A New Method for the Synthesis of 1,5-Disubstituted 1,2,3-Triazoles via Triazolium Salt Intermediates

Shinichi Koguchi,* Kazuki Izawa

Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan Fax +81(463)502094; E-mail: koguchi@tokai-u.jp Received: 06.08.2012; Accepted after revision: 25.09.2012

This work is dedicated on the occasion of the birth of my son. His name is Shigemasa.

Abstract: A new transition metal free procedure for the synthesis of 1,5-disubstituted 1,2,3-triazoles, which proceeds via a triazolium salt intermediate is described.

Key words: triazoles, triazolium salts, azides, alkynes, regioselective

Substituted 1,2,3,-triazoles are important structural components of a variety of biologically active compounds. They possess antibacterial,¹ anti-allergic,² anti-HIV,³ and antineoplastic activities.⁴ Additionally, they have been widely used in various research fields, including materials science⁵ and synthetic organic chemistry.⁶

Many procedures have been developed for the synthesis of 1,4-disubstituted 1,2,3-triazoles, with the copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) between organic azides and terminal alkynes representing a useful and extensively applied method.⁷

However, there are only a few reported methods describing the synthesis of 1,5-disubstituted 1,2,3-triazoles from organic azides and terminal alkynes. Fokin and co-workers have described the ruthenium(II)-catalyzed [CpRu- $Cl(PPh_3)_2$ regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles from azides and alkynes.⁸ Chuprakov and co-workers reported the synthesis of 1,5-disubstituted 1,2,3-triazoles via direct palladium-catalyzed C-5 arylation from 4,5-unsubstituted 1,2,3-triazoles.9 Both methods are disadvantaged by their use of expensive transition metals. In contrast, transition metal free click reactions using a silvl acetylene or a bromomagnesium acetylide have been reported for the synthesis of 1,5-disubstituted 1,2,3triazoles.^{10,11} However, these methods need an expensive silvl reagent or anhydrous reaction conditions. 1,5-Disubstituted 1,2,3-triazoles have also been prepared in the presence of hydroxide bases, but the substituent on the triazole ring was limited to an aryl group.¹²

In this paper, we describe the catalytic formation of 1,5disubstituted 1,2,3,-triazoles via a 1-protected-3,4-disubstituted 1,2,3-triazolium salt intermediate without the requirement of a transition-metal catalyst (Scheme 1).

SYNTHESIS 2012, 44, 3603–3608 Advanced online publication: 17.10.2012 DOI: 10.1055/s-0032-1316806; Art ID: SS-2012-F0633-OP © Georg Thieme Verlag Stuttgart · New York

Scheme 1 The synthesis of 1,5-disubstituted 1,2,3-triazoles

Initially, we investigated the copper-catalyzed regioselective Huisgen cycloaddition of an alkyne and an azide (the so-called click reaction). The substrates, 1-(3,4-dimethoxybenzyl)-4-substituted 1,2,3-triazoles **1a–c**, were synthesized in good yields as white solids, via one-pot reactions of 4-(chloromethyl)-1,2-dimethoxybenzene, sodium azide and the appropriate alkyne under the Sharpless protocol¹³ (Scheme 2). The obtained products were purified by recrystallization.

Scheme 2 Synthesis of 1-(3,4-dimethoxybenzyl)-4-substituted 1,2,3-triazoles 1a-c

We prepared the 3,4-disubstituted-1,2,3-triazolium salt intermediates from 1,4-disubstituted-1,2,3-triazoles 1a-c in the following manner. A mixture of triazole 1a-c (3.5 mmol), alkyl halide (7.0 mmol), and acetonitrile (2.0 mL) was sealed in a glass vial and warmed to 80 °C overnight. The solvent was then removed under reduced pressure and the products were obtained by silica gel column chromatography using chloroform–methanol as the eluent. A variety of functional groups could be incorporated into the triazolium salt (Table 1).

Next, the effect of varying the halogen component on the synthesis of the triazolium salt was investigated. The reactivity of benzyl chloride was found to be the same as that of benzyl bromide (Table 1, entry 4). Also, the length of the alkyl chain was found to influence the reactivity of triazolium salt formation. Alkyl halides possessing longer carbon chains (ethyl iodide or *n*-butyl iodide) led to lower yields of the corresponding salts (Table 1, entries 1, 5 and

6). However, the synthesis of 1-(3,4-dimethoxybenzyl)-3-(2-hydroxyethyl)-4-phenyl-1*H*-1,2,3-triazolium bromide (**2g**) using 2-bromoethanol only proceeded in 35% yield (Table 1, entry 7).

