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Abstract: A novel and efficient approach to ortho-trialkyl-
stannyl arylphosphanes by the reaction of arynes generated
in situ with stannylated phosphanes (R3Sn¢PR2) is described.
Concurrent C¢P and C¢Sn bond formation occurs with high
yields, and stannylated products are easily transformed into
valuable ortho-substituted arylphosphanes. The reaction fea-
tures high efficiency, good regioselectivity, and excellent
practicality.

During the past forty years, phosphanes have been widely
used in organic synthesis,[1] polymer science,[2] and for
preparation of functional materials.[3] Particularly in homo-
geneous catalysis, arylphosphanes with ortho-substituents
have played an important role.[4] Although much progress
has been achieved, development of new methods for prepa-
ration of substituted arylphosphanes is still of importance.
Existing processes in some cases lack generality and harsh
reaction conditions, and often expensive transition metals
have to be used.[5] Insertion of arynes into stannylated
phosphanes (R3Sn¢PR2) appears to be a promising alterna-
tive to ionic and transition-metal-mediated reactions for
preparation of ortho-functionalized arylphosphanes.

Stannylated phosphanes have been known for 50 years.[6,7]

However, they have found only little application in syn-
thesis.[8] Stille and Tunney reported the use of Me3SnPPh2 in
Pd-catalyzed C¢P couplings with aryl halides to give unsym-
metrical triarylphosphanes (Scheme 1a),[9] and Schmidt and

co-workers found that multiple bonds insert into Me3SnPPh2

via radical intermediates.[10] Recently, we reported mild and
highly efficient radical phosphanylation of C-radicals with
stannylated phosphanes as radical acceptors in chain reac-
tions (Scheme 1b).[11] Some C=X double bonds also insert
into the tin–phosphorus bond of stannylated phosphanes
(Scheme 1c).[12]

As a continuation of our aryne studies,[13] we decided to
investigate the reaction of R3Sn¢PR2 with arynes as a new
approach to valuable 1,2-bifunctional arenes (Scheme 1 d).
Arynes have found widespread applications in organic syn-
thesis.[14] The groups of Yoshida,[15] Larock,[16] Stoltz,[17] and
others[18] have disclosed that various s-bonds insert into
arynes (such as C¢N, C¢O, C¢Si, N¢Si, N¢P, O¢Si, F¢Sn, B¢
H).[19] To the best of our knowledge, the direct stannylphos-
phanylation of arynes is unprecedented.

We first investigated the reaction of 2-(trimethylsilyl)-
phenyl triflate (1a) as an aryne precursor with KF, 18-crown-
6, and phosphane 2 a in DME. However, the targeted 3a was
not formed, which is likely due to the instability of 2a towards
the F-anion (Scheme 2). The Knochel procedure[20] compris-

ing addition of iPrMgCl·LiCl (1.7 equiv) to 1b (1.5 equiv) in
Et2O (¢78 88C) was suitable. For Mg–I exchange, the solution
was stirred at ¢78 88C for 0.5 h, 2a (1.0 equiv) was added, and
the reaction mixture was allowed to warm to room temper-
ature to deliver 3a in excellent 90 % isolated yield.[21] Slightly
lower but still very good yields were obtained with aryne
precursors 1c and 1d.[20]

Under optimized conditions, we studied the reactivity of
2a with various arynes generated in situ (Table 1). Sym-
metrical arynes, such as 2,3-naphthalyne (from 1e) and
a cyclohexane-annellated aryne (from 1 f) provided the 1,2-
bifunctionalized arenes 3b and 3c in moderate to good yields.
For unsymmetrical arynes, owing to the electron-withdrawing
effect of the methoxy and fluoro substituents, high regiose-
lectivity was obtained with 3-methoxy-1,2-benzyne (from 1 g)

Scheme 1. Various reactions involving Me3Sn¢PPh2.

