
This article was downloaded by: [University of Reading]
On: 03 January 2015, At: 22:42
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number:
1072954 Registered office: Mortimer House, 37-41 Mortimer Street,
London W1T 3JH, UK

International Journal of
Production Research
Publication details, including instructions for
authors and subscription information:
http://www.tandfonline.com/loi/tprs20

Modelling and evaluating
product end-of-life options
G. Erdos , T Kis & P. Xirouchakis
Published online: 14 Nov 2010.

To cite this article: G. Erdos , T Kis & P. Xirouchakis (2001) Modelling and
evaluating product end-of-life options, International Journal of Production
Research, 39:6, 1203-1220, DOI: 10.1080/713845985

To link to this article: http://dx.doi.org/10.1080/713845985

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all
the information (the “Content”) contained in the publications on our
platform. However, Taylor & Francis, our agents, and our licensors
make no representations or warranties whatsoever as to the accuracy,
completeness, or suitability for any purpose of the Content. Any
opinions and views expressed in this publication are the opinions and
views of the authors, and are not the views of or endorsed by Taylor
& Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information.
Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities
whatsoever or howsoever caused arising directly or indirectly in
connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study
purposes. Any substantial or systematic reproduction, redistribution,
reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access

http://www.tandfonline.com/loi/tprs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/713845985
http://dx.doi.org/10.1080/713845985

and use can be found at http://www.tandfonline.com/page/terms-and-
conditions

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

int. j. prod. res., 2001, vol. 39, no. 6, 1203 ± 1220

Modelling and evaluating product end-of-life options

G. ERDOSy, T. KISz and P. XIROUCHAKISy*

The paper focuses on the modelling and evaluating product end-of-life options,
which is the problem of representing products and determining disassembly
sequences with the objective of maximizing revenue. For the problem considered
here, three algorithms were developed. The ® rst is the algorithm to generate the
product recovery graph semi-automatically for a given product liaison graph.
Then, using the generated product recovery graph, another algorithm is
developed to obtain optimal disassembly plans that maximize revenue. This algor-
ithm is based on the backward calculation so that the hyperedges of the recovery
graph are visited only once. Finally, to cope with uncertainties of the end-of-life
products, a recovery graph questioning algorithm is suggested to ® nd the margin
of allowed revenue reduction of a given target edge that maintains the same
optimal plan. Application of the three algorithms is illustrated using an example.

1. Introduction

Environmentally conscious design and manufacturing (ECD&M) is a view of

manufacturing that includes the social and technological aspects of the design,

synthesis, processing, use and end-of-life of products in manufacturing (Zhang et
al. 1997). The importance of ECD&M is steadily growing for product designers and

manufacturers since it allows designers and manufacturers to minimize waste and to

turn waste into a pro® table product. This trend urges product developers to design

better products from the point of view of a complete product life cycle, which is

closely related to the cradle-to-grave approach. As a ® rst step towards addressing the

entire problem, the end-of-life phase is considered among the various stages of a
product’s life cycle. That is, this paper focuses on a subproblem of optimizing the

product’s end-of-life (EOL) options. During the design of a new product, there is a

need for predictive planning to evaluate diŒerent EOL options and to adapt the

product design for an optimized performance. The design solutions, i.e. product

structure, material selection, part geometry and joint design, will then be dependent
on the future EOL priorities.

Many methods have been developed for estimating product EOL. See Zussman

et al. (1994) for description and calculation methods for various EOL options such

as disposal, material recycling, reuse, separation and disassembly. Among the exist-

ing approaches, the most important ones are: (1) product structure independent
approach and (2) product recovery plan approach. The main idea of the ® rst

approach is to calculate the EOL of individual components outside the context of

a speci® c product structure. In spite of the wide applicability of this method, it does

not take into account the eŒects of the context in which the element is embedded.

International Journal of Production Research ISSN 0020± 7543 print/ISSN 1366± 588X online # 2001 Taylor & Francis Ltd

http://www.tandf.co.uk/journals

DOI: 10.1080/00207540010009705

Revision received July 2000.
{ Department of Mechanical Engineering and zDepartment of Mathematics, Swiss

Federal Institute of Technology at Lausanne (EPFL), Lausanne, CH-1015, Switzerland.
* To whom correspondence should be addressed. e-mail: paul.xirouchakis@ep¯ .ch

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

The second approach overcomes this shortcoming, because it speci® es in detail how

to disassemble the product and what are the EOL options of the resulting subassem-
blies and/or parts.

Most publications follow the product recovery plan approach, in which the

alternative disassembly plans are represented by means of the AND/OR graph

and its variations. The product recovery plan approach results in a more accurate

evaluation of optimal EOL, but existing methods assume that the disassembly AND/

OR graph is given. The automatic generation of disassembly sequences is rooted on
the works of Bourjault (1984), Homem de Mello and Sanderson (1990, 1991) and

Sanderson et al. (1990). Their methods are originally developed to generate assembly

sequences, but they also incorporate the disassembly sequence generation. They use

the liaisons between components registered in the connection diagram structure,

which is called the liaison diagram, and a set of precedence rules to generate the
possible disassembly sequences. Among them, Homem de Mello and Sanderson

(1990) introduce the AND/OR graph to develop an algorithm that generate all

assembly sequences, in which disassembly sequences are considered as the reversed

ones of the corresponding assembly sequences. In particular, Kanehara et al. (1993)

show several properties for the AND/OR graph using Petri-nets in order to use

linear programming techniques for the assembly sequencing.
There are research articles on the disassembly sequencing problem. Johnson and

Wang (1995) suggest an algorithm for the problem with the objective of maximizing

pro® t. Also, they suggest an economic index to determine recovery or disposal of the

product and four criteria to reduce the search space in the form of clustering.

Johnson and Wang (1998) extend their model by including the two-commodity net-
work problem to solve the disassembly sequencing. Penev and de Ron (1996) con-

sider the problem of determining the disassembly level to maximize the revenue, in

which the decision variable is whether more disassembly operations are required at

each stage of disassembling of a product. Pnueli and Zussman (1997) suggest a

dynamic programming algorithm for the disassembly sequencing that includes the

end-of-life value of a product. Using this algorithm, they suggest several procedures
for redesign-for recycling problem, in which weak spots in the design are identi® ed

and possible solutions are suggested. Kriwet et al. (1995) emphasized the redesign

aspect of the disassembly planning problem, which is an approach for incorporating

recycling considerations into product design. Zussman and Zhou (1999) modi® ed the

model using Petri nets and suggested an operational strategy to cope with the
uncertainty of certain disassembly operation. Unlike the complete disassembly,

Lambert (1997) presented a dynamic programming algorithm for determining the

optimal disassembly sequence for selective disassembly of complex products with the

objective of maximizing the revenue. Here, the selective disassembly implies incom-

plete disassembly sequences, i.e. an unde® ned ® nal state of disassembly. For this

problem, Lambert (1999a, b) suggested a linear programming formulation, which is

a generalized version of Kanehara et al. (1993). In particular, Lambert (1999a)
presented a sensitivity analysis to cope with uncertainties based on the suggested

linear programming model. For other mathematical programming method, see

Navin-Chandra (1994), which is based on a modi® cation of the travelling salesman

problem. For the more general problem that includes disassembly sequencing,
Krikke et al. (1998) consider the problem of determining to what extent the products

are disassembled and which recovery options are applied with the objective of max-

imizing net pro® t, and suggest a two-phased procedure using dynamic programming.

