Tetrahedron 69 (2013) 1499-1508

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthetic studies of quinolizidine 195C and derivatives

Shang-Shing P. Chou*, Jun-Wei Zhang, Kuan-Hua Chen

Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan, ROC

ARTICLE INFO

Received in revised form 1 December 2012

Received 9 October 2012

Accepted 7 December 2012

Available online 14 December 2012

Article history:

Keywords: Quinolizidines Quinolizidine 195C Ring-closing metathesis Cross metathesis

ABSTRACT

Sulfur-substituted dihydropyridones prepared by aza-Diels–Alder reactions were converted to the *cis*-2,6-disubstituted derivatives, which could then proceed through ring-closing metathesis (RCM) and cross metathesis (CM) reactions to give many quinolizidine derivatives, including two epimers of (\pm) -195C.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many quinolizidine alkaloids have been isolated from amphibian skin,¹ some of which show interesting biological activities.² Many methods have been developed for the synthesis of these novel compounds.^{3,4} We have previously developed a new aza-Diel-s–Alder reaction of thio-substituted 3-sulfolenes with *p*-toluene-sulfonyl isocyanate (PTSI) to synthesize tetrahydropyridones **2** and **3** (Scheme 1),⁵ and have used this method to prepare some indolizidines and quinolizidines.⁶ We now report the use of ring-closing metathesis (RCM)^{7,8} and cross-metathesis (CM)⁹ as key steps for the synthesis of many quinolizidine derivatives, including two epimers of quinolizidine 195C. Quinolizidine 195C was first isolated from a Panamanian poison frog, *Dendrobates speciosus*.¹⁰ It was also detected in an extract of a Brazilian myrmicine ant (*Solenopsis picea*), and its structure was determined by chemical synthesis.¹¹

2. Results and discussion

Treatment of a solution of compounds $3a-c^5$ in CH₂Cl₂ sequentially with Et₃N, DMAP, and Boc₂O at room temperature gave the Boc-protected amides 4a - c. Hydrogenation of the allyl group in compound **4c** provided the propyl-substituted product **4d**. Further oxidation of sulfides **4a.b** and **4d** with *m*CPBA afforded the corresponding sulfones 5a-c, which were then reduced with LiEt₃BH in CH₂Cl₂ at -78 °C to give the aminals **6a**-c in excellent yields. Compounds **6b** and **6c** were obtained as a diastereomeric mixture of isomers (10.5:1, and 4.4:1, respectively, as judged from the ¹H NMR integrations). Without separation, this mixture of compounds 6a-c was treated sequentially with boron trifluoride etherate and allyltrimethylsilane¹² to give products 7a-c. The Boc group was conveniently removed during the workup. The stereochemistry of the 2,6-disubstituted compounds 7b and 7c was established to be cis from the X-ray crystal structures of compound 7b and the Cbzprotected derivative 8b, respectively. Presumably, the allyl nucleophile preferentially approaches the iminium ion intermediate from the axial direction due to the stereoelectronic effect. It is interesting to note that the X-ray crystal structure of compound 7b (Fig. 1)¹³ shows that the 2,6-disubstituents are at the equatorial position whereas the X-ray crystal structure of compound 8b $(Fig. 2)^{13}$ shows that the 2,6-disubstituents are both at the axial position. Apparently, the Cbz group of compound **8b** would suffer serious A^{1,3} strains with the 2,6-disubstituents if they were both in the equatorial position (Scheme 2).

Heating compounds **7a,b** with allyl bromide or 3-bromo-2methylpropene in the presence of Et_3N gave the *N*-allylated products **9a–c**. Ring-closing metathesis (RCM) of compounds **9a–c** with

Tetrahedror

^{*} Corresponding author. Fax: +886 2 29023209; e-mail address: chem1004@ mails.fju.edu.tw (S.-S.P. Chou).

^{0040-4020/\$ –} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.12.017

Fig. 1. X-ray crystal structure of compound 7b.

Fig. 2. X-ray crystal structure of compound 8b.

5 mol % of Grubbs' II catalyst (**G2**) in refluxing toluene provided the *cis*-4,9a-quinolizidines **10a**–**c**.

Atmospheric pressure hydrogenation of compound **10a** with 10% Pd/C in EtOAc reduced only the disubstituted C=C double bond to give product **11**, whereas similar reaction using 95% EtOH as the solvent reduced both C=C double bonds to give the *cis*-2,9a-quinolizidine **12**. The IR spectra of compounds **11** and **12** show a Bohlmann band at 2757 cm⁻¹ and 2765 cm⁻¹, respectively, indicating the presence of one or more α -hydrogens oriented *trans*-biaxially to the nitrogen lone pair.¹⁴ The ¹H NMR of compound **12** shows a resonance for the H-2 at δ 2.99 (tt, *J*=3.3, 12.3 Hz). Thus, the H-2 must be at the axial position of the ring. This means that hydrogenation occurs from the less hindered side of compound **10a** (*cis* to H-9a) to give product **12** (Scheme 3).

Compound **7a** was protected as the Boc derivative **13**. Cross metathesis (CM) was successfully achieved by treatment of methyl vinyl ketone (20 equiv) in the presence of Grubbs' II catalyst (**G2**)

and *p*-cresol¹⁵ in refluxing toluene to give the α , β -unsaturated ketone **14**, the ¹H and ¹³C NMR spectra of which showed that only the *trans* isomer was obtained. Atmospheric hydrogenation of compound **14** gave the ketone **15**, which was treated sequentially with trifluoroacetic acid to remove the Boc group and then with sodium borohydride in methanol to afford the *cis*-6,9a-quinolizidine **16**. The stereochemistry of compound **16** was established by NOESY. There are cross signals between H_{9a} and H₆ and H_{4'}, as well as between H₄ and the methyl group (Scheme 4).

Compound **8a** underwent cross metathesis (CM) with propyl vinyl ketone (10 equiv) in the presence of Grubbs' II catalyst (**G2**) and *p*-cresol in refluxing toluene to give the *E*- α , β -unsaturated ketone **17**. We intended to synthesize a quinolizidine structure from compound **17** through a one-pot hydrogenolysis/hydrogenation–cyclization–hydrogenation sequence¹⁶ (Scheme 5). However, we tried many reaction conditions without success (Table 1).

With the most commonly used catalyst Pd/C for the atmospheric pressure hydrogenation (entry 1), only the exocyclic C=C double bond of compound **17** was reduced to give product **18**. Using PtO₂ as the catalyst (entry 2), product **18** was obtained in quantitative yield. The use of Pd(OH)₂ as the catalyst in methanol (entry 3) cleaved the Cbz group as well as reduced both the endocyclic and exocyclic C=C double bonds to give product **19** in excellent yield. In

Scheme 5.

Table 1Hydrogenation of compound 17

Entry	Catalyst (mol %)	H ₂	Conditions	Yield (%)
1	Pd/C (10)	1 atm	MeOH, rt, 24 h	18 (90)
2	PtO ₂ (15)	1 atm	EA, rt, 20 h	18 (99)
3	Pd(OH) ₂ (10)	1 atm	MeOH, rt, 24 h	19 (90)
4	Pd(OH) ₂ (10)	1 atm	TFA/MeOH (1:5), rt, 24 h	19 (95)
5	Pd(OH) ₂ (10)	1 atm	Et ₃ N (5 equiv), MeOH, rt, 48 h	19 (90)
6	Pd(OH) ₂ (10)	100 psi	MeOH, rt, 24 h	19 (80)
7	Pd(OH) ₂ (10)	5 bar	1 M HCl _(aq) /MeOH (1:5), rt, 48 h	19 (84)
8	Raney-Ni (20 equiv) ^a	None	95% EtOH, reflux, 22 h	ND ^b
9	Raney-Ni (20 equiv) ^a	1 atm	95% EtOH, reflux, 60 h	ND ^c

^a Catalyst (20 equiv) was used.

^b A complex mixture of products together with recovered compound **17** (22%) was obtained.

^c A complex mixture of products was obtained.

order to promote further cyclization of compound **19**, trifluoroacetic acid (entry 4) or Et₃N (entry 5) was added, but with no success. Increasing the pressure of hydrogen (entry 6) or addition of 1 M HCl under high pressure of hydrogen (entry 7) did not result in the formation of the expected quinolizidine product. We also used Raney nickel as the catalyst (entries 8–9) in refluxing 95% EtOH, with or without external hydrogen, but a complex mixture of products was obtained. The ¹H NMR of compound **19** shows a resonance for the H-4 at δ 3.05 (tt, *J*=3.6, 12.6 Hz). Thus, the H-4 must be at the axial position of the ring, and the phenylsulfonyl group is at the more stable equatorial position. It seems reasonable that hydrogenation occurs from the less hindered side of compound **17** to give product **19**.

We then tried to carry out the reductive amination of compound **19** to give the quinolizidine product, but again without success (Table 2). If compound **19** was first dissolved in a mixture of CF₃CO₂H and CH₂Cl₂, followed by treatment with NaBH₄ in methanol, only the carbonyl group was reduced to give the alcohol **20** as a 1:1 diastereomeric mixture (entry 1). The same result was obtained when NaCNBH₃ was used (entry 2), or with further control of the pH (entry 3). We also added CeCl₃·7H₂O to activate the carbonyl group (entry 4), but the product **20** was obtained in even lower yield. The use of NaBH(OAc)₃ in HOAc/MeOH at room temperature (entry 5) or at reflux (entry 6) only gave the recovered starting material.

Reduction of compound 19

Entry	Reaction conditions	Yield (%)
1	TFA/CH ₂ Cl ₂ (1:2), 0 °C; NaBH ₄ , MeOH,	20 (87)
	0 °C to rt, 2 h	
2	NaCNBH ₃ , TFA/MeOH (1:10), 0 °C to rt, 4 h	20 (92)
3	NaCNBH ₃ , TFA/MeOH, pH 6, 0 °C to rt, 4 h	20 (90)
4	CeCl ₃ ·7H ₂ O, THF, reflux, 2 h; HOAc, 0 °C; NaBH ₄ ,	20 (59)
	MeOH, 0 °C to rt, 5 h	
5	NaBH(OAc) ₃ (10 equiv), HOAc/MeOH (1:40),	NR ^b
	0 °C to rt, 24 h	
6	NaBH(OAc) ₃ , HOAc/MeOH (1:40), reflux, 24 h	NR ^b

^aAn inseparable 1:1 diastereomeric mixture of product **20** was obtained.