We have developed two methods for the deprotection (methods A and B) of triazolium salts **2**. Ammonium nitrate (NH₄NO₃) proved to be an efficient reagent for cleavage of the 3,4-dimethoxybenzyl group. Thus, treatment of salts **2a–c** with ammonium nitrate (2 equiv) in *N*,*N*-dimethylformamide at 120 °C gave the expected 1,5-disubstituted 1,2,3-triazoles in good to excellent yields (Table 1, entries 1–3, method A). However, this method only gave a poor yield (6%) of the corresponding benzyl-substituted product **3d** (Table 1, entry 4). The alternative developed procedure (method B) involved deprotection of

the triazolium salt using ceric ammonium nitrate (CAN) in *N*,*N*-dimethylformamide. The deprotection of 3-benzyl-1-(3,4-dimethoxybenzyl)-4-phenyl-1*H*-1,2,3-triazolium bromide (**2d**) using method B gave 1-benzyl-5phenyl-1*H*-1,2,3-triazole (**3d**) in 72% yield (Table 1, entry 4). However, removal of the protecting group did not progress smoothly with compounds containing a non-aromatic group (*n*-butyl and cyclopropyl) at C-4 of the triazolium salt (**2b** and **2c**) under the conditions of method B (Table 1, entries 2 and 3). Hence, the synthesis of 1,2,3triazoles **3** with aliphatic substituents at C-5 was possible using method A. Finally, we examined the deprotection of the 3,4-dimethoxybenzyl-1,2,3-triazolium salts using palladium on carbon (Pd/C) in the presence of hydrogen gas, or with trifluoroacetic acid, albeit without success.

