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Abstract: Tryptophans are building blocks for many natural prod-
ucts. This paper describes the enantiospecific synthesis of ring-A
substituted tryptophan derivatives from commercially available
gramines using chiral phase-transfer conditions. This one-pot reac-
tion avoids protecting/deprotecting the indolylic nitrogen of gra-
mine by choosing a chemoselective quaternization reagent, 4-(trifluoro-
methoxy)benzyl bromide, to produce an electrophilic salt interme-
diate, which is subsequently alkylated in good yield with high enan-
tiomeric excess.

Key words: asymmetric synthesis, one-pot, organocatalysis, phase
transfer, tryptophan

Optically active tryptophans have been regarded as im-
portant components in the areas of both synthetic and me-
dicinal chemistry.1 Ring-A substituted tryptophans have
been utilized in the design and synthesis of many biologi-
cally active compounds, including indole-based alkaloids,
which have recently been receiving attention for their
anti-cancer properties.2 Several methods are known to ef-
fectively synthesize enantiopure tryptophans, but most
strategies are only suitable for a particular species of tryp-
tophan.3 Many of these methods use stoichiometric
amounts of chiral auxiliaries and extensive multistep syn-
theses, and often involve problematic separation of iso-
mers obtained in the alkylation and annulation steps.3 In
recent years, asymmetric phase-transfer catalysis (PTC)
has been established as a powerful tool in the synthesis of
chiral mono- and di-substituted α-amino acids.4,5 To date,
the only reported asymmetric substitution of this type uti-
lizes a relatively unstable Boc-protected indole to synthe-
size α-methyl tryptophan in 78% yield and 91% ee,5e but
there has not been a general synthesis of chiral trypto-
phans via PTC reported. In this paper, we describe a sim-
ple, cost-effective, one-pot synthetic procedure that can
be used to prepare chiral tryptophan derivatives via a
phase-transfer-catalyzed (PTC) asymmetric alkylation re-
action. We believe that this approach is the most econom-
ical and versatile process for synthesizing these important
chiral building blocks.

In this study, a cinchona-derived phase-transfer catalyst
was employed in the first reported PTC synthesis of chiral
tryptophan derivatives, using a glycine Schiff base and
various gramine derivatives. The first experiment, using

substrate 1a, glycine Schiff base 3, catalyst 4, and 50%
aqueous NaOH/CH2Cl2 resulted in a disappointing race-
mic mixture of product with a chemical yield of 15% and
reaction time of 50 hours (5a; Scheme 1). Such alkylation
using gramine has been thoroughly studied in achiral sys-
tems, with an intermediate 3-methylene indolenine
(Scheme 1) being identified.6

Scheme 1  Reaction of gramine 1a with glycinate 3 in the presence
of the catalyst 4 and an external base

The low chemical yield was attributed to the difficult task
of eliminating Me2NH to generate the product. To offset
this matter, 1a was converted into a quaternary salt 2a us-
ing iodomethane, which resulted in a much improved
chemical yield of 75% (5a; Scheme 2), albeit with no
asymmetric induction. The latter result may be due to the
fact that 2a is very soluble in water, and insoluble in di-
chloromethane, which are not ideal conditions for asym-
metric PTC reaction.4,5 In order to improve the
asymmetric induction, we attempted to change the polari-
ty of the quaternary salt, making it very soluble in dichlo-
romethane and partially soluble in water. Upon
introduction of a bulky hydrophobic triisopropylsilyl
(TIPS) protecting group on the indolylic nitrogen of the
substrate (1b; Scheme 2), we were able to improve the
enantioselection (84% ee) of the PTC alkylation reaction
using one equivalent of catalyst (5a; Scheme 2). In addi-
tion, the TIPS group was removed during the alkylation
process. 
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We screened other commercially available catalysts to de-
termine if any were more effective than catalyst 4 for this
alkylation reaction. From our results, summarized in
Scheme 3, it was revealed that catalyst 4 (Scheme 2) was
the catalyst of choice for best enantioselection.

Further studies revealed that changing the quaternization
reagent from iodomethane to 4-(trifluoromethoxy)benzyl
bromide (7) eliminated the need for protection/deprotec-
tion steps, allowing for the quaternization and chiral al-
kylation steps to be carried out in one pot (Scheme 4). The
one-pot asymmetric alkylation was a success because the
salt formed from 7 and gramine 1a was found to be insol-
uble in water, similar to salt 2b. Changing quaternization
reagents from iodomethane to 4-(trifluoromethoxy)ben-
zyl bromide (7; Scheme 4), not only rendered a one-pot

transformation feasible, but also resulted in both an in-
crease in yield and a reduction in the reaction time (<1 h;
Scheme 5). 