^b No reaction was observed.

Alcohol **20** was first converted to its mesylate by standard procedure, and the crude product was then directly heated with Et₃N in toluene to give two diastereomeric quinolizidines **21a** and **21b** (Scheme 6), which were separated by flash column chromatography. The structure of crystalline compound **21a** was determined by X-ray crystallography (Fig. 3).¹³ The stereochemistry of liquid compound **21b** was established by NOESY (Fig. 4). There are cross signals between H_{9a} and H₂, H₄ and H₆', but there is no cross signal between H_{9a} and the methyl group.

Fig. 3. X-ray crystal structure of compound 21a.

Fig. 4. NOESY correlations of compound 21b.

We can convert compounds **21a** and **21b** to two epimers of quinolizidine (\pm)-195C (Scheme 7). Treatment of compounds **21a** and **21b** individually with 6% Na/Hg in refluxing THF gave the corresponding products **22** and **23**. The spectral data of compound **23** were the same as the literature report, which used NOESY technique to determine its structure.^{16d} Although the IR and MS data of compound **22** have been reported and used to elucidate its stereochemisty,¹¹ we have now fully characterized it by ¹H and ¹³C NMR spectroscopy. Furthermore, since the structure of crystalline compound **21a** has been established by X-ray crystallography (Fig. 3), its conversion by reductive cleavage of the phenylsulfonyl group to compound **22** would confirm the relative stereochemistry of compound **22**. It should be noted that compounds **22** and **23** differ from the stereochemistry of natural product quinolizidine 195C at C₆ and C_{9a}, respectively.

3. Conclusions

Starting from simple 6-substuted 5,6-dihydro-2-pyridones **3**, the *cis*-2,6-disubstituted derivatives **7**–**8** were readily prepared. Further elaboration through ring-closing metathesis (RCM) and other reactions provided the quinolizidines **10–12** with complete stereo-control. Cross metathesis (CM) of compounds **8a** and **13** with a suitable enone afforded the α , β -unsaturated ketones **17** and **14**, respectively. *cis*-6,9a-Quinolizidine **16** was then obtained from compound **14**, whereas synthetic transformations of compound **17** led to quinolizidine 6-*epi*-195C (**22**) and quinolizidine 9a-*epi*-195C (**23**).

4. Experimental section

4.1. General

Melting points were determined with a SMP3 melting apparatus. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 300 spectrometer operating at 300 and at 75 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) from the internal reference standard tetramethylsilane (TMS), and the coupling constants (*J*) are given in Hertz. High resolution mass spectra (HRMS) were measured with a mass spectrometer Finnigan/ Thermo Quest MAT 95XL. Elemental analyses were carried out with Heraeus Vario III-NCSH, Heraeus CHN–O–S-Rapid Analyzer, or Elementar Vario EL III. Flash column chromatographic purifications were performed using Merck 60H silica gel. The microwave reactions were carried out with a CEM FocusedTM Discover-S system.

4.2. General procedure for protection of compounds 3

To a solution of amide **3** (4.88 mmol) and 4-dimethylaminopyridine (0.49 mmol) in CH_2Cl_2 (20 mL) under nitrogen were added sequentially Et_3N (0.68 mL) and di-*tert*-butyl dicarbonate (7.32 mmol). After stirring at room temperature for 3 h, the reaction mixture was quenched with saturated sodium bicarbonate (20 mL). The aqueous solution was extracted with CH_2Cl_2 , dried (MgSO₄), and evaporated under vacuum. The crude product was purified by flash chromatography using ethyl acetate/hexane (1:9) containing 5% Et_3N as eluent to give product **4**.

4.2.1. 1-(tert-Butoxycarbonyl)-4-(phenylthio)-1,2,5,6-tetrahydro-2pyridinone (**4a**). Yield (70%); colorless liquid; IR (neat) ν 3059, 2981, 2935, 2891, 1761, 1711, 1598, 1475, 1388, 1318, 1155, 1101, 968, 939, 750, 705, 692 cm⁻¹; ¹H NMR (CDCl₃) δ 7.52–7.36 (5H, m), 5.32 (1H, s), 3.87 (2H, t, *J*=6.3 Hz), 2.53 (2H, t, *J*=6.3 Hz), 1.51 (9H, s); ¹³C NMR (CDCl₃) δ 162.0, 158.4, 151.9, 134.9, 129.9, 129.6, 127.5, 115.4, 82.2, 43.1, 28.9, 27.7; EI-MS (rel intensity) *m/z* 305 (M⁺, 7), 244 (52), 205 (38), 172 (22), 86 (64), 84 (100); EI-HRMS *m/z* calcd for C₁₆H₁₉NO₃S 305.1086, found 305.1092.

4.2.2. 1-(*tert-Butoxycarbonyl*)-6-*methyl*-4-(*phenylthio*)-1,2,5,6*tetrahydro*-2-*pyridinone* (**4b**). Yield (87%); white solid mp 83.1–84.1 °C; IR (ATR, film) ν 3060, 2979, 2933, 1760, 1683, 1456, 1391, 1225, 1156, 1114, 1075, 1024, 822, 751, 706 cm⁻¹; ¹H NMR (CDCl₃) δ 7.55–7.48 (5H, m), 5.34 (1H, d, *J*=2.4 Hz), 4.59 (1H, qdd, *J*=6.9, 6.0, 1.5 Hz), 2.97 (1H, ddd, *J*=17.4, 6.0, 2.4 Hz), 2.20 (1H, dd, *J*=17.4, 1.5 Hz), 1.52 (9H, s), 1.31 (3H, d, *J*=6.9 Hz); ¹³C NMR (CDCl₃) δ 161.8, 155.9, 152.4, 135.4, 130.3, 130.0, 128.0, 115.3, 82.7, 49.9, 35.0, 28.1, 18.7; EI-MS (rel intensity) *m*/*z* 319 (M⁺, 36), 246 (26), 219 (100), 204 (74), 177 (24), 86 (39), 84 (59), 57 (45); EI-HRMS *m*/*z* calcd for C₁₇H₂₁NO₃S 319.1242, found 319.1249.

4.2.3. 6-Allyl-1-(tert-butoxycarbonyl)-4-(phenylthio)-1,2,5,6-tetrahydro-2-pyridinone (**4c**). Yield (92%); light yellow oil; IR (neat) ν 3076, 3062, 2979, 2931, 1760, 1710, 1601, 1583, 1441, 1224, 1156, 1117, 1075, 835, 751, 705, 692 cm⁻¹; ¹H NMR (CDCl₃) δ 7.58–7.47 (5H, m), 5.84–5.66 (1H, m), 5.35 (1H, d, *J*=2.4 Hz), 5.19–5.06 (2H, m), 4.54–4.46 (1H, m), 2.83 (1H, ddd, *J*=17.4, 6.0, 2.4 Hz), 2.53–2.30 (3H, m), 1.52 (9H, s); ¹³C NMR (CDCl₃) δ 161.4, 155.8, 152.0, 135.1, 133.6, 130.0, 129.7, 127.6, 118.6, 115.2, 82.4, 53.0, 36.7, 31.3, 27.8; EI-MS (rel intensity) *m*/*z* 345 (M⁺, 0.18), 205 (15), 204 (100); EI-HRMS *m*/*z* calcd for C₁₉H₂₃NO₃S 345.1399, found 345.1406.

4.2.4. 1-(tert-Butoxycarbonyl)-4-(phenylthio)-6-propyl-1,2,5,6-tetrahydro-2-pyridinonoe (4d). To a solution of compound 4c (110 mg, 0.32 mmol) in ethyl acetate (5 mL) was added 10% Pd/C (16.9 mg). Then the reaction mixture was stirred vigorously under a balloon of hydrogen at room temperature for 22 h, filtered with Celite, washed with ethyl acetate, dried (MgSO₄), and evaporated under vacuum to give pure product **4d** (111 mg, 99%). Colorless liquid; IR (neat) ν 3060, 2962, 2933, 2873, 1760, 1710, 1602, 1457, 1392, 1157, 1119, 1089, 1075, 827, 751, 706 cm⁻¹; ¹H NMR (CDCl₃) δ 7.55–7.46 (5H, m), 5.33 (1H, d, J=2.4 Hz), 4.54–4.42 (1H, m), 2.89 (1H, ddd, J=17.4, 6.0, 2.4 Hz), 2.32 (1H, dd, J=17.4, 1.5 Hz), 1.76-1.56 (2H, m), 1.52 (9H, s), 1.44–1.21 (2H, m), 0.93 (3H, t, *J*=7.2 Hz); ¹³C NMR (CDCl₃) δ 161.8, 156.0, 152.2, 135.2, 130.1, 129.8, 127.8, 115.3, 82.4, 53.5, 34.5, 32.4, 27.9, 19.5, 13.8; EI-MS (rel intensity) *m/z* 347 (M⁺, 4), 205 (14), 204 (100), 86 (14), 84 (22); EI-HRMS *m*/*z* calcd for C₁₉H₂₅NO₃S 347.1555, found 347.1560.

4.3. General procedure of oxidation of sulfides 4

To a solution of compound **4** (3.28 mmol) in CH_2Cl_2 (40 mL) at 0 °C was added *m*CPBA (70–75% in H₂O, 8.19 mmol) in small portions. The reaction mixture was stirred at room temperature for 2 h, and was washed sequentially with 5% aqueous Na₂S₂O₃ and saturated NaHCO₃, dried (MgSO₄) and concentrated under reduced pressure to give pure product. If necessary, the solid crude product could be purified by recrystallization from CH_2Cl_2 /hexane.

