Tetrahedron Letters 54 (2013) 321-323

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of new malonaldehyde derivatives using 2-heteroaryl-substituted trimethinium salts

A. M. Mehranpour*, S. Hashemnia, F. Azamifar

Persian Gulf University, Bushehr 75169, Iran

ARTICLE INFO

Article history: Received 30 September 2012 Revised 28 October 2012 Accepted 8 November 2012 Available online 21 November 2012

Keywords: Malonaldehyde Vilsmeier-Haack reagent 2-Heteroaryl-substituted trimethinium salts

ABSTRACT

A synthetic route for obtaining 2-heteroaryl-substituted zwitterionic malonaldehydes **1c–6c** is described. The synthesis involves the two-fold formylation of heteroarylacetic acids **1a–6a** using the Vilsmeier–Haack reagent, followed by hydrolysis of the intermediate trimethinium salts **1b–6b** with aqueous sodium carbonate. Elemental analysis, IR, ¹H NMR, ¹³C NMR, and mass spectral data confirm the structures of the newly synthesized compounds.

© 2012 Elsevier Ltd. All rights reserved.

Malonaldehyde (MA) is a highly reactive biochemically important three-carbon dialdehyde (O=CHCH₂CH=O \leftrightarrows HOCH=CHCH=O), produced, for example, as one of the end-products of lipid peroxidation.¹ Due to its high reactivity, MA has the ability to form adducts with α -amino acids and biomolecules such as proteins or DNA. Proteins are much more reactive with MA than free amino acids, resulting in a variety of adducts and cross-linked products. MA can also react with DNA bases producing a variety of mutagenic and possibly carcinogenic compounds.^{2–13}

There has been a significant interest in the synthesis of various malonaldehyde derivatives.^{14–18} In this Letter, we report on the synthesis and structural characterization of six new 2-heteroaryl-substituted zwitterionic malonaldehyde derivatives **lc–6c**. To the best of our knowledge, almost no attention has been paid to the synthesis of such compounds using 2-heteroaryl-substituted trimethinium salts as starting compounds.¹⁸ The structural characterizations were performed using UV/vis absorption, IR, ¹H NMR, and ¹³C NMR spectroscopy, and mass spectrometry.

The new malonaldehyde derivatives **1c–6c** were synthesized using a three-step procedure as shown in Figure 1: (i) synthesis of *N*-heteroaryl acetic acids **1a–6a** via the nucleophilic substitution reaction between the heteroarenes **R1–6** and bromoacetic acid; (ii) synthesis of the corresponding 2-heteroaryl-substituted trimethinium salts **1b–6b** by two-fold Vilsmeier–Haack–Arnold formylation of the *N*-heteroaryl-substituted acetic acids **1a–6a**;^{18–22} (iii) synthesis of the zwitterionic malonaldehyde derivatives **1c–6c** by hydrolysis of the 2-heteroaryl substituted trimethinium salts **1b–6b** with aqueous sodium carbonate solution. The application of

the Vilsmeier–Haack formylation of aliphatic instead of aromatic substrates was successfully first introduced by Arnold.^{15,17,18b} Among the *N*-heteroaryl acetic acids **1a–6a** synthesized and the corresponding trimethinium salts **1b–6b**, compounds **1a–3a** and **1b–3b** are new and their structural characterizations are provided in the experimental section and Supplementary data. Furthermore, all of the zwitterionic malonaldehyde derivatives **1c–6c** are novel and their structures were confirmed by elemental analysis, ¹H NMR, ¹³C NMR, and IR spectroscopy, and by mass spectrometry (see experimental section and the Supplementary data).

In conclusion, six novel zwitterionic malonaldehyde derivatives **1c–6c** were synthesized using 2-heteroaryl-substituted trimethinium salts as starting compounds. These new zwitterionic malonaldehydes are promising candidates for the synthesis of the corresponding heteroaryl-substituted carbo-and heterocycles.