Table 1 Synthesis of 1,5-Disubstituted 1,2,3-Triazoles 3a-j

1,4-Disubstituted 1,2,3-triazole ^a	Alkyl halide	3,4-Disubstituted 1,2,3-triazolium salt ^b	Yield ^c	1,5-Disubstituted 1,2,3-triazole ^d	Yield ^c
DMPM-NNNNN	MeI	DMPM-N_N_I^Ph	quant.	Ph N _N N~Me	method A: quant. method B: 99%
1a √→ DMPM→N N N N	MeI	2a /	quant.	3a ∧N-Bu NNMe	method A: 92% method B: trace
1b DMPM-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	MeI	2b DMPM-N_N_I^C-Pr pmPM-N_N_I^C-Me	96%	3b ∧→ N → N → Me 3c	method A: 80% method B: trace
1a	BnBr	$\frac{Ph}{V} = \frac{Ph}{V} = \frac{Ph}{NBn}$	90%	$N_{N} N_{Bn}$ 3d	method A: 6% method B: 72%
1a	EtI	$\frac{Ph}{V_{+}}$	77%	$N \sim N \sim Et$ 3e	method A: 71% method B: 72%
1a	n-BuI	DMPM-N _N ^{Ph} ₊ _N -n-Bu _F 2f	50%	N ^{Ph} N _N N−n-Bu 3f	method A: 93% method B: 51%
1a	HO(CH ₂) ₂ Br	Ph DMPM-N N Br-(CH ₂) ₂ OH 2g	35%	$N \sim N \sim (CH_2)_2OH$	method A: 58% method B: 46%
	1,4-Disubstituted 1,2,3-triazole ^a $DMPM-N_N N$ 1a $DMPM-N_N N$ 1b $DMPM-N_N N$ 1c 1a 1a 1a 1a 1a 1a	1,4-Disubstituted 1,2,3-triazoleaAlkyl halide□MPM-N_NMeI1aMeI□MPM-N_NMeI□MPM-N_NMeI1bMeI1cMeI1aBnBr1aIn1a <td>1.4-Disubstituted 1,2,3-triazole*Alkyl halide3,4-Disubstituted 1,2,3-triazolium salt*Mel<t< td=""><td>1.4-Disubstituted 1,2,3-triazole*Alkyl halide3,4-Disubstituted 1,2,3-triazolium salt*Yield*Mel<td>1.4-Disubstituted 1.2,3-triazole*Alkyl halide3.4-Disubstituted 1.2,3-triazoleYield*1.5-Disubstituted 1.2,3-triazole*$M_{DMPM} \rightarrow \sqrt{N}^{Pn}$ $M_{N} \rightarrow N^{N}$MeI$M_{MPM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow M_{P}$quant.$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{P}$1a2a3a$M_{PM} \rightarrow \sqrt{N}^{Pn}_{N} \rightarrow M_{P}MeIM_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow M_{P}$quant.$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{P}$1b2b3b$DMPM \rightarrow \sqrt{N}^{Pn}_{N} \rightarrow M_{P}$$M_{PI}$$M_{PI} \rightarrow M_{P}^{Pn}_{N} \rightarrow M_{P}^{Pn}_{N}$$quant.$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow M_{PI}^{Pn}_{N}_{N}$1c2c3c1aBnBr$M_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$1aEII$M_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$g_{I}$$g_{I}$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$50\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$1a$H_{O}(CH_{2})_{2}Br$$M_{PM} \rightarrow M_{N}^{Pn}_{P} \cap Bn$$50\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$1a$H_{O}(CH_{2})_{2}Br$$M_{PM} \rightarrow M_{N}^{Pn}_{P} \cap Bn$$35\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{N}^{Pn}_{$</td></td></t<></td>	1.4-Disubstituted 1,2,3-triazole*Alkyl halide3,4-Disubstituted 1,2,3-triazolium salt* Mel <t< td=""><td>1.4-Disubstituted 1,2,3-triazole*Alkyl halide3,4-Disubstituted 1,2,3-triazolium salt*Yield*Mel<td>1.4-Disubstituted 1.2,3-triazole*Alkyl halide3.4-Disubstituted 1.2,3-triazoleYield*1.5-Disubstituted 1.2,3-triazole*$M_{DMPM} \rightarrow \sqrt{N}^{Pn}$ $M_{N} \rightarrow N^{N}$MeI$M_{MPM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow M_{P}$quant.$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{P}$1a2a3a$M_{PM} \rightarrow \sqrt{N}^{Pn}_{N} \rightarrow M_{P}MeIM_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow M_{P}$quant.$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{P}$1b2b3b$DMPM \rightarrow \sqrt{N}^{Pn}_{N} \rightarrow M_{P}$$M_{PI}$$M_{PI} \rightarrow M_{P}^{Pn}_{N} \rightarrow M_{P}^{Pn}_{N}$$quant.$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow M_{PI}^{Pn}_{N}_{N}$1c2c3c1aBnBr$M_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$1aEII$M_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$g_{I}$$g_{I}$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$50\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$1a$H_{O}(CH_{2})_{2}Br$$M_{PM} \rightarrow M_{N}^{Pn}_{P} \cap Bn$$50\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$1a$H_{O}(CH_{2})_{2}Br$$M_{PM} \rightarrow M_{N}^{Pn}_{P} \cap Bn$$35\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{N}^{Pn}_{$</td></td></t<>	1.4-Disubstituted 1,2,3-triazole*Alkyl halide3,4-Disubstituted 1,2,3-triazolium salt*Yield* Mel <td>1.4-Disubstituted 1.2,3-triazole*Alkyl halide3.4-Disubstituted 1.2,3-triazoleYield*1.5-Disubstituted 1.2,3-triazole*$M_{DMPM} \rightarrow \sqrt{N}^{Pn}$ $M_{N} \rightarrow N^{N}$MeI$M_{MPM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow M_{P}$quant.$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{P}$1a2a3a$M_{PM} \rightarrow \sqrt{N}^{Pn}_{N} \rightarrow M_{P}MeIM_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow M_{P}$quant.$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{P}$1b2b3b$DMPM \rightarrow \sqrt{N}^{Pn}_{N} \rightarrow M_{P}$$M_{PI}$$M_{PI} \rightarrow M_{P}^{Pn}_{N} \rightarrow M_{P}^{Pn}_{N}$$quant.$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow M_{PI}^{Pn}_{N}_{N}$1c2c3c1aBnBr$M_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$1aEII$M_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$g0\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$g_{I}$$g_{I}$1a$H_{I}$$M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$$50\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$1a$H_{O}(CH_{2})_{2}Br$$M_{PM} \rightarrow M_{N}^{Pn}_{P} \cap Bn$$50\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$1a$H_{O}(CH_{2})_{2}Br$$M_{PM} \rightarrow M_{N}^{Pn}_{P} \cap Bn$$35\%$$\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{N}^{Pn}_{$</td>	1.4-Disubstituted 1.2,3-triazole*Alkyl halide3.4-Disubstituted 1.2,3-triazoleYield*1.5-Disubstituted 1.2,3-triazole* $M_{DMPM} \rightarrow \sqrt{N}^{Pn}$ $M_{N} \rightarrow N^{N}$ MeI $M_{MPM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow M_{P}$ quant. $\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{P}$ 1a2a3a $M_{PM} \rightarrow \sqrt{N}^{Pn}_{N} \rightarrow M_{P}$ MeI $M_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow M_{P}$ quant. $\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{P}$ 1b2b3b $DMPM \rightarrow \sqrt{N}^{Pn}_{N} \rightarrow M_{P}$ M_{PI} $M_{PI} \rightarrow M_{P}^{Pn}_{N} \rightarrow M_{P}^{Pn}_{N}$ $quant.$ $\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow M_{PI}^{Pn}_{N}_{N}$ 1c2c3c1aBnBr $M_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow Bn$ $g0\%$ $\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$ 1aEII $M_{PM} \rightarrow \sqrt{N}^{Pn}_{P} \rightarrow Bn$ $g0\%$ $\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$ 1a H_{I} $M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$ $g0\%$ $\sqrt{n} \rightarrow M_{PI}^{Pn}_{N} \rightarrow Bn$ 1a H_{I} $M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$ $g0\%$ $\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$ 1a H_{I} $M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$ g_{I} g_{I} 1a H_{I} $M_{PM} \rightarrow N_{N}^{Pn}_{P} \rightarrow Bn$ 50% $\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$ 1a $H_{O}(CH_{2})_{2}Br$ $M_{PM} \rightarrow M_{N}^{Pn}_{P} \cap Bn$ 50% $\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow Bn$ 1a $H_{O}(CH_{2})_{2}Br$ $M_{PM} \rightarrow M_{N}^{Pn}_{P} \cap Bn$ 35% $\sqrt{n} \rightarrow M_{N}^{Pn}_{N} \rightarrow M_{N}^{Pn}_{$