4.3.1. 1-(tert-Butoxycarbonyl)-4-(phenylsulfonyl)-1,2,5,6-tetrahydro-2-pyridinone (**5a**). Yield (91%); white solid mp 151.6–152.9 °C; IR (ATR, film) ν 2985, 2934, 1764, 1706, 1476, 1388, 1219, 1155, 1078, 968, 899, 751, 724, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 8.01–7.81 (2H, m), 7.75–7.51 (3H, m), 6.63 (1H, t, *J*=1.3 Hz), 3.87 (2H, t, *J*=6.3 Hz), 2.59–2.54 (2H, m), 1.52 (9H, s); ¹³C NMR (CDCl₃) δ 161.4, 153.2, 151.5, 137.0, 134.6, 129.7, 128.5, 128.4, 83.9, 43.3, 27.8, 23.0; EI-MS (rel intensity) *m*/*z* 338 (M⁺+1, 1), 283 (22), 282 (95), 264 (20), 238 (80), 208 (28), 125 (43), 96 (24), 86 (23), 77 (24), 67 (30), 57 (100); EI-HRMS *m*/*z* calcd for C₁₆H₁₉NO₅S 337.0984, found 337.0982.

4.3.2. 1-(tert-Butoxycarbonyl)-6-methyl-4-(phenylsulfonyl)-1,2,5,6tetrahydro-2-pyridinone (**5b**). Yield (96%); white solid mp 123.5–124.5 °C; IR (ATR, film) ν 2972, 2941, 1757, 1687, 1368, 1324, 1229, 1115, 1070, 817, 765, 725 cm⁻¹; ¹H NMR (CDCl₃) δ 7.91 (2H, d, *J*=7.5 Hz), 7.78–7.56 (3H, m), 6.73–6.65 (1H, m), 4.66 (1H, qd, *J*=6.6, 6.6 Hz), 2.77 (1H, ddd, *J*=17.7, 6.0, 2.7 Hz), 2.47 (1H, d, *J*=17.7 Hz), 1.52 (9H, s), 1.14 (3H, d, *J*=6.6 Hz); ¹³C NMR (CDCl₃) δ 161.0, 151.5, 150.6, 136.8, 134.6, 134.6, 129.7, 128.6, 127.8, 83.9, 49.9, 28.9, 27.9, 18.7; FAB-MS (rel intensity) *m/z* 352 (M+H, 3), 297 (17), 296 (100), 252 (17), 57 (46); FAB-HRMS *m/z* calcd for C₁₇H₂₁NO₅S 351.1140, found 351.1143.

4.3.3. 1-(tert-Butoxycarbonyl)-4-(phenylsulfonyl)-6-propyl-1,2,5,6tetrahydro-2-pyridinone (**5c**). Yield (88%); colorless liquid; IR (neat) ν 3067, 2964, 2934, 2875, 1766, 1718, 1369, 1292, 1120, 1095, 1079, 817, 759, 730 cm⁻¹; ¹H NMR (CDCl₃) δ 7.91–7.82 (2H, m), 7.73–7.51 (3H, m), 6.69–6.64 (1H, m), 4.52–4.39 (1H, m), 2.66 (1H, ddd, *J*=18.0, 6.0, 3.0 Hz), 2.51 (1H, dd, *J*=18.0, 1.5 Hz), 1.51–1.39 (10H, m), 1.34–1.19 (1H, m), 1.12–0.83 (2H, m), 0.71 (3H, t, *J*=7.2 Hz); ¹³C NMR (CDCl₃) δ 161.0, 151.5, 150.5, 136.7, 134.6, 129.6, 128.6, 128.1, 83.7, 53.6, 34.4, 27.8, 25.9, 19.1, 13.5; FAB-MS (rel intensity) *m*/*z* 380 (M+H, 1), 325 (19), 324 (100), 280 (19); FAB-HRMS *m*/*z* calcd for C₁₉H₂₅NO₅S 379.1453, found 379.1448.

4.4. General procedure for reduction of amides 5

To a solution of compound **5** (0.3 mmol) in CH_2Cl_2 (10 mL) at -78 °C was added dropwise LiEt₃BH (1 M in THF, 0.33 mmol). The reaction mixture was stirred at -78 °C for another 1 h, and was quenched with saturated NaHCO₃ solution. The aqueous solution was extracted with CH_2Cl_2 , dried (MgSO₄), and evaporated under vacuum. The crude product was purified by flash chromatography using ethyl acetate/hexane (1:2) containing 5% Et₃N as eluent to give pure product. If necessary, the solid crude product could be purified by recrystallization from CH_2Cl_2 /hexane.

4.4.1. 1-(*tert-Butoxycarbonyl*)-2-*hydroxy*-4-(*phenylsulfonyl*)-1,2,5,6*tetrahydro*-2-*pyridinone* (**6a**). Yield (93%); white solid mp 103–104 °C; IR (film) ν 3415, 3068, 2978, 1685, 1447, 1419, 1394, 1367, 1306, 1286, 1212, 1151, 1123, 1092, 1062, 1046, 1021, 986, 948, 913, 855, 827, 755, 727, 687 cm⁻¹; ¹H NMR (CDCl₃) δ 7.90–7.87 (2H, m), 7.69–7.54 (3H, m), 6.93–6.91 (1H, m), 5.91 (1H, br s), 4.13–4.03 (2H, m), 3.02 (1H, br s), 2.36–2.23 (2H, m), 1.46 (9H, s); ¹³C NMR (CDCl₃) δ 154.7, 142.8, 138.3, 133.9, 133.3, 129.4, 128.4, 81.6, 72.4, 36.5, 28.4, 23.5; ESI-MS (rel intensity) *m*/*z* 339 (M⁻-H, 62), 338 (15), 274 (31), 272 (100); ESI-HRMS *m*/*z* calcd for C₁₆H₂₁NO₅S 339.1140, found 339.1131.

4.4.2. cis- and trans-1-(tert-Butoxycarbonyl)-2-hydroxy-6-methyl-4-(phenylsulfonyl)-1,2,5,6-tetrahydro-2-pyridinone (**6b**). Yield (90%); yellow liquid; IR (neat) ν 3455, 3057, 2982, 2934, 1686, 1447, 1393, 1341, 1308, 1156, 1116, 1054, 851, 737, 705 cm⁻¹; ¹H NMR (CDCl₃) δ 7.98–7.85 (2H, m), 7.72–7.52 (3H, m), 7.03–6.88 (1H, m), 5.92–5.72 (1H, m), 4.65–4.22 (1H, m), 2.51–2.34 (1H, m), 2.30–2.13 (1H, m), 2.00 (1H, br s), 1.48 (9H, s), 0.97 (3H, d, *J*=6.6 Hz); ¹³C NMR (CDCl₃) δ 154.7, 139.5, 138.5, 137.9, 133.8, 133.6, 132.9, 129.3, 129.0, 128.7, 128.4, 81.5, 81.3, 72.5, 43.5, 29.7, 28.9, 28.6, 28.3, 19.1, 18.8; ESI-MS (rel intensity) *m/z* 376 (M⁺+Na, 58), 280 (39), 258 (18), 236 (100); ESI-HRMS *m/z* calcd for C₁₇H₂₃NO₅S 353.1297, found 353.1294.

4.4.3. *cis-* and trans-1-(tert-Butoxycarbonyl)-2-hydroxy-4-(phenyl-sulfonyl)-6-propyl-1,2,5,6-tetrahydro-2-pyridinone (**6***c*). Yield (90%); yellow liquid; IR (neat) *v* 3446, 3064, 2962, 2933, 2873, 1695, 1368, 1320, 1125, 1092, 1064, 1042, 813, 759, 689 cm⁻¹; ¹H NMR (CDCl₃) δ 7.95–7.87 (2H, m), 7.72–7.51 (3H, m), 7.01–6.89 (1H, m), 5.93–5.68 (1H, m), 4.42–4.05 (1H, m), 2.47–2.31 (1H, m), 2.30–2.19 (1H, m), 1.47 (9H, s), 1.23–0.82 (4H, m), 0.81–0.63 (3H, m); ¹³C NMR (CDCl₃) δ 156.0, 155.1, 140.9, 139.3, 137.8, 137.7, 133.8, 133.7, 133.2, 132.3, 129.3, 129.2, 128.3, 128.2, 81.5, 81.3, 73.3, 72.2, 51.8, 47.5, 46.4, 35.0, 34.8, 28.2, 27.2, 25.6, 19.4, 13.6; ESI-MS (rel intensity) *m/z* 364 (M⁺–H₂O+H, 12), 308 (100), 265 (13), 264 (80); ESI-HRMS *m/z* calcd for C₁₉H₂₅NO₄S 363.1504, found 363.1517.

4.5. General procedure for the reaction of aminals 6 with allyltrimethylsilane

To a solution of compound **6** (0.3 mmol) in CH_2Cl_2 (10 mL) at -78 °C was added $BF_3 \cdot OEt_2$ (1.5 mmol). After stirring at -78 °C for 30 min, allyltrimethylsilane (1.5 mmol) was then added dropwise. The reaction mixture was slowly warmed to room temperature, and was quenched with saturated NaHCO₃. The aqueous solution was extracted with CH_2Cl_2 , dried (MgSO₄), and evaporated under vacuum. The crude product was purified by flash

chromatography using ethyl acetate/hexane (1:1-1:3) containing 5% Et₃N as eluent to give pure product.

4.5.1. 2-Allyl-4-(phenylsulfonyl)-1,2,5,6-tetrahydropyridine (**7a**). Yield (65%); yellow liquid; IR (film) ν 3058, 2931, 1641, 1446, 1303, 1149, 1124, 1091, 1033, 1016, 997, 924, 755, 729, 688 cm⁻¹; ¹H NMR (CDCl₃) δ 7.86–7.83 (2H, m), 7.64–7.51 (3H, m), 6.96 (1H, d, *J*=1.8 Hz), 5.81–5.70 (1H, m), 5.18–5.13 (2H, m), 3.59–3.54 (1H, m), 3.13 (1H, dt, *J*=12.3, 4.4 Hz), 2.83–2.75 (1H, m), 2.39–2.19 (5H, m); ¹³C NMR (CDCl₃) δ 139.4, 139.1, 138.8, 133.7, 133.2, 129.0, 127.9, 118.5, 53.5, 41.2, 38.9, 23.5; FAB-MS (rel intensity) *m/z* 264 (M⁺+H, 100), 262 (28), 222 (38), 125 (33), 122 (25), 80 (22), 30 (53); FAB-HRMS *m/z* calcd for C₁₄H₁₇NO₂S *m/z* 263.0980, found 263.0980.