Typical procedure for the synthesis of *N*-heteroaryl acetic acids 1a–6a

Heteroarenes **R1–6** (7.0 mmol) was added to bromoacetic acid (1.00 g, 7.0 mmol) dissolved in MeCN (40 mL). The mixture was refluxed at 60 °C for 7 h. The resulting colorless crystals of **1a–6a** were collected by filtration, recrystallized from 2-propanol, and dried over P_4O_{10} in a desiccator.¹⁹

Typical procedure for the synthesis of 2-heteroaryl-substituted trimethinium salts 1b–6b

The formylation reagent was prepared by mixing $POCl_3$ (8.30 mL; 0.90 mol) with DMF (16.60 mL, 0.21 mol) at 0 °C and stirring at room temperature for 30 min. The *N*-heteroaryl acetic acid

^{*} Corresponding author. Tel./fax: +98 771 4541494.

E-mail address: ammehranpour@hotmail.com (A.M. Mehranpour).

^{0040-4039/\$ -} see front matter \odot 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.11.046

Figure 1. Synthesis of the zwitterionic malonaldehyde derivatives 1c-6c.

(**1a–6a**) (0.90 mol) was added to this reagent. The mixture was refluxed at 80 °C for 5 h, and then set aside in a refrigerator for 12 h. The solution was diluted with pre-cooled EtOH (100 mL). A solution of HClO₄ (70%, 14.60 mL, 0.1 mol) in EtOH (30 mL) was added and the mixture was set aside in a refrigerator for 12 h. The crystals of the trimethinium salt (**1b–6b**) were collected by filtration, washed with Et₂O, and dried over P₄O₁₀ in a desiccator.^{20–22}

Typical procedure for the synthesis of the zwitterionic malonaldehyde derivatives 1c–6c

A mixture of 2-heteroaryl-substituted trimethinium salt (**1b**-**6b**) (28.0 mmol) and Na_2CO_3 (5.7 mmol, 0.60 g) dissolved in

40 mL of H₂O was refluxed for 7 h. After cooling to room temperature, the resulting solution was extracted with CH₂Cl₂ (4×15 mL) and the combined organic extracts washed with H₂O (2×10 mL), dried over MgSO₄ and the solvent removed by distillation. The resulting residue (**1c–6c**) was recrystallized from EtOH.

N-(Carboxymethyl)-4-tert-butylpyridinium bromide (1a)

Colorless powder; Yield 75%; mp = 221 °C; IR: ν/cm^{-1} = 3437, 1725; ¹H NMR (500 MHz, DMSO-*d*₆): δ/ppm = 1.35 (s, 9H, CH₃), 5.64 (s, 2H, CH₂), 8.27 (d, *J* = 7.2 Hz, 2H, *H*-pyridine), 9.05 (d, *J* = 7.2 Hz, 2H, *H*-pyridine); ¹³C NMR (DMSO-*d*₆): δ/ppm = 30.3, 37.2, 60.5, 125.6, 146.3, 168.6, 171.6; MS: *m/z* = 194 [M⁺-Br⁻];

Anal. Calcd for C₁₁H₁₆O₂NBr: C, 48.19; H, 5.88; N, 5.11%; Found: C, 48.02; H, 6.01; N, 4.99%.

1.1.5.5-Tetramethyl-3-(4-tert-butylpyridinium)-1.5diazapentadienium bis(perchlorate) (1b)

Yellow powder: Yield 62%: mp = 250 °C: IR: v/cm^{-1} = 3121. 2965, 1634, 1091; ¹H NMR (500 MHz, DMSO- d_6): δ /ppm = 1.40 (s, 9H, CH₃), 2.36 (s, 6H, NMe₂), 3.36 (s, 6H, NMe₂), 8.01-9.05 (m, 6H. *H*-vinvl and *H*-pyridine): ¹³C NMR (DMSO- d_6): δ /ppm = 30.2. 37.8, 38.7, 50.6, 108.1, 139.7, 146.9, 151.1, 158.2, 168.65; MS: m/ $z = 261 [M^+ - 2ClO_4^-]$; Anal. Calcd for $C_{16}H_{27}N_3(ClO_4)_2$; C, 41.75; H, 5.91; N, 9.13%. Found: C, 42.01; H, 6.21; N, 8.72%.