© Georg Thieme Verlag Stuttgart · New York

Entry	1,4-Disubstituted 1,2,3-triazole ^a	Alkyl halide	3,4-Disubstituted 1,2,3-triazolium salt ^b	Yield ^c	1,5-Disubstituted 1,2,3-triazole ^d	Yield ^c
8	1a	4-BrC ₆ H ₄ CH ₂ Br	$\begin{array}{c} & \ & \ & \ & \ & \ & \ & \ & \ & \ & $	84%	\sim Ph N \sim N \sim CH ₂ C ₆ H ₄ -4-Br	method A: 49% method B: 36%
			2h		3h	
9	1a	4-MeC ₆ H ₄ CH ₂ Br	$\begin{array}{c} & \overset{Ph}{\underset{\star}{}}\\ \text{DMPM-N}_{N} \overset{N}{} \overset{N-CH_2C_6H_4-4-Me}{Br} \\ & Br \end{array}$	66%	Ph N_N_CH ₂ C ₆ H ₄ -4-Me	method A: 35% method B: 31%
			2i		3i	
10	1a	3-BrC ₆ H ₄ CH ₂ Br	$\begin{array}{c} & \overset{Ph}{\swarrow} \\ & \swarrow \\ DMPM^{-N} \underset{Br^{-}}{\overset{N}{\sim} CH_2C_6H_4-3-Br} \end{array}$	68%	$N_{N_N} \sim CH_2C_6H_4-3-Br$	method A: 28% method B: 33%
			2j		3ј	

Table 1 Synthesis of 1,5-Disubstituted 1,2,3-Triazoles 3a-j (continued)

^a DMPM = 3,4-dimethoxybenzyl.

^b *Reagents and conditions*: 1-(3,4-dimethoxybenzyl)-4-substituted-1,2,3-triazole **1a-c** (3.5 mmol), alkyl halide (7.0 mmol), MeCN (2.0 mL), 80 °C, 11 h.

^c Yield of isolated product.

^d Reagents and conditions: Method A: 3,4-disubstituted-1,2,3-triazolium salt 2a-j (1.5 mmol), NH₄NO₃ (3.0 mmol), DMF (5 mL), 120 °C, 11

h. Method B: 3,4-disubstituted-1,2,3-triazolium salt 2a-j (1.0 mmol), CAN (2.0 mmol), DMF (5 mL), 120 °C, 13 h.

In summary, we have demonstrated the synthesis of 1,5disubstituted 1,2,3-triazoles via a triazolium salt intermediate. The reactions proceeded under cost-effective and environmentally benign conditions without using any toxic reagents or expensive transition metal catalysts. Further study of this chemistry is under way.