4.5.2. cis-2-Allyl-6-methyl-4-(phenylsulfonyl)-1,2,5,6-tetrahydropyridine (**7b**). Yield (56%); yellow solid mp 71.7–73.3 °C; IR (ATR, film) ν 3055, 2988, 1645, 1443, 1422, 1265, 1127, 896, 739, 705 cm⁻¹; ¹H NMR (CDCl₃) δ 7.92–7.79 (2H, m), 7.68–7.58 (1H, m), 7.58–7.48 (2H, m), 6.93 (1H, s), 5.78 (1H, ddt, *J*=17.1, 9.9, 7.2 Hz), 5.26–5.09 (2H, m), 3.69–3.57 (1H, m), 2.94–2.77 (1H, m), 2.44–2.21 (3H, m), 1.85–1.67 (1H, m), 1.13 (3H, d, *J*=6.6 Hz); ¹³C NMR (CDCl₃) δ 139.2, 138.9, 138.6, 133.4 (×2), 129.2, 128.0, 119.1, 54.8, 48.7, 39.0, 31.1, 21.4; FAB-MS (rel intensity) *m*/*z* 278 (M⁺+H, 55), 228 (33), 147 (37), 137 (48), 136 (87), 107 (33), 95 (31), 89 (34), 77 (36), 73 (100), 51 (61), 30 (35); FAB-HRMS *m*/*z* calcd for C₁₅H₁₉NO₂S 277.1136, found 277.1139.

4.5.3. *cis*-2-Allyl-4-(*phenylsulfonyl*)-6-*propyl*-1,2,5,6-*tetrahydropy-ridine* (**7c**). Yield (61%); yellow liquid; IR (neat) ν 3062, 2957, 2931, 2874, 1686, 1369, 1307, 1155, 1094, 1073, 758, 725 cm⁻¹; ¹H NMR (CDCl₃) δ 7.99–7.78 (2H, m), 7.73–7.59 (1H, m), 7.58–7.42 (2H, m), 6.93 (1H, s), 5.78 (1H, ddt, *J*=17.1, 10.2, 7.2 Hz), 5.27–5.11 (2H, m), 3.73–3.52 (1H, m), 2.81–2.66 (1H, m), 2.47–2.21 (3H, m), 1.85–1.60 (2H, m), 1.49–1.24 (4H, m), 0.89 (3H, t, *J*=7.2 Hz); ¹³C NMR (CDCl₃) δ 139.7, 139.4, 139.2, 133.8, 133.4, 129.2, 128.1, 118.9, 54.9, 52.9, 39.5, 38.5, 30.0, 19.0, 14.1; FAB-MS (rel intensity) *m/z* 306 (M⁺+H, 100), 304 (40), 264 (34), 162 (17); FAB-HRMS *m/z* calcd for C₁₇H₂₃NO₂S 305.1449, found 305.1460.

4.6. General procedure for the conversion of compounds 7 to compounds 8

To a mixture of compound **7** (0.50 mmol) and K_2CO_3 (1.05 mmol) in CH₂Cl₂ (10 mL) under nitrogen was added CbzCl (0.142 mL, 1.0 mmol) in one portion. The reaction mixture was refluxed for 4 h, and was then quenched with water (10 mL). The aqueous solution was extracted with CH₂Cl₂, dried (MgSO₄), and evaporated under vacuum. The crude product was purified by flash chromatography using ethyl acetate/hexane (1:3) containing 5% Et₃N as eluent to give pure product.

4.6.1. *cis*-2-Allyl-1-(*benzyloxycarbonyl*)-6-*methyl*-4-(*phenylsulfonyl*)-1,2,5,6-*tetrahydropyridine* (**8a**). Yield (71%); colorless liquid; IR (neat) ν 3065, 3034, 2977, 2934, 1693, 1656, 1447, 1383, 1358, 1328, 1308, 1071, 1055, 890, 758, 729, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 7.92–7.88 (2H, m), 7.67–7.58 (1H, m), 7.58–7.48 (2H, m), 7.41–7.22 (5H, m), 7.05 (1H, s), 5.93–5.71 (1H, m), 5.22–5.03 (4H, m), 4.76 (1H, br s), 4.60 (1H, br s), 2.56 (1H, br s), 2.49–2.17 (3H, m), 1.00 (3H, d, *J*=6.9 Hz); ¹³C NMR (CDCl₃) δ 154.3 (×2), 138.3, 136.1, 134.7, 133.4 (×2), 129.1, 128.3, 127.9, 127.8, 127.7, 118.6, 67.2, 51.8, 43.5, 39.5, 28.4, 19.7; FAB-MS (rel intensity) *m/z* 412 (M⁺+H, 4), 370 (6), 326 (7), 124 (6), 79 (100), 69 (5), 66 (7); FAB-HRMS *m/z* calcd for C₂₃H₂₅NO4S 411.1504, found 411.1501.

4.6.2. *cis-2-Allyl-1-(benzyloxycarbonyl)-4-(phenylsulfonyl)-6-propyl-1,2,5,6-tetrahydropyridine* (**8b**). Yield (90%); white solid mp 101.1–102.8 °C; IR (ATR, film) *v* 3059, 2950, 2915, 2863, 1698, 1343, 1303, 1149, 1118, 1093, 1068, 884, 840, 767, 728, 691 cm⁻¹; ¹H NMR (CDCl₃) δ 7.95–7.78 (2H, m), 7.72–7.49 (3H, m), 7.44–7.25 (5H, m), 7.02 (1H, br s), 5.84 (1H, br s), 5.29–4.99 (4H, m), 4.79–4.38 (2H, m), 2.78–2.45 (1H, m), 2.41–2.11 (3H, m), 1.41–1.22 (1H, m), 1.22–0.98 (3H, m), 0.77 (3H, t, *J*=7.2 Hz); ¹³C NMR (CDCl₃) δ 155.0, 138.7, 136.3 (×2), 135.0, 133.6 (×3), 129.3, 128.6, 128.2, 128.1, 119.0, 67.6, 52.3, 48.2, 40.0, 35.5, 27.0, 19.8, 13.8; FAB-MS (rel intensity) *m/z* 440 (M⁺+H, 91), 438 (24), 399 (25), 398 (91), 355 (23), 354 (89), 348 (69), 332 (27), 308 (90), 140 (62), 105 (59), 88 (43), 67 (54), 51 (100); FAB-HRMS *m/z* calcd for C₂₅H₂₉NO4S 439.1817, found 439.1812.

4.7. 1,2-Bis(allyl)-4-(phenylsulfonyl)-1,2,5,6-tetrahydropyridine (9a)

To a solution of compound **7a** (100 mg, 0.38 mmol) in THF (10 mL) was added sequentially Et₃N (0.16 mL, 1.14 mmol) and allyl bromide (0.1 mL, 1.14 mmol). The reaction mixture was then refluxed for 4 h. The solvent was evaporated under vacuum, and the residue was purified by flash chromatography using ethyl acetate/hexane (1:6) containing 5% Et₃N as eluent to give product 9a (88.7 mg, 77%). Red-brown liquid; IR (film) v 3071, 2937, 2810, 1641, 1555, 1446, 1381, 1354, 1304, 1208, 1150, 1091, 1063, 997, 958, 918, 802, 755, 723, 688 cm⁻¹; ¹H NMR (CDCl₃) δ 7.86–7.84 (2H, m), 7.59–7.50 (3H, m), 6.94 (1H, t, J=1.2 Hz), 5.85-5.70 (2H, m), 5.20-5.07 (4H, m), 3.32-3.25 (2H, m), 3.03-2.90 (2H, m), 2.55-2.12 (5H, m); ¹³C NMR (CDCl₃) δ 139.4, 139.1, 138.5, 134.6, 134.0, 133.2, 129.1, 127.9, 118.0, 117.6, 58.3, 56.2. 45.7, 36.2, 22.2; FAB-MS (rel intensity) *m*/*z* 304 (M⁺+H, 31), 302 (39), 262 (100); FAB-HRMS *m*/*z* calcd for C₁₇H₂₁NO₂S 303.1293, found 303.1288.

4.8. 2-Allyl-1-(2-methyl-2-propenyl)-4-(phenylsulfonyl)-1,2,5,6-tetrahydropyridine (9b)

To a solution of compound **7a** (100 mg, 0.38 mmol) in toluene (10 mL) was added sequentially Et₃N (0.16 mL, 1.14 mmol) and 3bromo-2-methylpropene (0.12 mL, 1.14 mmol). The reaction mixture was then refluxed for 4 h. The solvent was evaporated under vacuum, and the residue was purified by flash chromatography using ethyl acetate/hexane (1:6) containing 5% Et₃N as eluent to give product 9b (84.4 mg, 70%). Red-brown liquid; IR (film) v 3074, 2939, 2806, 1642, 1446, 1355, 1304, 1207, 1150, 1092, 1063, 1024, 998, 908, 802, 755, 726, 687 cm⁻¹; ¹H NMR (CDCl₃) δ 7.87-7.84 (2H, m), 7.64-7.51 (3H, m), 6.95 (1H, t, J=1.2 Hz), 5.84-5.71 (1H, m), 5.12-5.04 (2H, m), 4.83 (2H, br s), 3.22-3.17 (2H, m), 2.93-2.85 (1H, m), 2.75 (1H, d, J=13.5 Hz), 2.39-2.09 (5H, m), 1.67 (3H, s); ¹³C NMR (CDCl₃) δ 142.6, 139.6, 139.0, 138.3, 134.1, 133.2, 129.0, 127.8, 117.2, 112.9, 59.9, 58.9, 45.1, 36.5, 21.9, 20.4; FAB-MS (rel intensity) m/z 318 (M⁺+H, 22), 316 (39), 276 (100), 55 (27); FAB-HRMS *m*/*z* calcd for C₁₈H₂₃NO₂S 317.1449, found 317.1449.