1204 G. Erdos et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

Kanai et al. (1999) suggested a disassembly model that considers the destructive

disassembly, shredding of parts to fragments and sorting of materials. In their

model, they used four kinds of graphs to represent products and processes. See

Subramani and Dewhurst (1991), Lee and Kumara (1992), de Ron and Penev

(1995), Gungor and Gupta (1998) and Moore et al. (1998) for other various disas-

sembly models and algorithms. Also, various issues and literature survey on disas-

sembly planning can be found in Gupta and McLean (1996) and O’Shea et al. (1998).

This paper focuses on the disassembly sequencing problem with EOL options,

which is the problem of representing products with AND/OR graphs and determin-

ing disassembly sequences with the objective of maximizing the total pro® t. Here, the

pro® t is de® ned as the revenues from disassembled parts minus disassembly cost. To

solve the problem, one ® rst suggests an algorithm to generate the product recovery

graph semi-automatically for a given product liaison graph. Unlike the previous

research, our starting point is the liaison diagram, not the (disassembly) AND/OR

graph. That is, using the algorithm suggested in this paper, the AND/OR graph is

derived semi-automatically from the corresponding liaison diagram and is not con-

sidered as assumed in previous research. Note that, to the best of authors’ knowl-

edge, the AND/OR graph is assumed to be given in most of the published literature.

Then, based on the generated product recovery plan approach, a method capable of

evaluating a product’s EOL is presented. Our method does not require the pre-

optimization of the EOL options of the subassemblies, since the concept of hyper-

edge was utilized. Here, each hyperedge allows to treat the EOL options in the same

manner as a disassembly operation, i.e. each node in the product recovery graph is

connected to all possible EOL options and not just a preselected optimal option for

the connected node. The advantage of this approach is that the changes in EOL can

be easily considered without changing the recovery graph. Furthermore, to cope with

the uncertainty of the product, an algorithm was developed for questioning the

recovery graph to analyse the value window of a target edge.

The presented algorithms have been implemented using Mathematica (Wolfram

1996), which can be the kernel of a system for product EOL options modelling and

evaluation. The overall software system architecture is displayed on ® gure 1. As one

can see, the kernel of the method can be divided into the following two main parts.

. Generate the disassembly AND/OR graph and extend it to the recovery graph.

. Find the optimal disassembly plan by searching feasible disassembly plans in

the recovery graph under various optimization criteria.

The generation of the disassembly AND/OR graph is based on the liaison graph

and precedence relations. The approach is similar to the method developed by

Homem de Mello and Sanderson (1990), but the complementary set method was

used instead of the cut-set method to generate candidate sequences. In the cut set

method, all connected subgraphs with cardinality smaller than or equal to half of the

total number of nodes were searched, and then a cut set was found that could divide

the whole graph into two parts. However, in the complementary set method, com-

plementary subassemblies were determined to generate the disassembly AND/OR

graph. A detailed explanation is given in Section 2.2. For another approach to

generate precedence graph for product structure analysis, see Danley et al. (1999).

The precedence relationsÐ both geometrical and technological Ð are considered

to be given and are used to prune the infeasible sequences. This graph is then

1205Product end-of-life options

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

extended into a recovery AND/OR graph by adding ® nal states to it. A list of weight

label data sets is attached to every hyperedge of the graph during the generation. The

numerical values of these weights can be changed during the search, where the weight

values attached to the hyperedges represent either a disassembly cost or an EOL

value. Each hyperedge value is either revenue (positive) or cost (negative).

Here, a search algorithm is used to obtain diŒerent optimal EOL plans for a

product. The search algorithm utilizes the attached numerical cost/revenue values of

the weight labels, which should be given by the user. This process is described

schematically by the arrow connecting the `EOL ‡ Disassembly cost data’ box

with the `Graph database (lookup tables)’ box in ® gure 1. Since the number of

attached numerical cost/revenue data sets was not limited, it is possible to search

optimal EOL options from diŒerent point of views (shortest time, lowest impact on

the environment, higher bene® t, etc.). The optimization can be based on diŒerent

criteria by simply choosing the corresponding data set of the parametric weight

labels. It is also possible that the optimization be based on the weighted sum of

these data sets. The utilized evaluation rule has to be provided by the user together

with the corresponding cost/revenue data set, which can be obtained from an expert

system. Besides the optimal plan search, an algorithm was designed to answer certain

questions concerning the optimal EOL options of a target subassembly.

In Section 2, the generation of the recovery AND/OR graph and the associated

data structure are discussed, as is the topological search algorithm utilized for ® nd-

ing the optimal EOL plan of a product is given in Section 3. Section 4 presents the

algorithm of target edge analysis (questioning the graph). Section 5 concludes with

recommendations for future research.

1206 G. Erdos et al.

CAD
assembly model

Precedence
rules

Disassembly
AND/OR graph
generation

Search for Optimal
end-of-life options

Questioning the
graph

Recovery
AND/OR graph
generation

EOL+ Disassembly
cost/revenue data Graph database (lookup tables)

Evaluation
rules

Figure 1. Software system architecture.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

2. Recovery plan generation

2.1. DeWnitions and assumptions
The automatic or semi-automatic generation of the disassembly AND/OR graph

is based on the enumeration of all possible subassemblies of a product. In general, it

is di� cult to take into consideration all destructive disassembly operations. Only

those such as disconnecting a soldered cable can be easily included similar to non-
destructive operations. Other destructive operations are usually case speci® c and

their number is limited. Therefore, they can be added manually to the generated

graphs. For example, some liquid contaminant can be removed by drilling its con-

tainer. Here, it is assumed that a destructive disassembly operation is utilized if it

reduces the EOL processing costs of the product. Hence, although one cannot eval-

uate all of the possible destructive disassembly operations, the optimization still can

provide a good estimation of the upper limit for the EOL processing costs of the
product.