2-(4-*tert*-Butylpyridinium-1-yl)propane-1,3-dialate (1c)

Yellow powder; Yield 50%; decomposition at 156 °C; IR: v/ $cm^{-1} = 3435$, 2962, 1587; ¹H NMR (500 MHz, DMSO- d_6): $\delta/$ ppm = 1.37 (s, 9H, CH₃), 8.07 (d, ${}^{3}I$ = 7.2 Hz, 2H, H-pyridine), 8.69 (d, ${}^{3}I = 7.2$ Hz, 2H, H-pyridine), 8.78 (s, 2H, H-vinyl); ${}^{13}C$ NMR $(DMSO-d_6)$: $\delta/ppm = 30.0, 36.4, 123.7, 124.1, 144.7, 167.6, 177.5;$ UV: λ_{max} (DMSO)/nm [ε_{max} / M⁻¹cm⁻¹] = 375 [4726], 270 [14072.1] and 254 [28855]; MS: m/z = 205 [M⁺]; Anal. Calcd for C₁₂H₁₅N₃O₂N: C, 70.22; H, 7.37; N, 6.82%. Found: C, 70.30; H, 7.31; N. 6.75%.

Acknowledgement

Financial support of this work by the Research Council of the Persian Gulf University is gratefully acknowledged.

Supplementary data

Supplementary data (materials and measurements and the structural characterization of 2a, 3a, 2b, 3b, and 2c-6c associated with this article can be found in the supplementary data) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012.11.046.

References and notes

- Shamberger, R. J.; Shamberger, B. A.; Wills, C. E. J. Nutr. 1997, 107, 1404. 1.
- Mukai, F. H.; Goldstein, B. D. Science 1976, 191, 868. 2.
- 3 Brooks, B. R.; Klamerth, O. L. Eur. J. Biochem. 1968, 5, 178.
- Singh, R.; Leuratii, C.; Joysuta, S.; Sipowicz, M. A.; Diwan, B. A.; Kasprazak, K. S.; 4. Schut, H. A.; Marnett, L. J.; Anderson, L. M.; Shuker, D. E. G. Carcinogenesis 2001, 22. 1281.
- 5 Marnett, L. J.; Tuttle, M. A. Cancer Res. 1980, 40, 276.
- Aldini, G.; le-Donne, I.; Facino, R. M.; Milzani, A.; Carini, M. Med. Res. Rev. 2007, 6 27 817
- 7 Jacobs, A. T.; Marnett, L. J. Acc. Chem. Res. 2010, 43, 673.
- Foettinger, A.; Leitner, A.; Lindner, W. J. Mass Spectrom. 2006, 41, 623.
- Slatter, D. A.; Murray, M.; Bailey, A. J. FEBS Lett. 1998, 421, 180. 9
- 10. Nair, V.; Vietti, D. E.; Cooper, C. S. J. Am. Chem. Soc. 1981, 103, 3030.
- Burg, A.; Silberstein, T.; Yardeni, G.; Tavor, D.; Blumenfeld, J.; Zilbermann, I.; 11. Saphier, O. J. Agric. Food Chem. 2010, 58, 2347.
- 12. Bergamo, P.; Fedele, E.; Balestrieri, M.; Abrescia, P.; Ferrara, L. J. Agric. Food Chem. 1998, 46, 2171.
- Del Rio, D.; Stewart, A. J.; Pellegrini, N. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 13. 316.
- 14. Arendaruk, A. P.; Godzhello, T. M.; Mel'yantseva, V. N.; Protopopova, T. V.; Skoldinov, A. P. Pharm. Chem. J. 1973, 7, 545.
- 15 Arnold, Z.; Šorm, F. Collect. Czech. Chem. Commun. 1958, 23, 452.
- Meguellati, K.; Spichty, M.; Ladame, S. Mol. Biosyst. 2010, 6, 1694. 16.
- Král, V.; Semenov, V. V.; Kanishchev, M. I.; Arnold, Z.; Shevelev, S. A.; 17. Fainzilberg, A. A. Collect. Czech. Chem. Commun. 1988, 53, 1519.
- (a) Reichardt, C.; Mormann, W. Chem. Ber. 1815, 1972, 105; (b) Reichardt, C. J. 18. Prakt. Chem. 1999, 341, 609.
- 19. Lloyd, D.; Tucker, K. S.; Marshall, D. R. J. Chem. Soc., Perkin Trans. 1 1981, 726.
- 20. Knorr, R.; Loew, P.; Hassel, P.; Bronberger, H. J. Org. Chem. 1984, 49, 1288.
- Mehranpour, A. M.; Hashemnia, S.; Maghamifar, R. Synth. Commun. 2010, 40, 21.
- 3594
- 22. Mehranpour, A. M.; Hashemnia, S.; Shayan, Z. Synth. Commun. 2011, 41, 3501.