4.9. *cis*-1,2-Bis(allyl)-6-methyl-4-(phenylsulfonyl)-1,2,5,6-tetrahydropyridine (9c)

To a solution of compound **7b** (22 mg, 0.08 mmol) in toluene (5 mL) was added sequentially Et₃N (0.03 mL, 0.24 mmol) and allyl bromide (0.04 mL, 0.48 mmol). The reaction mixture was heated in a sealed tube at 150 °C for 3 d. The solvent was evaporated under vacuum, and the residue was purified by flash chromatography using ethyl acetate/hexane (1:6) containing 5% Et₃N as eluent to give product **9c** (21 mg, 83%). Yellow-brown liquid; IR (neat) *v* 3060, 2975, 2930, 1627, 1546, 1479, 1378, 1306, 1216, 1018, 894, 846, 737, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 7.93–7.79 (2H, m), 7.65–7.59 (1H, m), 7.59–7.48 (2H, m), 6.92 (1H, s), 5.53–5.68 (2H, m), 5.28–5.05 (4H, m), 3.52–3.25 (3H, m), 2.92–2.75 (1H, m), 2.55–2.41 (1H, m),

2.39–2.25 (2H, m), 1.98–1.83 (1H, m), 1.16 (3H, d, *J*=6.0 Hz); ¹³C NMR (CDCl₃) δ 139.4, 139.3, 137.4, 134.2, 133.5, 133.3, 129.2, 128.1, 118.2, 117.8, 58.1, 51.8, 51.2, 37.4, 30.9, 20.1; FAB-MS (rel intensity) *m/z* 318 (M⁺+H, 47), 316 (35), 276 (76), 145 (34), 137 (38), 135 (32), 133 (37), 131 (31), 123 (38), 121 (46), 119 (60), 109 (50), 107 (47), 105 (57), 95 (76), 93 (54), 91 (54), 83 (38), 81 (100), 79 (35); FAB-HRMS *m/z* calcd for C₁₈H₂₃NO₂S 317.1449, found 317.1441.

4.10. General procedure for RCM of compounds 9

A mixture of compound **9** (0.33 mmol) and **G2** (14 mg, 0.0165 mmol) in toluene (10 mL) was refluxed for 3-4 h. The solvent was removed under vacuum, and the crude product was purified by flash chromatography using ethyl acetate/hexane (1:5–1:4) containing 5% Et₃N as eluent to give pure product.

4.10.1. 2-(*Phenylsulfonyl*)-4,6,9,9*a*-tetrahydro-3*H*-quinolizine (**10a**). Yield (65%); yellow-brown solid mp 83–84 °C; IR (film) ν 3053, 2913, 2756, 1651, 1446, 1304, 1288, 1148, 1085, 1067, 999, 880, 859, 794, 732, 715, 688, 663 cm⁻¹; ¹H NMR (CDCl₃) δ 7.87–7.84 (2H, m), 7.64–7.50 (3H, m), 6.83 (1H, s), 5.79–5.68 (2H, m), 3.28 (1H, d, *J*=16.8 Hz), 3.05–2.89 (3H, m), 2.45–2.11 (5H, m); ¹³C NMR (CDCl₃) δ 139.0, 138.4, 138.3, 133.4, 129.2, 128.1, 125.4, 124.8, 56.5, 53.9, 50.1, 31.4, 23.9; FAB-MS (rel intensity) *m/z* 276 (M⁺+H, 100), 275 (21), 274 (64), 134 (43), 132 (24), 130 (23); FAB-HRMS *m/z* calcd for C₁₅H₁₇NO₂S 275.0980, found 275.0977.

4.10.2. 7-Methyl-2-(phenylsulfonyl)-4,6,9,9a-tetrahydro-3H-quinolizine (**10b**). Yield (67%); yellow-brown solid mp 87–88 °C; IR (film) ν 3058, 2913, 2761, 1734, 1652, 1446, 1369, 1303, 1263, 1218, 1151, 1098, 1080, 1019, 997, 968, 883, 805, 784, 732, 688 cm⁻¹; ¹H NMR (CDCl₃) δ 7.88–7.84 (2H, m), 7.64–7.49 (3H, m), 6.84 (1H, s), 5.45 (1H, d, *J*=1.8 Hz), 3.11 (1H, d, *J*=15.6 Hz), 2.99–2.82 (3H, m), 2.44–2.33 (3H, m), 2.25–1.99 (2H, m), 1.65 (3H, s); ¹³C NMR (CDCl₃) δ 139.1, 138.5, 138.1, 133.4, 132.6, 129.2, 128.0, 118.9, 58.0, 56.4, 50.0, 31.3, 24.0, 20.6; FAB-MS (rel intensity) *m/z* 290 (M⁺+H, 100), 289 (23), 288 (73), 148 (51), 146 (28), 144 (34); FAB-HRMS *m/z* calcd for C₁₆H₁₉NO₂S 289.1136, found 289.1131.

4.10.3. $(4R^*,9aS^*)$ -4-Methyl-2-(phenylsulfonyl)-4,6,9,9*a*-tetrahydro-3*H*-quinolizine (**10c**). Yield (71%); yellow-brown liquid; IR (neat) ν 3038, 2966, 2929, 1651, 1447, 1351, 1305, 1155, 1125, 1086, 829, 737, 718, 689 cm⁻¹; ¹H NMR (CDCl₃) δ 8.05–7.78 (2H, m), 7.75–7.48 (3H, m), 6.81 (1H, s), 5.90–5.65 (2H, m), 3.53 (1H, br d, *J*=15.0 Hz), 3.12 (1H, br s), 2.75 (1H, br d, *J*=15.0 Hz), 2.58–1.92 (5H, m), 1.16 (3H, d, *J*=6.0 Hz); ¹³C NMR (CDCl₃) δ 139.2, 138.5, 137.6, 133.4, 129.3, 128.1, 125.6, 124.6, 57.6, 54.1, 50.0, 32.3, 32.2, 19.4; FAB-MS (rel intensity) *m/z* 290 (M⁺+H, 40), 288 (33), 148 (25), 147 (41), 144 (74), 73 (100); FAB-HRMS *m/z* calcd for C₁₆H₁₉NO₂S 289.1136, found 289.1132.

4.11. 2-(Phenylsulfonyl)-4,6,7,8,9,9a-hexahydro-3*H*-quinolizine (11)

A mixture of compound **10a** (100 mg, 0.33 mmol) and 10% palladium on carbon (17.6 mg) in ethyl acetate (10 mL) was stirred vigorously under a balloon of hydrogen at room temperature for 48 h. The reaction mixture was then filtered with Celite, washed with ethyl acetate, dried (MgSO₄), and evaporated under vacuum. The crude product was purified by flash chromatography using ethyl acetate/hexane (1:4) containing 5% Et₃N as eluent to give product **11** (84 mg, 83%). Light yellow liquid; IR (film) *v* 3061, 2937, 2757, 1650, 1554, 1446, 1359, 1303, 1292, 1216, 1179, 1132, 1098, 1016, 997, 885, 789, 734, 717, 689 cm⁻¹; ¹H NMR (CDCl₃) δ 7.87–7.84 (2H, m), 7.63–7.50 (3H, m), 6.75 (1H, s), 2.91–2.81 (2H, m), 2.66–2.63 (1H, m), 2.42–2.28 (3H, m), 2.19 (1H, dt, *J*=3.6, 11.0 Hz), 1.85–1.78 (2H, m), 1.64–1.56 (2H, m), 1.46–1.26 (2H, m);

¹³C NMR (CDCl₃) δ 139.6, 139.2, 138.0, 133.4, 129.2, 128.2, 61.4, 55.5, 51.5, 31.1, 25.6, 25.0, 24.1; FAB-MS (rel intensity) m/z 278 (M⁺+H, 17), 147 (33), 136 (17), 73 (100), 41 (20); FAB-HRMS m/z calcd for C₁₅H₁₉NO₂S 277.1136, found 277.1141.

4.12. (2*S**,9a*S**)-2-(Phenylsulfonyl)-2,3,4,6,7,8,9,9a-octahydro-1*H*-quinolizine (12)

A mixture of compound 10a (100 mg, 0.33 mmol) and 10% palladium on carbon (17.5 mg) in 95% EtOH (10 mL) was stirred vigorously under a balloon of hydrogen at room temperature for 24 h. The reaction mixture was then filtered with Celite, washed with ethyl acetate, dried (MgSO₄), and evaporated under vacuum. The crude product was purified by flash chromatography using ethyl acetate/hexane (1:4) containing 5% Et₃N as eluent to give product 12 (79 mg, 80%). Light yellow liquid; IR (film) v 3060, 2935, 2805, 2765, 1586, 1447, 1353, 1304, 1277, 1224, 1178, 1146, 1126, 1084, 999, 895, 809, 794, 722, 689 cm⁻¹; ¹H NMR (CDCl₃) δ 7.88–7.85 (2H, m), 7.69–7.54 (3H, m), 2.99 (1H, tt, *J*=3.3, 12.3 Hz), 2.91–2.86 (1H, m), 2.78 (1H, br d, *J*=11.7 Hz), 2.05–1.91 (4H, m), 1.76–1.51 (6H, m), 1.43–1.20 (3H, m); ¹³C NMR (CDCl₃) δ 136.6, 133.8, 129.3, 129.2, 62.1, 61.2, 55.8, 54.7, 33.0, 32.3, 25.6 (×2), 24.2; FAB-MS (rel intensity) *m*/*z* 280 (M⁺+H, 100), 278 (42), 138 (69), 136 (58); FAB-HRMS *m*/*z* calcd for C₁₅H₂₁NO₂S 279.1293, found 279.1291.