Scheme 2. Testing of various aryne precursors.
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and 3-fluoro-1,2-benzyne (from 1 i) to give 3d and 3e. The P-
substituent was installed distal to the MeO/F-substituent,
indicating a nucleophile-type addition to the aryne with the
phosphorous in 2 a acting as a nucleophile.[15a] As expected,
the regioisomeric precursor 1h provided 3d with the same
regioselectivity as 1g. Selectivity was lower with 3-chloro-1,2-
benzyne (from 1j) to give 3 f and only a slight increase in
selectivity was obtained with the bulkier phosphane 2b (see
3g). 3-Alkyl substituted arynes derived from 1k and 1 l
reacted with good to excellent selectivity: the tert-butyl
system was converted with complete regiocontrol into 3h and
the smaller 3-isopropyl-1,2-benzyne gave 3 i with 5.5:1
regioselectivity. The isomers were readily assigned by NOE
experiments. This selectivity trend can be explained by
unfavorable steric repulsion between the alkyl substituent in
the arynes and the incoming 2 a. Surprisingly, with the methyl
congener a reversal of selectivity was observed (see 3j).
Switching to the tributylstannylphosphane 2b did not signifi-
cantly change selectivity (see 3k). As expected, meta-
substituted arynes do not react with high regioselectivity as
shown for 4-methoxy-1,2-benzyne (from 1n) to provide 3 l.

Along these lines, 4-trifluoro-
methyl-1,2-benzyne (from 1o) and
4-methoxycarbonyl-1,2-benzyne
(from 1 p) reacted with 2a with little
or no selectivity (see 3m and 3 n),
supporting formation of arynes as
intermediates. To show practicality,
we ran a gram scale experiment
with 1b to give 3a in 85% yield
(1.8 g prepared).

We further explored the scope
by varying the stannylated phos-
phane using mainly 1b as the aryne
precursor (Table 2). With 2b,
a good yield of 3o was obtained.
The p-tolyl-substituted phosphane
2c reacted in high yield to give 3p.
A slightly lower yield was achieved
with phosphole 2 d to provide 3q.
Double aryne functionalization
with the bisphosphane 2e gave 3r
in a good yield. Notably, this
sequence comprises four s-bond
formations. Along these lines, 2 f
provided the formal double inser-
tion product 3s and the distanny-
lated phosphanes 2g and 2h reacted
in analogy with benzyne to provide
3t and 3u.

We next explored whether the
stannyl substituent in the phos-
phane can be replaced by a silyl
group and tested diphenyl(trime-
thylsilyl)phosphane (Me3SiPPh2, 4).
Pleasingly, 1b reacted under the
optimized conditions with 4 to give
the targeted ortho-trimethylsilyl-
phenyldiphenylphosphane (5) in

64% (not shown; see the Supporting Information).
Based on the results obtained from the reaction of 3-

methoxybenzyne with 2a where 3 d was formed as a single
regioisomer, an ionic mechanism with initial P-attack onto the
aryne is likely.[22] However, it is not clear whether stannyl
transfer from P to the incipient aryl anion is occurring in
a concerted process via an asynchronous cycloaddition-type
reaction, where an aryl anion is not generated as an
intermediate. To address that issue we performed DFT
studies (PW6B95-D3//TPSS-D3/def2-TZVP; for details, see
the Supporting Information). Attempts to locate a transition
structure for the reaction of 2a with 1,2-benzyne failed, even
when different classes of functional were used. Optimizing
a reaction path starting connecting a pre-reactive structure
(d(P¢C)� 3 è) with the product confirmed that there is no
energetic (enthalpic) barrier to the addition (Figure 1). The
formation of 3a is highly exothermic (DH(Et2O) =

¢75.6 kcalmol¢1) and thus occurs under diffusion control.
At the same time, the reaction path reveals the asynchronous
character of the addition: the P¢C bond is formed much
earlier on the reaction coordinate than the C¢Sn bond,

Table 1: Stannylphosphanylation of aryne precursors 1e–p (Ar =4-Cl-C6H4).
[a]

Precursor Product[b] Ratio[c] Yield
[%][d]

1e 3b – 55

1 f 3c – 71

1g (R = 2-OMe)
1h (R = 5-OMe)
1 i (R = 5-F)

3d (with 1g)
3d (with 1h)
3e (with 1 i)

>20:1
>20:1

6.8:1

44
52
50

1 j
3 f (R = SnMe3)
3g (R= SnBu3)

2.3:1
3.2:1

62
74

1k 3h >20:1 90

1 l 3 i 5.5:1 72

1m
3j (R =SnMe3)
3k (R =SnBu3)

2.4:1
2.0:1

75
75

1n (R = 4-OMe)
1o (R =5-CF3)
1p (R= 4-CO2Me)

3 l (R = OMe)
3m (R =CF3)
3n (R =CO2Me)

1.8:1
1.1:1

1:1

88
62
48

[a] Reaction conditions: 1 (0.30 mmol), 2 (0.20 mmol) and iPrMgCl·LiCl (0.34 mmol) in Et2O (2.0 mL) at
RT for 2 h. [b] Major regioisomer drawn. [c] Regioisomer ratio determined by 31P NMR spectroscopy on
the crude product. [d] Combined isolated yield of both regioisomers.
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although the concertedness excludes the formation of an ion
pair intermediate.