Since the goal is to get a ® rst estimate, i.e. the decomposition of disassembly

operations into detailed disassembly steps is not considered, one takes into account

only the geometricÐ or blockingÐ precedences used in the enumeration of the non-

destructive disassembly sequence generation. The technological details of the opera-
tions are not considered explicitly but are included implicitly in the cost/revenue

values, which are attached to the operations.

The starting point of the generation of the disassembly AND/OR graph is the

product structure. In general, a product can be considered as an assembly of com-

ponents. Hence, a product can be modelled as a non-oriented graph called connec-
tion graph, where each node represents component and each edge corresponds to

physical connection between the components. A disassembly operation is considered

as an edge cut of this non-oriented graph.

The automatic construction of the disassembly AND/OR graph is based on two

assumptions: (1) a disassembly operation results in two separate connected subas-

semblies; and (2) the set of feasible disassembly operations is restricted by the pre-
cedence rules. As a consequence of the ® rst assumption, only one piece, which can be

a subassembly or a component, can be separated with one operation. This assump-

tion does not con¯ ict with the more realistic case, where disassembly operations can

result in more than two connected subassemblies because this can be modelled as a

sequence of two disassembly operations. For example, a screw may hold three or
more components together. The cost and revenue values attached to such operations

naturally have to be distributed to the resulting operations. The intuition behind the

second assumption is that the non-destructive disassembly operations have to obey

the geometric blocking constraints. These precedence constrains can be deduced

from the detailed knowledge of the geometry of the product. The automatic extrac-
tion of the precedence rules is not considered in this article, and is considered as a

part of the input.

2.2. Recovery AND/OR graph

Explained here is the algorithm for generating the recovery AND/OR graph that

iteratively generates all the possible subassemblies of a given product. Here, the

subassemblies are generated on non-destructive disassembly operations. A detailed

description of the algorithm is given in the pseudo code of ® gure 2.
The kernel of the iteration is the construction of the feasible subassembly pairs

based on the input product. A feasible subassembly pair is created by an operation

1207Product end-of-life options

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

that does not have any precedence edge in either of the subassembly pairs. The

generated subassemblies are then recursively treated by the kernel until no further

pairs can be generated. The kernel is decomposed into the following two basic parts.

. Generating the neighbouring subassemblies, i.e. all possible connected subas-
sembly pairs that complement each other, and hence their union is equal to the

input subassembly. The set of neighbouring subassemblies is calculated by the

GetNeighbourSubassembly(subassembly) function in ® gure 2.

. Filtering out the subassembly-pairs that do not satisfy the precedence rules by

using the GetFeasibleSubassembly(neighbour-list , subassembly) function in

® gure 2.

The GetNeighbourSubassembl y function in ® gure 2 uses the complementary set

method. That is, one ® rst enumerates all connected subassemblies of the input prod-

uct and these are generated level by level, i.e. the ith level subassemblies consist of all

the sets of ith connected parts. Here, a subassembly with level i has i connected parts.

Then, this set is divided into a lower half set and an upper half set, depending on

whether the cardinality of components in the subassemblies is not greater or greater

than half the cardinality of the components in the product. For every subassembly in

the lower half set, its complementary set was calculated. The question is then posed

as to whether each complementary set is a member of the upper half-set. If the

answer is positive, then the subassembly and its complementary are moved into

1208 G. Erdos et al.

program Disassembly AND/OR Graph Generation

product ¬ connection graph of the product

precedence ¬ list of geometric precedence rules

subassembly ¬ (product, precedence)

quelist ¬ subassembly

graph-database ¬ Initialization with subassembly

while quelist ¹ 0 loop

subassembly ¬ first(quelist); remove subassembly from quelist

neighbour-list ¬ GetNeighbourSubassembly(subassembly)

feasible-list ¬ GetFeasibleSubassembly(neighbour-list, subassembly)

new-precedence ¬ UpdatePrecede nce(feasible-list , subassembly)

sub-subassembly-list ¬ CreateProductList(feasible-list , new-
precedence)

append sub-subassembly-list to graph-database

append sub-subassembly-list to quelist

endloop

end

Figure 2. Algorithm for the recovery AND/OR graph generation.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

the neighbouring subassembly set. After the neighbouring subassemblies are

de® ned, those pairs that violate the precedence rules have to be ® ltered out
(GetFeasibleSubassembly in ® gure 2). The precedence rules de® ne precedence

relations between disassembly operations, i.e. a disassembly operation can be used

only if certain connections have already been disassembled. The resulting set of

subassemblies is called feasible subassemblies. The ® nal step in the kernel is the
updating of the precedence rules. This is done by the UpdatePrecedence function,

which removes the already disassembled connections from the precedence list. See

Section 5 for an example of the recovery AND/OR graph generation.

The feasible subassembly pairs are recorded into the graph-database . This graph-

database represents an oriented AND/OR graph with the following properties: the

nodes of the graph are the feasible subassemblies and the edges are the disassembly

operations used to divide a parent-assembly into two child subassemblies. One dis-
assembly operation is represented by two edges emanating from one parent-assembly

pointing into two subassemblies. Therefore, this pair of edges is called a hyperedge.

During the generation of the disassembly AND/OR graph, a list of weight labels (or

costs) is attached to every hyperedge, which will be used in the optimal plan search

algorithm. After the generation of the disassembly AND/OR graph, the user can
examine the result and manually add some nodes and hyperedges, which correspond

to some speci® c destructive disassembly operations.

Finally, by adding terminal nodes to the disassembly AND/OR graph, it is

converted into the recovery AND/OR graph. A terminal node represents an EOL

option of a subassembly. The conversion of the disassembly AND/OR graph into a
recovery AND/OR graph is done by adding hyperedges from every node of the

original graph to the terminal nodes. The resulting graph is an acyclic oriented

hypergraph that has to be searched for the shortest hyperpath that corresponds to

the optimal EOL of the product.

3. Finding the optimal recovery plan

The problem of ® nding the optimal recovery plan in the disassembly AND/OR

graph is addressed, which corresponds to the shortest path in the acyclic directed
hypergraph. A directed hypergraph consists of a set of nodes and hyperedges

between the nodes. A hyperedge is an ordered pair of two sets of nodes, which are

called the tail and head of the edge, respectively, here. For example, the [f(Clip,

Pentop), Clipg, f(Clip, Pentop), Pentopg] edges in ® gure 6 represent a hyperedge

de® ned by the (Clip, Pentop) tail node and (Clip), (Pentop) head nodes. Note that an

ordinary directed graph is a special hypergraph having one single node in both tail
and head of each edge.

The application suggests the following restrictions: one only considers hyper-

graphs with edges whose tail consists of one single node. Furthermore, there is a

root node that is not the head of any hyperedge. One does not consider graphs in

which there is a closed chain of hyperedges, i.e. cycle. The leaves of a hypergraph will
be frequently referred to, which are those nodes that are not the tails of any hyper-

edges.