All chemicals (reagent grade) were obtained from commercial suppliers and were used as supplied. The progress of the reactions was monitored by TLC using aluminum sheets coated with silica gel 60 F₂₅₄ (Merck). Column chromatography was performed using silica gel 60 (Kanto Chemical). Melting points were obtained with a Yamato MP-21 melting point apparatus. NMR spectra were recorded on a Bruker Avance DRX 500 (¹H: 500 MHz, ¹³C: 125 MHz) spectrometer with CDCl₃ as the solvent. Chemical shifts (δ) are expressed in ppm and refer to the residual peak of the solvent or TMS as an internal standard; coupling constants (*J*) are in Hz. The mass analyses were obtained using a JEOL AccuTOF LC-plus JMS-T100LP spectrometer.

1-(3,4-Dimethoxybenzyl)-4-substituted-1*H*-1,2,3-triazoles 1a-c; General Procedure

A soln of 4-(chloromethyl)-1,2-dimethoxybenzene (40 mmol) and distilled H_2O (25 mL) in *t*-BuOH (75 mL) was added to NaN₃ (40 mmol). The resulting mixture was stirred at r.t. for 24 h and then added to a mixture of ethynylbenzene (40 mmol), CuSO₄ (8 mmol) in distilled H_2O (25 mL), and sodium ascorbate (16 mmol) in H_2O (25 mL). After stirring for 24 h at r.t., the solvent was removed under vacuum and the mixture extracted with CHCl₃, and the organic layer was washed with H_2O , dried (MgSO₄) and evaporated. The residue was purified by recrystallization from CHCl₃–Et₂O.

1-(3,4-Dimethoxybenzyl)-4-phenyl-1H-1,2,3-triazole (1a) Yield: 4195 mg (14.20 mmol; 73%); white solid; mp 120–121 °C.

¹H NMR (500 MHz, CDCl₃): δ = 3.85 (s, 3 H), 3.89 (s, 3 H), 5.51 (s, 2 H), 6.83 (d, *J* = 1.9 Hz, 1 H), 6.87 (d, *J* = 8.2 Hz, 1 H), 6.92

© Georg Thieme Verlag Stuttgart · New York

(dd, *J* = 8.2, 1.9 Hz, 1 H), 7.32 (t, *J* = 7.4 Hz, 1 H), 7.40 (t, *J* = 7.7 Hz, 2 H), 7.64 (s, 1 H), 7.80 (d, *J* = 7.7 Hz, 2 H).

¹³C NMR (125 MHz, CDCl₃): δ = 54.1, 55.89, 55.92, 111.1, 111.2, 119.3, 120.8, 125.6, 126.9, 128.1, 128.7, 130.6, 149.4, 149.4.

HRMS (APCI): m/z [M + H]⁺ calcd for C₁₇H₁₈N₃O₂: 296.1399; found: 296.1452.

4-Butyl-1-(3,4-dimethoxybenzyl)-1*H*-1,2,3-triazole (1b)

Yield: 791 mg (2.73 mmol; 36%); white solid; mp 86-87 °C.

¹H NMR (500 MHz, CDCl₃): δ = 0.91 (t, *J* = 7.4 Hz, 3 H), 1.36 (q, *J* = 7.4 Hz, 2 H), 1.60–1.64 (m, 2 H), 2.69 (t, *J* = 7.8 Hz, 2 H), 3.84 (s, 3 H), 3.89 (s, 3 H), 5.42 (s, 2 H), 6.77 (s, 1 H), 6.85 (s, 2 H), 7.15 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 13.7, 22.2, 25.4, 31.5, 53.8, 55.9, 111.0, 111.2, 120.2, 120.6, 127.4, 149.3, 149.4.

HRMS (APCI): m/z [M + H]⁺ calcd for C₁₅H₂₂N₃O₂: 276.1712; found: 276.1765.

4-Cyclopropyl-1-(3,4-dimethoxybenzyl)-1*H***-1,2,3-triazole (1c) Yield: 1272 mg (4.90 mmol; 63%); white solid; mp 74–75 °C.**

¹H NMR (500 MHz, CDCl₃): δ = 0.78–0.83 (m, 2 H), 0.89–0.94 (m, 2 H), 1.87–1.94 (m, 1 H), 3.84 (s, 3 H), 3.88 (s, 3 H), 5.39 (s, 2 H), 6.78 (s, 1 H), 6.85 (s, 2 H), 7.11 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): $\delta = 6.7$, 7.6, 53.8, 55.87, 55.89, 111.1, 111.2, 119.3, 120.7, 127.2, 149.3, 149.4.

HRMS (APCI): m/z [M + H]⁺ calcd for C₁₄H₁₈N₃O₂: 260.1399; found: 260.1456.