In order to further improve the chemical and enantioselec-
tion, a number of variables were studied for the alkylation
reaction in dichloromethane. Increasing the concentration
of aqueous NaOH from 10 to 50% resulted in an increase
in enantioselection. Changing base from 50% aqueous
NaOH to 45% aqueous KOH resulted in an increase in en-
antioselection from 65 to 80% ee. The use of other com-
mon bases such as CsOH or Ba(OH)2 did not improve the
chemical or enantioselection of the product. Further
screening of solvents such as tetrahydrofuran (THF) (6%
ee), dioxane (84% ee) and toluene (71% ee) showed that
similar results were obtained with dichloromethane and

Scheme 2 Synthesis of quaternary salt 2 by reaction of gramine 1 with MeI, followed by alkylation with glycinate 3 under phase-transfer con-
ditions using catalyst 4 and external base
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dioxane, leading to slightly higher enantioselectivity.
Lowering the reaction temperature from 25 to –30 °C re-
sulted in a further increase in enantioselection (80% ee af-
ter 2 h at 25 °C, 84% ee after 8 h at –30 °C). However,
further cooling (–78 °C) increased the reaction time to
15 h but gave no additional improvement in enantioselec-
tion. The low temperature reactions were run in dichloro-
methane because of the relatively high freezing point of
dioxane. Although we had determined that increased reac-

tion rates and selectivity were achieved with higher base
concentrations, the effect of water on the enantioselectiv-
ity was also studied (Table 1).7 We discovered that a min-
imum of six equivalents of water was needed to achieve
excellent enantioselection of the product (Table 1, entry
2). In these reactions, a minimum 20 mol% of catalyst 4
was required for optimal chemical and enantioselection.8

Once the alkylation variables were optimized, we began
structure–activity relationship (SAR) studies of catalyst 4
(Scheme 6) in the asymmetric one-pot alkylation of 1a

Scheme 4One-pot synthesis of chiral tryptophanate 5a by reaction of gramines 1a with glycinate 3 and catalyst 4, using quaternization reagent
7 under ambient conditions
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Scheme 5 Screening of quaternization reagents using gramine 1a un-
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Table 1  Effect of Varying the Amount of Water on the Reaction

Entry H2O (equiv) Time (h) Yield (%)a ee (%)b

1 100 8 80 85

2 6 18 80 92

3 3 19 >95 83

a Yield determined by HPLC analysis.
b Determined by chiral HPLC analysis (Chiralcel OD column; IPA–
heptane, 5%; 254 nm DAD; 1 mL/min flow rate; 40 °C column tem-
perature).

Scheme 6 Structure–activity relationship studies in the asymmetric alkylation of gramine 1a with glycinate 3 with external base in a one-pot
reaction
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and 3 in dichloromethane at –30 °C using solid KOH with
six equivalents of water. The study revealed that both the
bromide counter-anion and the N-anthracenyl group play
an intimate role in the ability of catalyst 4 to induce high
enantioselection. Changing the counter-anion from bro-
mide to chloride resulted in a decrease in enantioselection
to 60% (Scheme 6), which may be due to increased solu-
bility of the catalyst in water. Substituting the anthracenyl
group with a less bulky 3,4,5-trifluorobenzyl group also
resulted in a decrease in enantioselection to 70% (Scheme
6). Steric influences were believed to be a contributing
factor toward increasing enantiodifferentiation.4,5

After optimizing the reaction with gramine 1a, which re-
sulted in a good yield and excellent enantiomeric excess,
we expanded the scope of our study to other gramine-type
substrates, specifically ring-A substituted gramines such
as 5-methoxy, 6-methoxy, and 5-bromogramine (Scheme
7).8 All the gramines tested are commercially available
and provided good yields with excellent optical purity.

In conclusion, a systematic study of substrate, catalyst, re-
agents, and reaction conditions led to a simple, enantiose-
lective synthesis of L-tryptophan derivatives using chiral
phase-transfer catalysis in a one-pot fashion. 
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tert-Butyl 2-(Diphenylmethyleneamino)-3-(5-methoxy-
1H-indol-3-yl)propanoate (Scheme 6; Compound 8): 1H 
NMR (300 MHz, CDCl3): δ = 8.19 (s, 1 H), 7.59 (d, J = 
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1H-indol-3-yl)propanoate (Scheme 6; Compound 9): 1H 
NMR (300 MHz, CDCl3): δ = 8.39 (s, 1 H), 7.63–7.71 (d, J 
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