After weighting the hyperedges of the graph, it is the wish to ® nd the shortest

hyperpath from the root to the leaves of the graph. In our domain, such a path

represents a recovery plan. By summing up the weights of the hyperedges of a path,
one can obtain the pro® t (revenue minus cost) for choosing that path provided that

weights are assigned to hyperedges appropriately.

1209Product end-of-life options

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

Our method is basically an application of the well-known topological sort algor-

ithm to the hypergraph at hand Aho et al. (1987). However, it is modi® ed to ® nd the

shortest hyperpath from the root to the leaves. First, the following trivial

observation is made: for each node n in the graph described above, the length of

the shortest path from n to the leaves depends only on the weights of hyperedges

along a path from n to the leaves. Consequently, one can compute the shortest path

from the leaves to each node of the graph backwards, so that eventually the shortest

path to the root is also obtained. This is the well-known Bellman’s principle for

dynamic programming. Since the length of a hyperpath does not depend on which

direction it is traversed, what one gets is really the shortest hyperpath from the root

to the leaves. The advantage of the backwards calculation of the shortest hyperpath

is that the hyperedges are only visited once since the computation of the node pro® ts

and of the optimal hyperplan proceed simultaneously.

Figure 3 describes the algorithm with a pseudo code. The algorithm maintains an

agenda of nodes that initially consists of the leaves of the hypergraph. A node is on

the agenda if and only if all of its successors have been processed. Here, a successor

of a node is de® ned as the heads of the hyperedges emanating from the node. The

array OutEdges(n) indicates the number of edges emanating from node n that have

been processed; when it is zero for a node m, then m is placed on the agenda. For a

particular node on the hypergraph, its value is calculated as the maximum of the sum

1210 G. Erdos et al.

program Shortest Hyperpath

agenda ¬ leaves of the hypergraph

forall n Î nodes of the hypergraph loop

OutEdges(n) ¬ number of edges whose tail is n

value(n) ¬ - ¥

forall n Î leaves of the hypergraph loop

value(n) ¬ 0

while agenda ¹ 0 loop

n ¬ first(agenda); remove n from agenda

forall e Î hyperedges whose tail is n loop

value(e) ¬ weight(e) 1 å Î)()(eheadk kvalue

if value(n) , value(e) then

value(n) ¬ value(e)

next(n) ¬ e

forall e Î hyperedges whose head contains n loop

m ¬ tail(e)

OutEdges(m) ¬ OutEdges(m) ± 1

if OutEdges(m) 5 0 then append m to agenda

end

Figure 3. Algorithm that for obtaining the optimal recovery plan.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

of the weight of a hyperedge emanating from it plus its heads values. After running

the algorithm on a hypergraph de® ned above, the value of each node is maximized
and next(n) indicates the hyperedge emanating from node n that lies on the optimal

plan. By following the next directions in the hypergraph from the root, the shortest

hyperpath to the leaves can easily be read out.

4. Sensitivity analysis

The problem of ® nding the lowest value of a target edge is dealt with here
provided that the optimal plan remains unchanged. That is, by how much one can

lower the value (by lowering the value of a speci® ed edge), one gets from the calcu-

lated optimal plan without changing the optimality of the current plan. One is

essentially looking for the value distance between the current optimal plan and the

next suboptimal plan. From the practical viewpoint, this information can be useful

to estimate the bene® t margins from the sale of a used component or subassembly,
while maintaining the optimal recovery plan. To this end, it is assumed that one has

a hypergraph and its shortest hyperpath from the root to the leaves. Note that this

hyperpath can be obtained from the algorithm shown in ® gure 3.

Suppose that the optimal path joins the target component n to an end-of-life

option k. That is, there is a hyperedge (target edge) in the hypergraph whose tail is n,
i.e. the target component, and whose head is k and this hyperedge is a member of the

shortest hyperpath from the root to the leaves found by the shortest hyperpath algor-

ithm. Here, the target component is always the tail node of the target edge. Certainly,

this hyperedge has a weight that is the value of choosing end-of-life option k for

component n. One wants to ® nd out whether it is possible to decrease this value
without changing the optimal path and if the answer is a� rmative, to what extent?

To answer the question posed above, the hypergraph and edge respectively and

node values determined by our algorithm are used (® gure 4). If n is the target com-

ponent, then one examine the nodes starting with n up to the root along the shortest

path. For each node i, the diŒerence of the actual value and the second best value, if

any, are determined and represented by a hyperedge emanating from the node but
not selected in the shortest path. Certainly, if one decreases the weight of the hyper-

edge from n to the selected EOL option k by at most the minimum of these

diŒerences target_diV, then the optimal path remains the same. The reason is that

all values along this path (from n up to the root) will decrease by this amount and by

the de® nition of the minimum diŒerence, the new values of the in¯ uenced nodes can
attain only the second best value, but not less. The algorithm for calculating this

value window is shown in ® gure 4.

However, the sketched method only gives the most cautious estimate. It is also

possible in certain hypergraph structures that further decrease of the value still does

not change the shortest hyperpath from the root to the leaves. This can happen when
the propagation towards the root of the weight reduction of the target hyperedge

aŒects other hyperedges beyond those on the optimal path. This case can be handled

by iterating the above computation, using a new target edge weight reduced by the

amount of the value window. The iteration stops when the optimal plan changes.

5. An example

To demonstrate the application of the developed algorithms, a simple ballpoint
pen example has been chosen, which is the same as Lambert (1997). The assembly of

the pen consists of 10 parts and 11 edges between them. The parts and the connec-

1211Product end-of-life options

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

tions are shown in ® gure 5. Here, a pair of connected parts de® nes the corresponding

connection. Therefore, the precedence constraints are de® ned as an ordered list of

connections, where every restricted connection is paired with its precedence connec-

tions. All the precedence connections have to be disassembled prior to the restricted

connection. The utilized precedence constraints of the disassembly operations are

displayed in table 1.