4.13. 2-Allyl-1-(*tert*-butoxycarbonyl)-4-(phenylsulfonyl)-1,2,5,6-tetrahydropyridine (13)

To a solution of 7a (412 mg, 1.57 mmol) and 4-dimethylaminopyridine (19 mg, 0.16 mmol) in CH₂Cl₂ (10 mL) under nitrogen were added sequentially Et₃N (0.218 mL, 1.57 mmol) and ditert-butyl dicarbonate (0.554 mL, 2.35 mmol). After refluxing for 4 h, the reaction mixture was quenched with saturated sodium bicarbonate (10 mL). The aqueous solution was extracted with CH₂Cl₂, dried (MgSO₄), and evaporated under vacuum. The crude product was purified by flash chromatography using ethyl acetate/ hexane (1:2) as eluent to give product 13 (449 mg, 79%). Yellowbrown liquid; IR (neat) v 3067, 2977, 2933, 1690, 1413, 1318, 1154, 1123, 1092, 1057, 953, 925, 758, 727, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 7.93–7.82 (2H, m), 7.72–7.49 (3H, m), 7.00 (1H, s), 5.91–5.72 (1H, m), 5.21–5.07 (2H, m), 4.69 (1H, br s), 4.26 (1H, br s), 2.79 (1H, br s), 2.49-2.28 (3H, m), 2.16 (1H, br s), 1.44 (9H, s); ¹³C NMR (CDCl₃) δ 153.7, 139.0, 138.6, 137.2, 133.5, 133.2, 129.2, 128.0, 118.4, 80.2, 52.0, 37.6, 35.9, 28.2, 23.2; ESI-MS (rel intensity) *m*/*z* 364 (M⁺+H, 6), 266 (25), 264 (10), 221 (16), 125 (100), 122 (19); ESI-HRMS m/z calcd for C₁₉H₂₅NO₄S *m*/*z* 363.1504, found 363.1501.

4.14. 1-(*tert*-Butoxycarbonyl)-2-[(*E*)-4-oxopent-2-enyl]-4-(phe-nylsulfonyl)-1,2,5,6-tetrahydropyridine (14)

A mixture of compound **13** (250 mg, 0.69 mmol), **G2** (29 mg, 0.034 mmol), *p*-cresol (0.036 mL, 0.34 mmol), and methyl vinyl ketone (1.13 mL, 13.77 mmol) in toluene (10 mL) was refluxed for 7 h. The solvent was evaporated under vacuum, and the residue was purified by flash chromatography using ethyl acetate/hexane (1:4) containing 5% Et₃N as eluent to give product **14** (214 mg, 77%). Redbrown liquid; IR (neat) ν 3062, 2978, 2932, 1691, 1629, 1478, 1366, 1317, 1307, 1154, 1119, 981, 953, 760, 727 cm⁻¹; ¹H NMR (CDCl₃) δ 7.91–7.83 (2H, m), 7.71–7.61 (1H, m), 7.61–7.52 (2H, m), 6.96 (1H, s), 6.82–6.71 (1H, m), 6.11 (1H, br s), 4.90 (1H, br s), 4.44–4.02 (1H, m), 2.76 (1H, br s), 2.67–2.42 (2H, m), 2.39–2.28 (1H, m), 2.24 (3H, s), 2.19–2.10 (1H, m), 1.42 (9H, s); ¹³C NMR (CDCl₃) δ 198.2, 153.7, 142.6, 140.0, 138.4, 136.4, 133.7 (×2), 129.4, 128.1, 80.8, 51.8, 36.2 (×2), 28.2, 27.1, 23.3; ESI-MS (rel intensity) *m/z* 406 (M⁺+H, 5), 361

(29), 306 (100), 222 (45); ESI-HRMS m/z calcd for C₂₁H₂₇NO₅S 405.1610, found 405.1617.

4.15. 1-(*tert*-Butoxycarbonyl)-2-(4-oxopentyl)-4-(phenylsulfonyl)-1,2,5,6-tetrahydropyridine (15)

A mixture of compound 14(160 mg, 0.39 mmol) and $PtO_2(13 \text{ mg}, 0.39 \text{ mmol})$ 0.06 mmol) in EtOAc (4 mL) was stirred vigorously under a balloon of hydrogen at room temperature for 21 h. The reaction mixture was then filtered with Celite, washed with ethyl acetate, dried (MgSO₄), and evaporated under vacuum to give product 15 (150 mg, 93%). Yellow liquid; IR (neat) v 3061, 2977, 2935, 1712, 1683, 1478, 1447, 1367, 1307, 1152, 1118, 1058, 758, 735, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 7.86 (2H, d, J=7.8 Hz), 7.70–7.50 (3H, m), 6.98 (1H, s), 4.62 (1H, br s), 4.40-3.99(1H, m), 2.76(1H, brs), 2.63-2.39(2H, m), 2.34-2.22(1H, m), 2.21–2.02 (4H, m), 1.74–1.49 (4H, m), 1.44 (9H, s); ¹³C NMR $(CDCl_3)\delta 208.0, 154.0, 138.6, 137.6, 133.6 (\times 2), 129.3, 128.0, 80.4, 51.3,$ 42.9, 35.5, 32.2, 29.9, 28.3, 23.2, 20.1; FAB-MS (rel intensity) m/z 408 (M⁺+H, 38), 308 (48), 271 (30), 159 (30), 147 (32), 145 (39), 143 (31), 137 (35), 133 (38), 131 (34), 123 (36), 121 (44), 119 (70), 109 (50), 107 (47) 105 (64), 95 (77), 93 (53), 91 (62), 83 (43), 81 (97), 79 (41), 77 (33), 69 (95), 67 (47), 57 (74), 55 (100), 43 (69), 41 (70); FAB-HRMS *m*/*z* calcd for C₂₁H₂₉NO₅S 407.1766, found 407.1773.

4.16. (6*S**,9a*S**)-6-Methyl-2-(phenylsulfonyl)-4,6,7,8,9,9a-hex-ahydro-3*H*-quinolizine (16)

A solution of compound 15 (13 mg, 0.032 mmol) in CF₃CO₂H/ CH₂Cl₂ (1:2, 1 mL) was stirred in an ice bathe for 4 h. Then NaBH₄ (13 mg, 0.32 mmol) was added, followed by dropwise addition of MeOH (2 mL). The reaction mixture was further stirred at room temperature for 1 h. The solvent was evaporated under vacuum, and then CH_2Cl_2 (5 mL) and saturated NaHCO₃ (5 mL) were added. The aqueous solution was extracted with CH_2Cl_2 (5 mL×3), and the combined organic solution was evaporated under vacuum. The crude product was purified by flash chromatography using ethyl acetate/hexane (1:6) containing 5% Et₃N as eluent to give product **16** (7 mg, 75%). Red-brown liquid; IR (neat) v 3066, 2967, 2931, 2851, 2795, 1655, 1468, 1331, 1305, 1151, 1125, 1070, 1034, 749, 716 cm⁻¹; ¹H NMR (CDCl₃) δ 7.95–7.80 (2H, m), 7.70–7.59 (1H, m), 7.59-7.47 (2H, m), 6.72 (1H, d, J=0.9 Hz), 3.42-3.25 (1H, m), 2.84-2.72 (1H, m), 2.42-2.27 (2H, m), 2.27-2.13 (1H, m), 2.13-2.01 (1H, m), 1.87-1.72 (2H, m), 1.69-1.58 (1H, m), 1.52-1.24 (3H, m), 1.09 (3H, d, J=6.0 Hz); ¹³C NMR (CDCl₃) δ 139.9, 139.2, 138.0, 133.4, 129.2, 128.2, 61.7, 57.6, 45.7, 34.7, 31.4, 24.8, 24.5, 20.5; FAB-MS (rel intensity) m/z 292 (M⁺+H, 63), 271 (41), 165 (42), 157 (41), 155 (40), 143 (49), 141 (41), 133 (40), 129 (48), 128 (52), 119 (77), 115 (50), 109 (43), 107 (46), 105 (79), 95 (63), 93 (54), 91 (100), 81 (76), 79 (47), 77 (60), 73 (57), 69 (75), 67 (44), 57 (40), 55 (89), 43 (51), 41 (67); FAB-HRMS *m*/*z* calcd for C₁₆H₂₁NO₂S 291.1293, found 291.1297.

4.17. *cis*-1-(Benzyloxycarbonyl)-6-methyl-2-[*(E)*-4-oxohept-2-enyl]-4-(phenylsulfonyl)-1,2,5,6-tetrahydropyridine (17)

A mixture of compound **8a** (50 mg, 0.12 mmol), **G2** (5 mg, 0.006 mmol), *p*-cresol (0.006 mL, 0.06 mmol) and 1-hexen-3-one (0.142 mL, 1.20 mmol) in toluene (5 mL) was refluxed for 5 h. The solvent was evaporated under vacuum, and the residue was purified by flash chromatography using ethyl acetate/hexane (1:2) as eluent to give product **17** (40 mg, 68%). Red-brown liquid; IR (neat, film) *v* 3061, 2965, 2935, 1695, 1631, 1360, 1306, 1155, 1110, 982, 736, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.89–7.78 (2H, m), 7.71–7.61 (1H, m), 7.61–7.49 (2H, m), 7.42–7.22 (5H, m), 6.96 (1H, s), 6.91–6.72 (1H, m), 6.12 (1H, d, *J*=15.9 Hz), 5.12 (2H, s), 4.75 (2H, br s), 2.75–2.60 (1H, m), 2.59–2.41 (3H, m), 2.35–2.19 (2H, m), 1.72–1.43 (2H, m),

1.02 (3H, d, *J*=7.2 Hz), 0.93 (3H, t, *J*=7.5 Hz); ¹³C NMR (CDCl₃) δ 199.9, 154.5, 140.8, 138.2, 137.0, 136.0, 134.1, 133.7, 133.0, 129.3, 128.5, 128.2, 128.1, 128.0, 67.6, 51.4, 43.6, 42.2, 38.4, 28.6, 20.0, 17.4, 13.7; ESI-MS (rel intensity) *m/z* 480 (M⁻-H, 40), 370 (100), 326 (64), 297 (37), 150 (17); ESI-HRMS *m/z* calcd for C₂₇H₃₁NO₅S 481.1923, found 481.1931.