1-(3,4-Dimethoxybenzyl)-3,4-disubstituted-1*H*-1,2,3-triazolium Salts 2a–j; General Procedure

A soln of 1-(3,4-dimethoxybenzyl)-4-substituted-1*H*-1,2,3-triazole **1a–c** (3.5 mmol) and an alkyl halide (7.0 mmol) in MeCN (2.0 mL) was stirred at 80 °C for 11 h. H₂O was added and the mixture extracted with CHCl₃. The organic layers were combined, washed with distilled H₂O and dried (MgSO₄). The solvent was removed under vacuum and the product was isolated by silica gel column chromatography (CHCl₃–MeOH).

1-(3,4-Dimethoxybenzyl)-3-methyl-4-phenyl-1H-1,2,3-triazolium Iodide (2a)

Yield: 1404 mg (3.21 mmol; quant.); orange oil.

¹H NMR (500 MHz, CDCl₃): δ = 3.89 (s, 3 H), 3.98 (s, 3 H), 4.29 (s, 3 H), 5.98 (s, 2 H), 6.89 (d, J = 8.2 Hz, 1 H), 7.23 (dd, J = 8.2, 1.9 Hz, 1 H), 7.49 (d, J = 1.9 Hz, 1 H), 7.54–7.62 (m, 3 H), 7.65– 7.68 (m, 2 H), 9.37 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 39.1, 55.9, 56.9, 57.4, 111.4, 113.3, 121.7, 122.8, 123.4, 129.1, 129.5, 129.7, 132.0, 143.0, 149.5, 150.2.

HRMS (APCI): m/z [M – I]⁺ calcd for C₁₈H₂₀N₃O₂: 310.1556; found: 310.1606.

4-Butyl-1-(3,4-dimethoxybenzyl)-3-methyl-1H-1,2,3-triazolium Iodide (2b)

Yield: 1106 mg (2.56 mmol; quant.); yellow oil.

¹H NMR (500 MHz, CDCl₃): δ = 0.95 (t, *J* = 7.4 Hz, 3 H), 1.45 (q, J = 7.4 Hz, 2 H), 1.73–1.77 (m, 2 H), 2.84 (t, J = 8.0 Hz, 2 H), 3.87 (s, 3 H), 3.96 (s, 3 H), 4.23 (s, 3 H), 5.87 (s, 2 H), 6.87 (d, J = 8.2Hz, 1 H), 7.16 (dd, J = 8.2, 2.0 Hz, 1 H), 7.38 (d, J = 2.0 Hz, 1 H), 9.19 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 13.4, 22.0, 23.6, 28.8, 38.6, 55.9, 56.7, 57.0, 111.3, 112.9, 122.5, 123.5, 128.6, 144.4, 149.4, 150.1.

HRMS (APCI): m/z [M - I]⁺ calcd for C₁₆H₂₄N₃O₂: 290.1869; found: 290.1913.

4-Cyclopropyl-1-(3,4-dimethoxybenzyl)-3-methyl-1H-1,2,3-triazolium Iodide (2c)

Yield: 1175 mg (2.92 mmol; 96%); yellow oil.

¹H NMR (500 MHz, CDCl₃): $\delta = 1.12 - 1.16$ (m, 2 H), 1.23 - 1.28 (m, 2 H), 1.90–1.97 (m, 1 H), 3.87 (s, 3 H), 3.96 (s, 3 H), 4.31 (s, 3 H), 5.81 (s, 2 H), 6.86 (d, J = 8.2 Hz, 1 H), 7.16 (dd, J = 8.2, 2.1 Hz, 1 H), 7.38 (d, J = 2.1 Hz, 1 H), 9.21 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): $\delta = 4.4$, 8.3, 38.3, 55.9, 56.8, 57.2, 111.4, 113.1, 122.6, 123.5, 128.0, 146.2, 149.5.

HRMS (APCI): m/z [M – I]⁺ calcd for C₁₅H₂₀N₃O₂: 274.1556; found: 274.1620.

3-Benzyl-1-(3,4-dimethoxybenzyl)-4-phenyl-1H-1,2,3-triazolium Bromide (2d)

Yield: 375 mg (0.79 mmol; 90%); yellow oil.

¹H NMR (500 MHz, CDCl₃): δ = 3.88 (s, 3 H), 3.96 (s, 3 H), 5.66 (s, 2 H), 6.17 (s, 2 H), 6.88 (d, J = 8.2 Hz, 1 H), 7.08 (d, J = 7.1 Hz, 2 H), 7.29 (dd, J = 8.2, 1.8 Hz, 1 H), 7.34–7.41 (m, 3 H), 7.46–7.54 (m, 5 H), 7.58 (d, J = 1.8 Hz, 1 H), 10.10 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 55.2, 55.7, 56.3, 57.2, 111.1, 112.8, 121.6, 122.5, 123.9, 127.8, 129.1, 129.4, 129.5, 129.6, 131.2, 131.7, 142.6, 149.2, 149.9.