The recovery AND/OR graph generation described in the pseudo code of ® gure 2

starts with the initialization. To illustrate the algorithm, the generation of feasible

subassembly pairs that can be obtained from the liaison diagram of the ballpoint pen

are explained. To determine the neighbour-list of the ballpoint pen, 10 levels of the

connected subassemblies are enumerated (table 2). The complementer node set for

each subassembly in the lower half-set is calculated. Then for each complementer

node set one searches for subassemblies having the same node set in the upper-half

set. If such an element is found, the subassembly pair from the lower and upper-half

set is a neighbour subassembly pair. The calculated neighbouring subassembly pairs

are listed in table 3. To calculate the feasible subassembly pairs out of the neighbour

subassemblies, one has to check whether the removed edges satisfy the precedence

constraints. To generate the neighbouring subassembly pairs, certain connection

(separation edges) of the original assembly have to be removed. Table 4 shows the

1212 G. Erdos et al.

program Target Edge Analysis

repeat

optplan ¬ shortest hyperpath in the recovery graph

tedge ¬ target edge

while tedge ¹ Æ loop

tedge_tail_node ¬ tail node of tedge

value(tedge) ¬ weight(tedge) 1 å Î)()(tedgeheadk kvalue

second_max ¬ - ¥

forall e Î hyperedges whose tail is tedge_tail_node loop

value(e) ¬ weight(e) 1 å Î)()(eheadk kvalue

if e ¹ tedge Ù value(e) . second_max then

second_max ¬ value(e)

end loop

append (value(tedge) - second_max) to diff_list

tedge ¬ predecessor hyperedge whose head is tedge_tail_node in the
optimal plan

end loop

target_diff ¬ min(diff_list)

weight(tedge) ¬ weight(tedge) - target_diff

until(optimal plan changes)

end

Figure 4. Algorithm for obtaining the target hyperedge value window.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

separation edges of every neighbouring subassembly pair in table 3. One can check

whether the separation edges satis® es the precedence constraints (table 1). The fea-

sible subassembly pairs are then those neighbouring subassembly pairs that satisfy

the precedence constraints (table 5). The precedence rule can be updated after gen-

erating the feasible subassembly pairs by removing the separation edges from the

precedence list. The remaining nodes of the disassembly AND/OR graph are calcu-

lated by iteratively applying the feasible subassembly pairs generation algorithm for

every generated subassembly.

To model the EOL options of the product, two terminal nodes were added to the

disassembly AND/OR graph. These are the LandFill and Reuse nodes. They are the

leaf nodes for every path in the recovery graph because they are connected with every

node of the disassembly graph. The generated recovery AND/OR graph is displayed

in ® gure 6. To increase the legibility, one does not display the two terminal nodes

(Land® ll and Reuse), since they are connected to all nodes of the disassembly AND/

OR graph.

Also, to ® nd the optimal EOL plan of the product, revenue and cost are attached

to the hyperedges and are obtained from Lambert (1997). If the values of the weight

labels are positive, they are considered as revenue, while in case of negative values,

they represent the cost of the operations. The assigned values are displayed in table

1213Product end-of-life options

Connection Precedence connections

fPushButton; PushRingg ffpenToP; PenBottomg; fPenTop; Ringg; fPushButton; InkTubeg; fPushRing; PenTopgg
fPushRing; PenTopg ffPenTop; PenBottomg; fPenTop; Ringg; fPushButton; InkTubegg
fRingPen; Bottomg ffPenTop; PenBottomg; fPenTop; Ringg; fPushButton; InTubegg
fPenBottom; Springg ffPenTop; PenBottomg; fPenTop; Ringg; fPushButton; InkTubegg
fSpring; InkTubeg ffPenTop; PenBottomg; fPenTop; Ringg; fPushbutton; InkTubegg
…fInkTube; Tipg ffPenTop; PenBottomg; fPenTop; Ringg; fPushButton; InkTubeg; fSpring; InkTubegg
fInkTube; Inkg ffPenTop; PenBottomg; fPenTop; Ringg; fPushButton; InkTubeg; fSpring; InkTubeg; fInkTube; Tipgg

Table 1. Precedence constraints of the disassembly operations.

Figure 5. Parts and liaisons of the pen.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

1214 G. Erdos et al.

Lower half set

NodeLevel [1] PushButton PushRing PenTop Clip Ink InkTube . . .

NodeLevel [2] Clip Ink InkTube InkTube InkTube PenBottom . . .

PenTop InkTube PushButton Spring Tip PenTop

NodeLevel [3] Clip Clip Clip Ink Ink Ink

PenBottom PenTop PenTop InkTube InkTube InkTube . . .

PenTop PushRing Ring PushButton Spring Tip

NodeLevel [4] Clip Clip Clip Clip Clip Ink

PenBottom PenBottom PenBottom PenTop PenTop InkTube

PenTop PenTop PenTop PushButton PushRing PenBottom . . .

PushRing Ring Spring PushRing Ring Spring

NodeLevel [5] Clip Clip Clip Clip Clip Clip

InkTube InkTube PenBottom PenBottom PenBottom PenBottom

PenBottom PenTop PenTop PenTop PenTop PenTop . . .

PenTop PushButton PushButton PushRing PushRing Ring

Spring PushRing PushRing Ring Spring Spring

Upper half set

NodeLevel [6] Clip Clip Clip Clip Clip Clip

Ink Ink InkTube InkTube InkTube InkTube

InkTube InkTube PenBottom PenBottom PenBottom PenBottom

PenBottom PenTop PenTop PenTop PenTop PenTop . . .

Pentop PushButton PushButton PushButton PushRing Ring

Spring PushRing PushRing Spring Spring Spring

NodeLevel [7] Clip Clip Clip Clip Clip Clip

Ink Ink Ink Ink Ink Ink

InkTube InkTube InkTube InkTube InkTube InkTube

PenBottom PenBottom PenBottom PenBottom PenBottom PenTop . . .

PenTop PenTop PenTop PenTop PenTop PushButton

PushButton PushButton PushRing Ring Spring PushRing

PushRing Spring Spring Spring Tip Ring

Nodelevel [8] Clip Clip Clip Clip Clip Clip

Ink Ink Ink Ink Ink Ink

InkTube InkTube InkTube InkTube InkTube InkTube

PenBottom PenBottom PenBottom PenBottom PenBottom PenBottom

PenTop PenTop PenTop PenTop PenTop PenTop . . .

PushButton PushButton PushButton PushButton PushButton PushRing

PushRing PushRing PushRing Ring Spring Ring

Ring Spring Tip Spring Tip Spring

NodeLevel [9] Clip Clip Clip Clip Clip Clip

Ink Ink Ink Ink Ink Ink

InkTube InkTube InkTube InkTube InkTube InkTube

PenBottom PenBottom PenBottom PenBottom PenBottom PenTop

PenTop PenTop PenTop PenTop PenTop PushButton . . .