4.18. *cis*-1-(Benzyloxycarbonyl)-6-methyl-2-(4-oxoheptyl)-4-(phenylsulfonyl)-1,2,5,6-tetrahydropyridine (18)

A mixture of compound **17** (119 mg, 0.25 mmol) and PtO₂ (8 mg) in EtOAc (5 mL) was stirred vigorously under a balloon of hydrogen at room temperature for 24 h. The reaction mixture was then filtered with Celite, washed with ethyl acetate, dried (MgSO₄), and evaporated under vacuum to give product **18** (119 mg, 99%). Light yellow liquid; IR (film) *v* 3064, 3034, 2962, 2934, 2875, 1700, 1655, 1447, 1380, 1334, 1306, 1154, 1111, 1072, 752, 725, 691 cm⁻¹; ¹H NMR (CDCl₃) δ 7.98–7.79 (2H, m), 7.74–7.49 (3H, m), 7.48–7.23 (5H, m), 7.07 (1H, s), 5.26–5.02 (2H, m), 4.76 (1H, br s), 4.54 (1H, br s), 2.71–2.12 (6H, m), 1.89–1.45 (6H, m), 0.99 (3H, d, *J*=6.9 Hz), 0.90 (3H, t, *J*=7.5 Hz); ¹³C NMR (CDCl₃) δ 210.2, 154.6, 138.4, 136.2, 135.9, 135.1, 133.5 (×2), 129.2, 128.4, 128.1, 128.0, 67.4, 52.0, 44.5, 43.6, 41.8, 34.8, 28.5, 20.4, 19.8, 17.1, 13.6; ESI-MS (rel intensity) *m/z* 482 (M⁻–H, 34), 402 (21), 325 (26), 311 (13), 283 (100); ESI-HRMS *m/z* calcd for C₂₇H₃₃NO₅S 483.2079, found 483.2093.

4.19. (2*R**,**4***S**,**6***S**)-2-Methyl-6-(4-oxoheptyl)-4-(phenylsulfo-nyl)piperidine (19)

A mixture of compound 17 (23 mg, 0.05 mmol) and Pd(OH)₂ (3 mg) in CF₃CO₂H/MeOH (1:5, 2 mL) was stirred vigorously under a balloon of hydrogen at room temperature for 24 h. The reaction mixture was then filtered with Celite and washed with ethyl acetate. To this was added 5% NaOH (10 mL), and the aqueous solution was extracted with CH₂Cl₂. The combined organic solution was dried (MgSO₄), and evaporated under vacuum to give product **19** (16 mg, 95%) as a light yellow liquid. IR (film) v 3313, 3064, 2960, 2929, 2873, 1708, 1447, 1378, 1303, 1146, 1085, 755, 691 cm⁻¹; ¹H NMR (CDCl₃) δ 7.95-7.82 (2H, m), 7.72-7.62 (1H, m), 7.62-7.51 (2H, m), 3.05 (1H, tt, J=12.3, 3.6 Hz), 2.72-2.58 (1H, m), 2.58-2.45 (1H, m), 2.45-2.32 (4H, m), 2.08-1.92 (2H, m), 1.81-1.51 (5H, m), 1.42-1.28 (3H, m), 1.21–1.14 (1H, m), 1.09 (3H, d, *J*=6.3 Hz), 0.90 (3H, t, *J*=7.5 Hz); ¹³C NMR (CDCl₃) δ 210.5, 136.5, 133.6, 128.9, 128.8, 62.1, 55.1, 50.7, 44.5, 42.2, 36.0, 32.9, 30.8, 22.2, 19.6, 17.0, 13.5; FAB-MS (rel intensity) m/z 352 (M⁺+H, 100), 210 (31), 126 (23), 52 (22), 51 (26); FAB-HRMS *m*/*z* calcd for C₁₉H₂₉NO₃S 351.1868, found 351.1863.

4.20. *cis*- and *trans*-(2*S**,4*S**,6*R**)-6-Methyl-2-(4-hydroxyheptyl)-4-(phenylsulfonyl)piperidine (20)

To a solution of compound **19** (85 mg, 0.24 mmol) in CF₃CO₂H/ MeOH (1:10, 11 mL) at 0 °C was added NaCNBH₃ (152 mg, 2.42 mmol). The reaction mixture was stirred at room temperature for 4 h, and the solvent was evaporated under vacuum. To this were added CH₂Cl₂ (10 mL) and saturated NaHCO₃ (10 mL). The aqueous solution was extracted with CH_2Cl_2 (5 mL×3). The combined organic solution was dried (MgSO₄), evaporated under vacuum, and the crude product was purified by flash chromatography using ethyl acetate containing 5% Et₃N as eluent to give product 20 (79 mg, 92%). Light yellow liquid (1:1 diastereomeric mixture as judged from ¹³C NMR); IR (neat) ν 3401, 3065, 2957, 2931, 2870, 1447, 1379, 1303, 1085, 894, 753, 719, 690 cm⁻¹; ¹H NMR (CDCl₃) & 7.93-7.83 (2H, m), 7.73-7.51 (3H, m), 3.59 (1H, br s), 3.06 (1H, tt, J=12.5, 3.6 Hz), 2.73–2.61 (1H, m), 2.61–2.49 (1H, m), 2.13–1.92 (2H, m), 1.65–1.28 (11H, m), 1.23–1.13 (1H, m), 1.11 (3H, d, J=6.0 Hz), 0.92 (3H, t, J=6.0 Hz); ¹H NMR (DMSO- d_6) δ 7.32–7.10 (5H, m), 3.71 (1H, br s), 2.92–2.68 (2H, m), 2.10–1.81 (2H, m), 1.42–1.05 (2H, m), 0.98–0.55 (10H, m), 0.53–0.38 (5H, m), 0.31 (3H, t, *J*=6.0 Hz); 13 C NMR (CDCl₃) δ 136.9, 133.8, 129.3, 129.2, 71.5, 62.6, 55.8, 55.6, 51.2, 39.8, 37.5, 37.3, 36.9, 36.8, 33.4, 31.3, 22.5, 22.0, 21.9, 18.9, 14.2; 13 C NMR (DMSO- d_6) δ 136.9, 133.8, 129.3, 128.6, 69.2, 60.8, 54.6, 50.1, 37.4, 36.4, 32.8, 30.4, 22.1, 21.5, 21.4, 18.4, 14.1; ESI-MS (rel intensity) *m*/*z* 354 (M⁺+H, 100), 336 (5); ESI-HRMS *m*/*z* calcd for C₁₉H₃₁NO₃S 353.2025, found 353.2015.

4.21. (2*S**,4*R**,6*R**,9a*S**)-4-Methyl-2-(phenylsulfonyl)-6-propyl-2,3,4,6,7,8,9,9a-octahydro-1*H*-quinolizine (21a) and (2*S**,4*R**,6*S**,9a*S**)-4-methyl-2-(phenylsulfonyl)-6-propyl-2,3,4,6,7,8,9,9a-octahydro-1*H*-quinolizine (21b)

To a solution of compound 20 (110 mg, 0.31 mmol) in CH₂Cl₂ (5 mL) at 0 °C were added sequentially Et₃N (0.091 mL, 0.65 mmol) and MsCl (0.027 mL, 0.34 mmol). The reaction mixture was then stirred at room temperature for 17 h, and saturated NaHCO₃ (5 mL) was added. The aqueous solution was extracted with CH₂Cl₂ $(5 \text{ mL} \times 3)$. The combined organic solution was dried (MgSO₄) and evaporated under vacuum. The residue was dissolved in Et₃N/toluene (1:3, 20 mL), and refluxed under nitrogen for 1 d. The solvent was removed under vacuum, and the residue was purified by flash chromatography using ethyl acetate/hexane (1:4) containing 5% Et₃N as eluent to give compound **21a** (50 mg, 48%) and compound 21b (45 mg, 43%). Compound 21a: yellow solid mp 108.1–109.5 °C; IR (ATR, film) v 3054, 2936, 2863, 2796, 1445, 1377, 1297, 1279, 1144, 1083, 1024, 755, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 7.91–7.80 (2H, m), 7.72-7.61 (1H, m), 7.61-7.50 (2H, m), 3.09 (1H, d, J=8.7 Hz), 2.98 (1H, tt, *I*=12.6, 3.3 Hz), 2.61–2.45 (1H, m), 2.44–2.31 (1H, m), 2.70-1.90 (2H, m), 1.83-1.67 (2H, m), 1.67-1.56 (1H, m), 1.53-1.16 (9H, m), 1.07 (3H, d, J=6.3 Hz), 0.91 (3H, t, J=6.9 Hz); ¹³C NMR (CDCl₃) δ 136.7, 133.7, 129.3, 129.1, 61.8, 53.0, 52.8, 52.2, 34.3 (×2), 33.9, 27.7, 22.5, 20.3, 19.9, 18.3, 14.4; EI-MS (rel intensity) m/z 336 $(M^++1, 1)$, 293 (22), 292 (100), 150 (25); EI-HRMS m/z calcd for C19H29NO2S 335.1919, found 335.1916. Compound 21b: yellow liguid; IR (neat) v 3065, 2951, 2935, 2870, 2791, 1638, 1447, 1378, 1306, 1147, 1086, 1021, 750, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 7.92–7.81 (2H, m), 7.72-7.62 (1H, m), 7.61-7.50 (2H, m), 3.03 (1H, tt, J=12.6, 3.6 Hz), 2.77–2.64 (1H, m), 2.53–2.38 (2H, m), 1.93 (1H, dq, J=12.6, 3.0 Hz), 1.88-1.77 (1H, m), 1.73-1.54 (4H, m), 1.51-1.36 (4H, m), 1.35–1.20 (4H, m), 1.12 (3H, d, *J*=6.0 Hz), 0.87 (3H, t, *J*=6.9 Hz); ¹³C NMR (CDCl₃) § 137.0, 133.7, 129.3, 129.2, 62.2, 57.2, 55.5, 54.7, 40.4, 34.5, 33.1, 29.5, 21.6, 21.4, 20.1, 15.3, 14.3; ESI-MS (rel intensity) *m*/*z* 336 (M⁺+H, 100), 190 (12); ESI-HRMS *m*/*z* calcd for C₁₉H₂₉NO₂S 335.1919, found 335.1916.