The high regioselectivity found for the formation of 3d via
3-methoxy-1,2-benzyne can only be rationalized by prefer-
ential nucleophilic attack of 2a at the C1 position of the
reactive intermediate. A slightly more positive partial charge
and the larger LUMO coefficient at the C1 of the aryne
formed from 1g/1h indicated a larger electrophilic character
of this atom and thus explain the observed selectivity (see the
Supporting Information).

The concerted cycloaddition
type mechanism is further sup-
ported by the reaction of aryne
precursor 1 q with 2a to give 3v
(54 %) and 3w was not identified
(Scheme 3). The aryne derived
from 1q should react with nucleo-
philes in a domino sequence,[23]

where the aryl anion A, initially
formed by nucleophilic addition,
undergoes renewed b-sulfonate
elimination to generate aryne B
that further reacts with a second
equivalent of the nucleophile. The
absence of 3w indicates that aryne
stannylphosphanylation does not
occur by a longer lived aryl anion
of type A.

To document the synthetic value
of the process, follow-up chemistry
on 3a was investigated.[24] Consid-
ering the importance of ortho-sub-
stituted arylphosphanes, lithiation
and subsequent trapping of the
intermediate Li species with elec-
trophiles was studied (Scheme 4).
Sn–Li exchange of 3a with MeLi in

THF and treatment with chlorodiarylphosphanes afforded the
bisphosphanes 6 and 7 in good yields. Trapping with p-
anisaldehyde (8), borylation (9), acylation (10), formylation
(11), and aminomethylation (12) worked equally well. More-
over, the P atom in 3a was readily protected upon oxidation
with H2O2 to give phosphane oxide 13. Considering the
importance of BINAP-type ligands, we further converted 13
in high yield into bisarylphosphane oxide 15 by CuCl-
mediated homocoupling. In analogy, phosphane oxide 16
(obtained by oxidation of 3s) reacted in excellent yield to
phosphole oxide 17. Buchwald-type ligands are accessible in
moderate yield by Stille reaction of 3a (see 14).

In summary, we have presented direct insertion of arynes
into stannylated phosphanes for concomitant C¢P and C¢Sn
bond formation, providing functionalized stannylated aryl-
phosphanes in high yields and in some cases with high
regioselectivities. Computational studies have given insights
into the mechanism of that aryne stannylphosphanylation. In

Table 2: Reaction of 1b with various stannylated phosphanes.[a]

R3SnPR’R’’ Product Yield [%][b]

2b 3o 80[c]

2c 3p 83[c]

2d 3q 50[c]

2e 3r 62[d]

2 f (R = Ph)
2g (R =nOct)
2h (R =Fc)

3s (R = Ph)
3t (R = nOct)
3u (R= Fc)

49[d,e]

36[d]

48[d]

[a] Reaction conditions: 1 (0.30 or 0.60 mmol), 2b-h (0.20 mmol) and iPrMgCl·LiCl (0.34 or 0.68 mmol)
in Et2O (2.0 mL) at RT for 2 h. [b] Yield of isolated product. [c] 1c was used. [d] 1b was used. [e] Reaction
conducted at ¢40 88C for 16 h. Fc = ferrocenyl.

Figure 1. Optimized reaction path (TPSS-D3) of the addition of 2a and
1,2-benzyne. PW6B95-D3 energies (triangles) and paths including
solvation contributions (Et2O) with the COSMO model (broken lines)
are single point values for the TPSS-D3 structures. The def2-TZVP
basis set was used for all calculations.

Scheme 3. Stannylphosphanylation of 1q.

Angewandte
ChemieCommunications

804 www.angewandte.org Ó 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2016, 55, 802 –806

http://www.angewandte.org


a series of follow up reactions, the synthetic value of the
ortho-stannylarylphosphanes was documented. As shown in
an example, silylated phosphanes react with arynes generated
in situ in analogy to give the corresponding ortho-silylaryl-
phosphanes.
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