PushButton PushButton PushButton PushButton PushRing PushRing

PushRing PushRing PushRing Ring Ring Ring

Ring Ring Spring Spring Spring Spring

Spring Tip Tip Tip Tip Tip

NodeLevel [10] Clip

Ink

InkTube

PenBottom

PushButton

PenTop

PushRing

Ring

Spring

Tip

Table 2. Precedence constraints of the disassembly operations.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

1215Product end-of-life options

No. Separation edges

1 fClip; PenTopg
2 fInk; InkTubeg
3 fPenBottom; PenTopg [PenBottom, Ring] fPenBottom, Springg
4 fInkTube, PushButtong fPushButton, PushRingg
5 fPenTop, PushRingg fPushButton, PushRingg
6 fPenBottom, Ringg fPenTop, Ringg
7 fInkTube, Springg fPenBottom, Springg
8 fInkTube, Tipg
9 fPenBottom, PenTopg fPenTop, PushRingg fPenTop, Ringg

10 fPenBottom, PenTopg fPenBottom, Springg fPenTop, Ringg
11 fInkTube, Springg fPenBottom, PenTopg fPenBottom, Ringg
12 fInkTube, PushButtong fPenTop, PushRingg
13 fPenBottom, PenTopg fPenTop, Ringg fPushButton, PushRingg
14 fPenBottom, PenTopg fPenBottom, Ringg fPenTop, PushRingg
15 fInkTube, PushButtong fInkTube, Springg
16 fInkTube, Springg fPenBottom, PenTopg fPenTop, Ringg
17 fPenBottom, Springg fPenTop, PushRingg
18 fInkTube, PushButtong [PenBottom, PenTopg fPenTop, Ringg
19 fPenBottom, PenTopg fPenBottom, Ringg fPushButton, PushRingg
20 fInkTube, Springg fPushButton, PushRingg
21 fInkTube, PushButtong fPenBottom, Springg
22 fPenBottom, Springg fPushButton, PushRingg
23 fInkTube, Springg [PenTop, PushRingg
24 fInkTube, PushButtong fPenBottom, PenTopg fPenBottom, Ringg

Table 4. Separation edges of neighbouring subassemblies.

No. Complementer connected subassembly pairs

1 ffClipg; fInk; InkTube; PenBottom; PenTop; PushButton; PushRing; Ring; Spring; Tipgg
2 ffInkg; fClip; InkTube; PenBottom; PenTop; PushButton; PushRing; Ring; Spring; Tipgg
3 ffPenBottomg; fClip; Ink; InkTube; PenTop; PushButton; PushRing; Ring; Spring; Tipgg
4 ffPushButtong; fClip; Ink; InkTube; PenBottom; PenTop; PushRing; Ring; Spring; Tipgg
5 ffPushRingg; fClip; Ink; InkTube; PenBottom; PenTop; PushButton; Ring; Spring; Tipgg
6 ffRingg; fClip; Ink; InkTube; PenBottom; PenTop; PushButton; PushRing; Spring; Tipgg
7 ffSpringg; Clip; Ink; InkTube; PenBottom; PenTop; PushButton; PushRing; Ring; Tipgg
8 ffTipg; fClip; Ink; InkTube; PenBottom; PenTop; PushButton; PushRing; Ring; Springgg
9 ffClip; PenTopg; fInk; InkTube; PenBottom; PushButton; PushRing; Ring; Spring; Tipgg

10 ffPenbottom; Ringg; fClip; Ink; InkTube; PenTop; PushButton; PushRing; Spring; Tipgg
11 ffPenbottom; Springg; fClip; Ink; InkTube; PenTop; PushButton; PushRing; Ring; Tipgg
12 ffPenbottom; PushRingg; fClip; Ink; InkTube; PenBottom; PenTop; Ring; Spring; Tipgg
13 ffClip; PenTop; PushRingg; fInk; InkTube; PenBottom; PushButton; Ring; Spring; Tipgg
14 ffClip; PenTop; Ringg; fInk; InkTube; PenBottom; PushButton; PushRing; Spring; Tipgg
15 ffInk; InkTube; Tipg; fClip; PenBottom; PenTop; PushButton; PushRing; Ring; Springgg
16 ffPenbottom; Ring; Springg; fClip; Ink; InkTube; PenTop; PushButton; PushRing; Tipgg:

17 ffClip; Penbottom; PenTop; Ringg; fInk; InkTube; PushButton; PushRing; Spring; Tipgg
18 ffClip; PenTop; PushButton; PushRingg; fInk; InkTube; PenBottom; Ring; Spring; Tipgg
19 ffClip; PenTop; PushRing; Ringg; fInk; InkTube; PenBottom; PushButton; Spring; Tipgg
20 ffInk; InkTube; PushButton; Tipg; fClip; PenBottom; PenTop; PushRing; Ring; Springgg
21 ffInk; InkTube; Spring; Tipg; fClip; PenBottom; PenTop; PushButton; PushRing; Ringgg
22 ffClip; Penbottom; Pentop PushRing; Ringg; fInk; InkTube; PushButton; Spring; Tipgg
23 ffClip; Penbottom; PenTop; Ring; Springg; fInk; InkTube; PushButton; PushRing; Tipgg
24 ffClip; PenTop; PushButton; PushRing; Ringg; fInk; InkTube; PenBottom; Spring; Tipgg

Table 3. Complementer conected subassembly pairs.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

6. Computing the shortest hyperpath in the recovery AND/OR graph results in the

cost optimal hyperplan displayed in ® gure 7. The total revenue of this plan is

1.3502$.

We have selected the (fPenTop; PushButton; PushRingg; fReuseg) target edge for

the sensitivity analysis. The currently assigned value of this edge is

weight‰6; 25Š ˆ 0:099$. The calculated window value of this target edge is 0.0002$.
By decreasing the value of the target edge with the window value, namely, setting

weight‰6; 25Š ˆ 0:0988$, the optimal plan remains the same as it displayed in ® gure 7,

but the total revenue of this plan is decreased to 1.35$. Any further decreasing of the

value of the target edge, for example by assigning weight‰6; 25Š ˆ 0:097999, results in

the structural changing of the optimal plan, as it is shown in ® gure 8. Therefore, the
value of the target edge [6,25] can be decreased by 0.0002$ without changing the

structure of the optimal plan.

6. Concluding remarks

In this paper, the modelling and evaluating of product end-of-life options has

been considered. For the entire problem, three algorithms are developed: (1) the

semi-automatic generation of the product recovery graph, given the product liaison

graph; (2) the backwards calculation (so that the recovery graph hyperedges are only
visited once) of the optimum hyperplan that maximizes the plan’s revenue; and (3) a

sensitivity analysis, which is called the recovery graph questioning algorithm, that

® nds the margin of allowed revenue reduction of a given target edge that maintains

the same optimal plan. In this research, the ® rst algorithm is based on the comple-

mentary-set method instead of the cut-set method employed previously in the litera-
ture with regard to the study of assembly sequences. For the question of disassembly

sequence generation, the assumption is usually made in previous publications that

the AND/OR disassembly graph is given while in this paper the AND/OR disas-

sembly graph is derived from the product’s liaison graph using the ® rst algorithm.

