commercially available ester 8 was easily transformed into
aldehyde 11 in two steps (85% overall) or in one step using DI-
BAL-H (75% yield). Metalation of vinyl bromide 12 and addition
to aldehyde 11 afforded alcohol 13 (70%) which was protected as
tert-butyldiphenylsilylether, giving 14 in 99% yield. Furan 14 was
subjected to singlet oxygen oxidation3f affording hydroxybuteno-
lide 9 in 77% yield.

With hydroxybutenolide 9 in hand, our next goal was to intro-
duce an angular methyl group, which was achieved by addition of
O
O

OEt
OTBDPS 8

analysis of lactone 1.
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Scheme 2. Reagents and conditions: (i) LiAlH4, Et2O, rt (96%); (ii) TEMPO, BAIB, CH2Cl2 (89%); (iii) DIBAL-H, CH2Cl2, �78 �C (75%); (iv) 12, tBuLi, THF, �78 �C (70%); (v)
TBDPSCl, Imid, DMAP, DMF, rt (99%); (vi) O2, MeOH, Rose Bengal, DIPEA, hm �78 �C (77%).
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Scheme 3. Reagents and conditions: (i) (i-PrO)3TiCl, MeLi, �78 �C to rt (63%); (ii)
TBAF, THF, rt [1 (51%) and 16 (30%)].
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Figure 2. NOE correlations for lactones 1 and 16.
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Figure 3. NOE correlations for lactones 19 and 20.
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(i-PrO)3TiCH3 to 9, following Miles’s procedure.4 In our case, how-
ever, the best yields for 15 were obtained when the organotitani-
um reagent was generated in situ (Scheme 3). Use of lithium or
Grignard reagents afforded very poor yields of compound 15.
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Scheme 4. Reagents and conditions: (i) TBSCl, imidazole, DMAP, DMF (99%); (ii) (a) O2, h
(24%)].
Reaction of c-lactone 15 with TBAF at room temperature afforded
target compound 15 in 51% yield, together with 30% of diastereo-
isomeric lactone 16.6 The NMR data of lactone 1 were in close
agreement with those reported by Clark et al.2

The relative stereochemistries of 1 and 16 were established by
NOE experiments (Fig. 2).

Having synthesized lactone 1 and its diastereoisomer 16, we
decided to use our furan approach to oxacyclic systems,3 for the
synthesis of 19 and 20, two new analogues of 1 (Scheme 4).

Accordingly, alcohol 13 was protected as tert-butyldimethylsil-
ylether, giving 17 in 99% yield. Furan 17 was subjected to singlet
oxygen oxidation3i affording methoxybutenolide 18 in 81% yield.
Reaction of butenolide 18 with TBAF at room temperature afforded
lactones 197 and 208 in 53% and 24% yields, respectively.

The relative stereochemistries of 19 and 20 were established by
NOE experiments (Fig. 3).

In conclusion, using our furan approach we have synthesized
bicyclic lactone (3aR,5R,7aR)-7a-methyl-5-(prop-1-en-2-yl)hexa-
hydro-2H-furo[3,2-b]pyran-2-one (1) and its three new analogues
16, 19, and 20 which were fully characterized.
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m, Rose Bengal, MeOH; (b) Ac2O, Py, DMAP (81%); (iii) TBAF, THF, rt [19 (53%) and 20
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