HRMS (APCI): $m/z [M - Br]^+$ calcd for $C_{24}H_{24}N_3O_2$: 386.1869; found: 386.1878.

1-(3,4-Dimethoxybenzyl)-3-ethyl-4-phenyl-1H-1,2,3-triazolium Iodide (2e)

Yield: 1181 mg (2.61 mmol; 77%); yellow oil.

¹H NMR (500 MHz, CDCl₃): $\delta = 1.65$ (t, J = 7.3 Hz, 3 H), 3.89 (s, 3 H), 3.99 (s, 3 H), 4.57 (q, J = 7.3 Hz, 2 H), 6.04 (s, 2 H), 6.89 (d, J = 8.2 Hz, 1 H), 7.23 (dd, J = 8.1, 2.1 Hz, 1 H), 7.54 (d, J = 2.1 Hz, 1 H), 7.56–7.64 (m, 5 H), 9.41 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): $\delta = 14.4$, 47.6, 55.9, 56.8, 57.5, 111.4, 113.3, 121.8, 122.8, 123.5, 129.3, 129.5, 129.7, 131.9, 142.4, 149.5, 150.2.

HRMS (APCI): m/z [M – I]⁺ calcd for C₁₉H₂₂N₃O₂: 324.1712; found: 324.1760.

3-Butyl-1-(3,4-dimethoxybenzyl)-4-phenyl-1H-1,2,3-triazolium Iodide (2f)

Yield: 476 mg (0.99 mmol; 50%); orange oil.

¹H NMR (500 MHz, CDCl₃): $\delta = 0.88$ (t, J = 5.2 Hz, 3 H), 1.30– 1.36 (m, 2 H), 1.90-1.93 (m, 2 H), 3.87 (s, 3 H), 3.97 (s, 3 H), 4.54 (t, J = 6.2 Hz, 2 H), 6.03 (s, 2 H), 6.88 (d, J = 8.2 Hz, 1 H), 7.26 (dd, J = 8.2 Hz, 1 Hz, 1 H), 7.26 (dd, J = 8.2 Hz, 1 Hz), 7.26 (dd, J = 8.2 Hz), 7.J = 8.2, 2.0 Hz, 1 H), 7.52–7.56 (m, 5 H), 7.57–7.59 (m, 1 H), 9.46 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 13.0, 19.2, 30.7, 51.7, 55.6, 55.8, 56.7, 111.2, 113.1, 121.7, 122.6, 123.4, 129.3, 129.4, 129.5, 131.7, 142.3, 149.2, 150.0.

HRMS (APCI): m/z [M - I]⁺ calcd for C₂₁H₂₆N₃O₂: 352.2025; found: 352.2038.

1-(3,4-Dimethoxybenzyl)-3-(2-hydroxyethyl)-4-phenyl-1H-**1,2,3-triazolium Bromide (2g)** Yield: 742 mg (1.12 mmol; 35%); colorless oil.

¹H NMR (500 MHz, CDCl₃): δ = 3.88 (s, 3 H), 3.94 (s, 3 H), 4.11– 4.14 (m, 2 H), 4.52 (t, J = 4.5 Hz, 2 H), 5.87 (s, 2 H), 6.89 (d, J = 8.1 Hz, 1 H), 7.20 (dd, J = 8.1, 1.5 Hz, 1 H), 7.38 (d, J = 1.5 Hz, 1 H), 7.46 (t, J = 7.4 Hz, 2 H), 7.53 (t, J = 7.4 Hz, 1 H), 7.69 (d, J = 7.4 Hz, 2 H), 8.74 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): $\delta = 54.1$, 55.8, 56.4, 57.4, 59.5, 111.3, 113.2, 123.0, 123.1, 128.4, 129.3, 130.0, 131.5, 143.8, 149.4, 150.1

HRMS (APCI): m/z [M – Br]⁺ calcd for C₁₉H₂₂N₃O₃: 340.1661; found: 340.1712.

3-(4-Bromobenzyl)-1-(3,4-dimethoxybenzyl)-4-phenyl-1H-1,2,3-triazolium Bromide (2h)

Yield: 1427 mg (2.80 mmol; 84%); orange oil.