The second algorithm calculates the optimum plan of the recovery graph that opti-

mizes some given criterion such as maximum revenue. The advantage of the algor-
ithm presented (which is a modi® cation of the well-known topological sort

algorithm) is that the maximum revenue is computed backwards so that the hyper-

edges are only visited once. The third algorithm allows one to ® nd the answer to the

following question on the recovery graph: by how much one can lower the value (by

lowering the value of a speci® ed target edge) to get from the calculated optimal plan
without changing the current plan optimality? This is useful to estimate the bene® t

margins from the sale of a used component or subassembly, while maintaining the

optimal recovery plan.

Future work should include the modelling of more EOL options structures,

which consider technological alternatives. Furthermore the extension of this work
to the associated scheduling problem should also be part of future research. One has

assumed only simple blocking type precedence relation in the disassembly graph; to

1216 G. Erdos et al.

No. Feasible subassembly pairs

1 ffClipg; fInk; InkTube; PenBottom; PenTop; PushButton; PushRing; Ring; Spring; Tipgg
2 ffClip; PenTop; PushButton; PushRingg; fInk; InkTube; PenBottom; Ring; Spring; Tipgg

Table 5. Feasible subassembly pairs.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

1217Product end-of-life options

1

{
P
u
s
h
B
u
t
t
o
n
,

P
u
s
h
R
i
n
g
,

P
e
n
T
o
p
,

C
l
i
p
,

I
n
k
,

I
n
k
T
u
b
e
,
 T
i
p
,

S
p
r
i
n
g
,

P
e
n
B
o
t
t
o
m
,
R
i
n
g
}

2

{
C
l
i
p
}

3

{
I
n
k
,
I
n
k
T
u
b
e
,

P
e
n
B
o
t
t
o
m

P
e
n
T
o
p
,

P
u
s
h
B
u
t
t
o
n
,

P
u
s
h
R
i
n
g

R
i
n
g
,

S
p
r
i
n
g
,

T
i
p
}

4

{
C
l
i
p
,

P
e
n
T
o
p
,

P
u
s
h
B
u
t
t
o
n

P
u
s
h
R
i
n
g
}

5

{
I
n
k
,

I
n
k
T
u
b
e
,

P
e
n
B
o
t
t
o
m

R
i
n
g
,

S
p
r
i
n
g
,

T
i
p
}

6

{
P
e
n
T
o
p
,

P
u
s
h
B
u
t
t
o
n
,

P
u
s
h
R
i
n
g
}

7

{
C
l
i
p
,

P
e
n
T
o
p
}

8

{
P
u
s
h
B
u
t
t
o
n
,

P
u
s
h
R
i
n
g
}

9

{
R
i
n
g
}

1
0

{
I
n
k
,

I
n
k
T
u
b
e
,

P
e
n
B
o
t
t
o
m

S
p
r
i
n
g
,

T
i
p
}

1
1

{
P
e
n
B
o
t
t
o
m
,

R
i
n
g
}

1
2

{
I
n
k
,

I
n
k
T
u
b
e
,

S
p
r
i
n
g

T
i
p
} 1

3

{
I
n
k
,

I
n
k
T
u
b
e
,

T
i
p
}

1
4

{
P
e
n
B
o
t
t
o
m

,

R
i
n
g
,

S
p
r
i
n
g
}

1
5

{
P
e
n
T
o
p
}

1
6

{
P
u
s
h
B
u
t
t
o
n
}

1
7

{
P
u
s
h
R
i
n
g
}

1
8

{
P
e
n
B
o
t
t
o
m
}

1
9

{
P
e
n
B
o
t
t
o
m
,

S
p
r
i
n
g
}

2
0

{
S
p
r
i
n
g
}

2
1

{
T
i
p
}

2
2

{
I
n
k
,

I
n
k
T
u
b
e
}

2
3

{
I
n
k
}

2
4

{
I
n
k
T
u
b
e
}

F
ig

u
re

6
.

R
ec

o
v

er
y

A
N

D
/O

R
g

ra
p

h
o

f
th

e
p

en
.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

be able to treat more complex product future work should address more complex

precedence relations.

Acknowledgements

The authors thank Dr Dong-Ho Lee for cooperation and valuable advice. They

also gratefully acknowledge the partial support from FNRS ’Integrated dynamical

modelling for process and production planning’ project.

1218 G. Erdos et al.

1

{PushButton, PushRing, PenTop

Clip, Ink, InkTube Tip

Spring PenBottom Ring}

2

{Clip}

3

{Ink, InkTube, PenBottom,

PenTop, PushButton, PushRing,

Ring, Spring, Tip}

5

{Ink, InkTube, PenBottom}

Ring , Spring, Tip}

6

{PenTop, PushButton,
PushRing}

13

{Ink, InkTube, Tip}

14

{PenBottom, Ring,
Spring}

21

{Tip}

22

{Ink, InkTube}

25

{Reuse}

,

, ,

, ,

Figure 7. Optimal EOL hyperplan.

Value of subassembly

Value of part ($/item) ($/item) Disassembly cost ($/item)

weight‰2; 25Š ˆ 1:59 weight13; 25Š ˆ ¡1:7809 weight‰1; 2; 3gŠ ˆ ¡0:15 weight‰10; f19; 13gŠ ˆ ¡0:45

weight‰9; 25Š ˆ 0:135 weight‰4; 25Š ˆ 0 weight‰1; f4; 5gŠ ˆ ¡0:1 weight‰11; f18:9gŠ ˆ ¡0:4

weight‰15; 25Š ˆ 0:149 weight‰5; 25Š ˆ ¡0:629 weight‰3; f6; 5gŠ ˆ ¡0:2 weight‰12; f20; 13gŠ ˆ ¡0:5

weight‰16; 25Š ˆ 0:19 weight‰6; 25Š ˆ 0:099 weight‰4; f2; 6gŠ ˆ ¡0:55 weight‰13; f21; 22gŠ ˆ ¡0:75

weight‰17; 25Š ˆ 0:055 weight‰7; 25Š ˆ 0:204 weight‰4; f7; 8gŠ ˆ ¡0:6 weight‰14; f9; 19gŠ ˆ ¡0:7

weight‰18; 25Š ˆ 0:059 weight‰8; 25Š ˆ 0:147 weight‰5; f9; 10g1 ˆ ¡0:25 weight‰14; f20; 11gŠ ˆ ¡0:65

weight‰20; 25Š ˆ 0:29 weight‰10; 25Š ˆ ¡0:04672 weight‰5; f11; 12g1 ˆ ¡0:3 weight‰19; f18; 20gŠ ˆ ¡0:45

weight‰21; 25Š ˆ 0:95 weight‰11; 25Š ˆ 0:0832 weight‰5; f13; 14gŠ ˆ ¡0:35 weight‰22; f23; 24gŠ ˆ ¡0:5

weight‰23; 25Š ˆ 0 weight‰12; 25Š ˆ ¡0:315 weight‰6; f15; 8gŠ ˆ ¡0:8

weight‰24; 25Š ˆ 0:095 weight‰13; 25Š ˆ ¡0:152 weight‰7; f2; 15gŠ ˆ ¡0:55

weight‰14; 25Š ˆ 0:1992 weight‰8; f16; 17gŠ ˆ ¡0:6

weight‰19; 25Š ˆ 0:1632 weight‰10; f18; 12gŠ ˆ ¡0:4

weight‰22; 25Š ˆ ¡0:038

Table 6. Input revenue and cost data of the ball point pen.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

References

Aho, V. A., Hopcroft, E. J., and Ullman, D. J., 1987, Data Structures and Algorithms
(Addison-Wesley).