4.22. General procedure for reductive cleavage of sulfones 21

A mixture of compound **21** (0.10 mmol) and 6% Na/Hg (2.09 mmol) in dried THF (5 mL) was refluxed for 3.5 h. Additional 6% Na/Hg (2.09 mmol) was added, and refluxed for another 3.5 h. The reaction mixture was then filtered through Celite, washed with ethyl acetate, and evaporated under vacuum. The residue was purified by flash chromatography using hexane containing 5% Et_3N as eluent to give pure product.

4.22.1. $(4R^*, 6R^*, 9aS^*)$ -4-Methyl-6-propyl-2,3,4,6,7,8,9,9a-octahydro-1H-quinolizine (**22**). Yield (69%); light yellow liquid; IR (neat) ν 2929, 2861, 2792, 2709, 1455, 1375, 1319, 1262, 1104, 1052, 880, 750, 724 cm⁻¹; ¹H NMR (CDCl₃) δ 3.19–3.06 (1H, m), 2.54–2.40 (1H, m), 2.37–2.25 (1H, m), 1.99 (1H, s), 1.81–1.69 (1H, m), 1.66–1.50 (5H, m), 1.49–1.37 (4H, m), 1.34–1.17 (5H, m), 1.05 (3H, d, J=6.3 Hz), 0.93 (3H, t, J=7.2 Hz); ¹³C NMR (CDCl₃) δ 54.1, 53.1, 53.0, 35.7, 35.4, 34.7, 28.0, 24.6, 22.5, 20.5, 20.1, 18.7, 14.6; El-MS (rel intensity) *m/z* 196 (M⁺+1, 1), 152 (9), 77 (100), 69 (8), 57 (11); EI-HRMS *m*/*z* calcd for C₁₃H₂₅N 195.1987, found 195.1987.

4.22.2. $(4R^*,6S^*,9aS^*)$ -4-Methyl-6-propyl-2,3,4,6,7,8,9,9a-octahydro-1H-quinolizine (**23**). Yield (65%); light yellow liquid; IR (neat, film) ν 3059, 2929, 2859, 2789, 2708, 1456, 1376, 1274, 1160, 1105, 876, 755, 727 cm⁻¹; ¹H NMR (CDCl₃) δ 2.65–2.55 (1H, m), 2.54–2.47 (2H, m), 1.84–1.72 (1H, m), 1.72–1.59 (3H, m), 1.55–1.42 (5H, m), 1.38–1.18 (7H, m), 1.11 (3H, d, *J*=6.3 Hz), 0.90 (3H, t, *J*=7.2 Hz); ¹³C NMR (CDCl₃) δ 58.1, 57.1, 55.8, 39.8, 34.4, 33.5, 30.6, 23.6, 22.7, 22.5, 20.2, 17.6, 14.4; ESI-MS (rel intensity) *m*/*z* 196 (M⁺+H, 100); ESI-HRMS *m*/*z* calcd for C₁₃H₂₅N 195.1987, found 195.1981.

Acknowledgements

Financial support of this work by the National Science Council of the Republic of China (NSC 97-2113-M-030-001-MY3 and NSC 100-2113-M-030-007) is gratefully acknowledged.

Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.tet.2012.12.017.

References and notes

- 1. Daly, J. W.; Spande, T. S.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556-1575.
- (a) Daly, J. W.; Spande, T. F. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, NY, 1986; Vol. 3; Chapter 1, pp 1–274; (b) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: New York, NY, 1999; Vol. 13, pp 1–161.
- 3. For a recent review, see: Michael, J. P. Nat. Prod. Rep. 2008, 25, 139-165.
- For some selected recent examples, see: (a) Rueping, M.; Hubener, L. Synlett 2011, 1243–1246; (b) Belanger, G.; O'Brien, G.; Larouche-Gauthier, R. Org. Lett. 2011, 13, 4268–4271; (c) Yang, D.; Micalizio, G. C. J. Am. Chem. Soc. 2009, 131, 17548–17549; (d) Amorde, S. M.; Jewett, I. T.; Martin, S. F. Tetrahedron 2008, 65, 3222–3231; (e) Furman, B.; Lipner, G. Tetrahedron 2008, 64, 3464–3470; (f) Amorde, S. M.; Judd, A. S.; Martin, S. F. Org. Lett. 2005, 7, 2031–2033.
- (a) Chou, S. S. P.; Hung, C. C. Tetrahedron Lett. 2000, 41, 8323–8326; (b) Chou, S. S. P.; Hung, C. C. Synthesis 2001, 2450–2462.
- (a) Chou, S. S. P.; Chiu, H. C.; Hung, C. C. Tetrahedron Lett. 2003, 44, 4653–4655;
 (b) Chou, S. S. P.; Ho, C. W. Tetrahedron Lett. 2005, 46, 8551–8554; (c) Chou, S. S. P.; Liang, C. F.; Lee, T. M.; Liu, C. F. Tetrahedron 2007, 63, 8267–8273; (d) Chou, S. S. P.; Liu, C. F. J. Chin. Chem. Soc. 2010, 57, 811–819; (e) Chou, S. S. P.; Cai, Y. L. Tetrahedron 2011, 67, 1183–1186; (f) Chou, S. S. P.; Yang, T. H.; Wu, W. S.; Chiu, T. H. Synthesis 2011, 759–763; (g) Chou, S. S. P.; Chung, Y. C.; Chen, P. A.; Chiang, S. L.; Wu, C. J. J. Org. Chem. 2011, 67, 692–695; (h) Chou, S. S. P.; Huang, C. W.; Chang, C. C. Tetrahedron 2011, 67, 4505–4513; (i) Chou, S. S. P.; Huang, C. W.; Chang, C. C. Tetrahedron 2011, 67, 5395–5401; (j) Chou, S. S. P.; Luo, C. L.; Hsu, Y. H. J. Chin. Chem. Soc. 2012, 59, 365–372; (k) Chou, S. S. P.; Wu, C. J. Tetrahedron 2012, 68, 5025–5030; (l) Chou, S. S. P.; Huang, J. L. Tetrahedron Lett. 2012, 53, 5555–5554; (m) Chou, S. S. P.; Chiang, S. L.; Huang, G. L.; Chiang, B. S.; Yu, Y. C. Tetrahedron 2013, 69, 274–283.
- (a) Fürstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012–3043; (b) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18–29; (c) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–4450.
- For some selected examples of synthesis of indolizidines and quinolizidines via RCM (other than Ref. 6c and 6m), see: (a) Overkleeft, H. S.; Bruggeman, P.; Pandit, U. K. *Tetrahedron Lett.* 1998, 39, 3869–3872; (b) Barluenga, J.; Mateos, C.; Aznar, F.; Valdés, C. J. Org. Chem. 2004, 69, 7114–7122; (c) Wijdeven, M. A.; Botman, P. N. M.; Wijtmans, R.; Schoemaker, H. E.; Rutjes, F. P. J. T.; Blaauw, R. H. Org. *Lett.* 2005, 7, 4005–4007; (d) Katoh, M.; Mizutani, H.; Honda, T. *Tetrahedron Lett.* 2005, 46, 5161–5163; (e) Liu, S.; Fan, Y.; Peng, X.; Wang, W.; Hua, W.; Akber, H.; Liao, L. *Tetrahedron Lett.* 2006, 47, 7681–7684; (f) Wijdeven, M. A.; Wijtmans, R.; van den Berg, R. J. F.; Noorduin, W.; Schoemaker, H. E.; Sonke, T.; van Delft, F. L.; Blaauw, R. H.; Fitch, R. W.; Spande, T. F.; Daly, J. W.; Rutjes, F. P. J. T. Org. *Lett.* 2008, 10, 4001–4003; (g) Ghosh, S.; Shashidhar, J. *Tetrahedron Lett.* 2009, 50, 1177–1179.
- Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900–1923; (b) Miao, X.; Dixneuf, P. H.; Fischmeister, C.; Bruneau, C. Green Chem. 2011, 13, 2258–2271; (c) Prunet, J. Eur. J. Org. Chem. 2011, 3634–3647.
- 10. Edwards, M. W.; Daly, J. W. J. Nat. Prod. 1988, 51, 1188-1197.
- Jones, T. H.; Gorman, J. S. T.; Snelling, R. R.; Delabie, J. H. C.; Blum, M. S.; Garraffo, H. M.; Jain, P.; Daly, J. W.; Spande, T. F. J. Chem. Ecol. **1999**, 25, 1179–1193.
- 12. Harris, P. W. R.; Brimble, M. A.; Gluckman, P. D. Org. Lett. 2003, 5, 1847-1850.
- 13. Crystallographic data (excluding structure factors) for compounds 7b, 8b, and 21a in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 904865–904867. Copies of the

data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc. cam.ac.uk).

- 14. (a) Sonnet, P. E.; Netzel, D. A.; Mendoza, R. J. Heterocycl. Chem. 1979, 16, 1041–1047; (b) Sonnet, P. E.; Oliver, J. E. J. Heterocycl. Chem. **1975**, *12*, 289–294. 15. Forman, G. S.; McConnell, A. E.; Toze, R. P.; van Rensburg, W. J.; Meyer, W. H.;
- Kirk, M. M.; Dwyer, C. L.; Serfontein, D. Organometallics 2005, 24, 4528-4542;

(b) Chou, C.-Y.; Hou, D.-R. J. Org. Chem. 2006, 71, 9887-9890; (c) Chen, L.-J.;

(b) Chou, C.-Y.; Hou, D.-R. J. Org. Chem. 2008, 19, 9387–93890; (c) Chen, L.-J.; Hou, D.-R. Tetrahedron: Asymmetry 2008, 19, 715–720.
(a) Randl, S.; Blechert, S. J. Org. Chem. 2003, 68, 8879–8882; (b) Stead, D.; O'Brien, P.; Sanderson, A. Org. Lett. 2008, 10, 1409–1412; (c) Lesma, G.; Colombo, A.; Sacchetti, A.; Silvani, A. J. Org. Chem. 2009, 74, 590–596; (d) Airiau, E.; Girard, N.; Pizzeti, M.; Salvadori, J.; Taddei, M.; Mann, A. J. Org. Chem. 2010, 75, 0072 8670-8673.