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gem-Dihaloenynes were synthesized in high yields from 1,1,4,4-tetrahalo-1,3-butadienes through the
Fritsch–Buttenberg–Wiechell (FBW) rearrangement mediated by an organolithium compound.
Butatriene derivatives could be obtained efficiently via an organolithium-mediated reaction of o-halo-
(2,2-dihalovinyl)benzenes.
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gem-Dihalovinyl compounds are useful building blocks in
organic synthesis.1,2 When such a compound is treated with a base
such as an organolithium, an alkyne may be generated via the Frit-
sch–Buttenberg–Wiechell (FBW) rearrangement (Scheme 1).3,4 On
the other hand, butatrienes are interesting compounds both struc-
turally and synthetically.5,6 The most common synthetic method
for butatrienes is via a halolithio carbenoid intermediate generated
by a single metal-halo exchange of a gem-dihaloalkene with an
organolithium reagent.5 Reductive coupling of the halolithio carb-
enoid intermediate is usually promoted by a transition metal, such
as a copper salt, to afford the corresponding butatriene derivative.5

In some cases, butatriene derivatives can be also generated via di-
rect dimerization of the carbenoid intermediates.7 As by-products
in these reactions, disubstituted acetylenes might be formed via
the FBW rearrangement.

In recent years, we have been interested in the preparation and
synthetic applications of polyhalo compounds including gem-diha-
lo vinylic moieties, aiming at utilizing the potential synergistic
effect among functional groups on conjugated systems.8,9 As
shown in Scheme 2, we have developed an efficient synthetic
method for 1,1,4,4-tetrahalo 1,3-butadienes 1. Similarly, the
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gem-dihalovinyl compounds 2, o-halo-(2,2-dihalovinyl)benzenes,
can also be readily obtained in high yields. As our continued inter-
est in the synthetic applications of such polyhalo-substituted con-
jugated systems, we subjected such compounds under the FBW
rearrangement conditions. gem-Dihaloenynes were generated in
high yields via n-BuLi-mediated transformation of 1,1,4,4-tetra-
halo-1,3-butadienes in hexane. Further applications of gem-dihalo-
enynes were demonstrated. Butatriene derivatives could also be
obtained efficiently via an organolithium-mediated reaction of
o-halo-(2,2-dihalovinyl)benzenes in THF.5,6 The structure of one
butatriene derivative was determined by single-crystal X-ray
structural analysis.5
R X R

Scheme 1. The Fritsch–Buttenberg–Wiechell (FBW) rearrangement.
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Scheme 3. Synthesis of gem-dihaloenynes 3.
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Scheme 5. Synthesis of butatrienes 6.

Figure 1. Single-crystal X-ray structure of E-6c with 30% thermal ellipsoids.
Hydrogen atoms are omitted for clarity. Selected bond lengths [Å]: C1–C6 1.406(5),
C6–C7 1.485(5), C7–C8 1.505(5), C7–C9 1.328(5), C9–C90 1.261(7), C1–I1 2.103(3).
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Initially, the 1,1,4,4-tetrabromo-1,3-butadiene 1a–b was trea-
ted with t-BuLi in THF (Scheme 3). The expected gem-dib-
romoenyne 3a–b could be generated, but in moderate yields.
When the reaction was carried out in hexane using t-BuLi, the
gem-dibromoenyne derivatives 3a and 3b were obtained in 66%
and 61% isolated yields, respectively. The yields increased but were
not satisfied. This is probably due to the relatively low reactivity of
the C(sp2)-Br bond. In fact, when n-BuLi was used instead of t-BuLi,
no lithio-bromo exchange was observed under the above reaction
condition in THF or in hexane. Therefore, to achieve a higher
lithio-halo exchange rate and better yields, the C(sp2)-I bond-con-
taining derivatives 1c–e were synthesized and treated with an
organolithium reagent. In these cases, t-BuLi was too reactive
and the reaction gave a mixture of products. The best condition
was realized when n-BuLi was applied in hexane solution. As
shown in Scheme 3, the gem-dibromoenynes 3a–c could be ob-
tained in excellent isolated yields.10 To the best of our knowledge,
this is the first example of gem-dihaloenynes synthesis via the FBW
rearrangement of 1,1,4,4-tetrahalo 1,3-butadienes.11

Similarly, as shown in Scheme 3, when the Cl, Br, I-mixed poly-
halo conjugated butadiene 1f was treated with n-BuLi in hexane,
the corresponding gem-dihaloenyne 3d was generated quantita-
tively as the sole isomer.

Synthetic application of the gem-dihaloenyne derivatives was
preliminarily demonstrated (Scheme 4). Thus compounds 3a and
3b were subjected to the Suzuki–Miyaura cross-coupling reaction
condition, which afforded the diphenyl-substituted enynes 4a
and 4b in 76% and 71% isolated yields, respectively.11c

Butatriene derivatives could be obtained efficiently via an orga-
nolithium-mediated reaction of o-halo-(2,2-dihalovinyl)benzenes.
As given in Scheme 5, when the o-bromo-(2,2-dibromovinyl)ben-
zene derivative 2a was treated with n-BuLi in hexane, the corre-



T. Meng et al. / Tetrahedron Letters 53 (2012) 4555–4557 4557
sponding FBW rearrangement product, the o-bromophenyl acety-
lene 5 was exclusively formed and obtained in 86% isolated yield.
However, when the reaction was carried out in THF, butatriene
derivatives 6 mainly as E-isomers were obtained as the major
products,12 via direct dimerization of the carbenoid intermediates
7 and/or 8. The butatriene derivative 6c was obtained as a mixture
of 1:1 E/Z isomers. In addition, when the R group was butyl, we
also detected trace amount of the Z-form butatriene by the NMR
spectra.

Obviously, the solvent polarity and coordination ability seem
crucial for these two different transformations. Hexane is found
to be the most effective solvent for the FBW rearrangement, while
most polar solvents such as THF will afford butatriene derivatives
as major products. The structure of E-6c was confirmed by single-
crystal X-ray structural analysis (Fig. 1).13

In summary, we developed a convenient synthesis of gem-
dihaloenynes from 1,1,4,4-tetrahalo-1,3-butadienes through the
Fritsch–Buttenberg–Wiechell (FBW) rearrangement. Butatriene
derivatives were also obtained efficiently.
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