Boothroyd, G., and Dewhurst, P., 1996, Design for Environment Software (Wake® eld:
Boothroyd & Dewhurst).

Bourjault, A., 1984, Contribution une Approche MeÁ thodologique de l’Assemblage
AutomatiseÂ : eÁ laboration Automatique des SeÁ quence OpeÁ ratoires. PhD thesis,
UniversiteÂ de France’Compte.

Danley, J., Petit, F., Leroy, A., de Lit, P., and Rekiek, B., 1999, A pragmatic approach
for precedence graph generation. Proceedings of the IEEE International Symposium on
Assembly and Task Planning, 387± 392.

De Ron, A. J., and Penev, K. D., 1995, Disassembly and recycling of electronic consumer
products: an overview. Technovation, 15, 363± 374.#

Gungor, A., and Gupta, S. M., 1998, Disassembly sequence planning for products with
defective parts in product recovery. Computers and Industrial Engineering, 35, 161± 164.

Gupta, S. M., and McLean, C. R., 1996, Disassembly of products. Computers and Industrial
Engineering, 31, 225± 228.

Homem De Mello, L. S., and Sanderson, A. C., 1990, AND/OR graph representation of
assembly plans. IEEE Transactions on Robotics and Automation, 6, 188± 199.

Homem De Mello, L. S., and Sanderson, A. C., 1991, A correct and compete algorithm for
the generation of mechanical assembly sequences. IEEE Transactions on Robotics and
Automation, 7, 228± 240.

Johnson, M. R., and Wang, M. H., 1995, Planning product disassembly for material recovery
opportunities. International Journal of Production Research, 33, 3119± 3142.

Johnson, M. R., and Wang, M. H., 1998, Economical evaluation of disassembly operations
for recycling, remanufacturing and reuse. International Journal of Production Research,
36, 3227± 3252.

Kanai, S., Sasaki, R., and Kishinami, T., 1999, Representation of product and processes for
planning disassembly, shredding, and material sorting based on graphs. Proceedings of
the 1999 IEEE International Symposium on Assembly and Task Planning, 123± 128.

1219Product end-of-life options

1

{PushButton,PushRing,PenTop
Clip,Ink,InkTube

}
Tip, Spring

,PenBottom Ring

2 {Clip} 3

{Ink,InkTube, PenBottom

PenTop,PushButton,PushRing

Ring,Spring,Tip }

25

{Reuse}

26

{LandFill}

Figure 8. Optimal EOL hyperplan for modi® ed target edge value.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

Kanehara, T., Suzuki, T., Inaba, A., and Okumakuma, S., 1993, On algebraic and graph
structural properties of assembly Petri netÐ searching by linear programming.
Proceedings of the 1993 IEEE/RSJ International Symposium on Intelligent Robots and
Systems, 2286± 2293.

Krikke, H. R., van Harten, A., and Schuur, P. C., 1998, On a medium term product
recovery and disposal strategy for durable assembly products. International Journal of
Production Research, 36, 111± 139.

Kriwet, A., Zussman, E., and Seliger, G., 1995, Systematic integration of design-for-recy-
cling into product design. International Journal of Production Economics, 38, 15± 22.

Lambert, A. J. D., 1997, Optimal disassembly of complex products. International Journal of
Production Research, 35, 2509± 2523.

Lambert, A. J. D., 1999a, Optimal disassembly sequence generation for combined material
recycling a part reuse. Proceedings of the 1999 IEEE International Symposium on
Assembly and Task Planning, 146± 151.

Lambert, A. J. D., 1999b, Linear programming in disassembly/clustering sequence genera-
tion. Computers and Industrial Engineering, 36, 723± 738.

Lee, Y.-Q., and Kumara, S. R. T., 1992, Individual and group disassembly sequence genera-
tion through freedom and interface spaces. Journal of Design and Manufacturing, 2,
143± 154.

Moore, K. E., Gungor, A., and Gupta, S. M., 1998, A Petri net approach to disassembly
process planning. Computers and Industrial Engineering, 35, 165± 168.

Navin-Chandra, D., 1994, The recovery problem in product design. Journal of Engineering
Design, 5, 65± 86.

O’ Shea, B., Grewal, S. S., and Kaebernick, H., 1998, State of the art literature survey on
disassembly planning. Concurrent Engineering: Research and Applications, 6, 345± 357.

Penev, K. D., and de Ron, A. J., 1996, Determination of a disassembly strategy, opportu-
nities. International Journal of Production Research, 34, 495± 506.

Pnueli, Y., and Zussman, E., 1997, Evaluating the end-of-life value of a product and improv-
ing it by redesign. International Journal of Production Research, 35, 921± 942.

Sanderson, A. C., Homem De Mello, L. S., and Zhang, H., 1990, Assembly sequence
planning. AI Magazine, 11, 62± 82.

Subramani, A. K., and Dewhurst, P., 1991, Automatic generation of disassembly sequence.
Annals of CIRP, 40, 115± 118.

Wolfram, S., 1996, The Mathematica Book (Wolfram Media).
Zhang, H. C., Kuo, T. C., Lu, H. T., and Huang, S. H., 1997, Environmentally conscious

design and manufacturing: a state-of-the-art survey. Journal of Manufacturing Systems,
16, 352± 371.

Zussman, E., Kriwet, A., and Seliger, G., 1994, Disassembly-oriented assessment method-
ology to support design for recycling. Annals of CIRP, 43, 9± 14.

Zussman, E., and Zhou, M. C., 1999, A methodology for modelling and adaptive planning of
disassembly processes. IEEE Transactions on Robotics and Automation, 15, 190± 194.

Zust, R., and Wagner, R., 1992, Approach to the identi® cation and quanti® cation of envir-
onmental eŒects during product life. Annals of CIRP, 41, 473± 477.

1220 Product end-of-life options

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
R

ea
di

ng
]

at
 2

2:
42

 0
3

Ja
nu

ar
y

20
15