¹H NMR (500 MHz, CDCl₃): δ = 3.88 (s, 3 H), 3.95 (s, 3 H), 5.63 (s, 2 H), 6.08 (s, 2 H), 6.87 (d, J = 8.2 Hz, 2 H), 6.96 (d, J = 8.2 Hz, 2 H)2 H), 7.48-7.57 (m, 8 H), 9.91 (s, 1 H)

¹³C NMR (125 MHz, CDCl₃): δ = 54.8, 55.8, 56.4, 57.3, 111.3, 113.0, 122.6, 124.1, 129.5, 129.6, 129.82, 129.84, 132.3, 142.7, 149.3, 150.0.

HRMS (APCI): $m/z [M - Br]^+$ calcd for $C_{24}H_{23}N_3O_2Br$: 464.0974 (⁷⁹Br), 466.0953 (⁸¹Br); found: 464.0944 (⁷⁹Br), 466.0919 (⁸¹Br).

1-(3,4-Dimethoxybenzyl)-3-(4-methylbenzyl)-4-phenyl-1H-1,2,3-triazolium Bromide (2i)

Yield: 1000 mg (2.08 mmol; 66%); orange oil.

¹H NMR (500 MHz, CDCl₃): δ = 2.35 (s, 3 H), 3.88 (s, 3 H), 3.96 (s, 3 H), 5.59 (s, 2 H), 6.17 (s, 2 H), 7.12–7.30 (m, 4 H), 7.37–7.66 (m, 8 H), 10.10 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): $\delta = 20.4$, 54.7, 55.2, 55.7, 56.1, 121.0, 127.3, 127.5, 128.1, 128.7, 128.9, 129.0, 129.1, 138.65, 138.68, 141.9, 148.5, 149.2.

HRMS (APCI): m/z [M – Br]⁺ calcd for C₂₅H₂₆N₃O₂: 400.2025; found: 400.2035.

3-(3-Bromobenzyl)-1-(3,4-dimethoxybenzyl)-4-phenyl-1H-1,2,3-triazolium Bromide (2j)

Yield: 1216 mg (2.23 mmol; 68%); orange oil.

¹H NMR (500 MHz, CDCl₃): δ = 3.87 (s, 3 H), 3.97 (s, 3 H), 5.63 (s, 2 H), 6.15 (s, 2 H), 7.20-7.62 (m, 12 H), 9.90 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 54.3, 55.4, 56.0, 56.8, 110.9, 121.1, 122.4, 126.6, 129.08, 129.16, 129.18, 130.3, 130.4, 142.3, 149.8, 150.0.

HRMS (APCI): m/z [M – Br]⁺ calcd for C₂₄H₂₃N₃O₂Br: 464.0974 (⁷⁹Br), 466.0953 (⁸¹Br); found: 464.0944 (⁷⁹Br), 466.0922 (⁸¹Br).

1,5-Disubstituted 1*H*-1,2,3-triazoles 3a–j; General Procedure (Method A)

A soln of 1-(3,4-dimethoxybenzyl)-3,4-disubstituted-1*H*-1,2,3-triazolium salt 2a-j (1.5 mmol) and NH₄NO₃ (3.0 mmol) in DMF (5 mL) was stirred at 120 °C for 11 h. The solvent was removed under vacuum and the mixture was extracted with CHCl₃ and washed with H₂O. The organic layers were combined, washed with H₂O, and dried (MgSO₄). The solvent was removed under vacuum and the product was isolated by silica gel column chromatography (CHCl₃– MeOH).

1,5-Disubstituted 1*H*-1,2,3-triazoles 3a–j; General Procedure (Method B)

À soln of 1-(3,4-dimethoxybenzyl)-3,4-disubstituted-1*H*-1,2,3-triazolium salt**2a**–**j**(1.0 mmol) and CAN (2.0 mmol) in DMF (5 mL)was stirred at 120 °C for 13 h. The solvent was removed under vacuum and the mixture was extracted with CHCl₃ and washed withH₂O. The organic layers were combined, washed with H₂O, anddried (MgSO₄). The solvent was removed under vacuum and theproduct was isolated by silica gel column chromatography (CHCl₃–MeOH).

1-Methyl-5-phenyl-1*H*-1,2,3-triazole (3a)

Yield: 263 mg (1.65 mmol; quant.) using method A, 176 mg (1.11 mmol; 99%) using method B; yellow oil.

¹H NMR (500 MHz, CDCl₃): δ = 4.08 (s, 3 H), 7.40–7.43 (m, 2 H), 7.47–7.51 (m, 3 H), 7.74 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 36.0, 127.3, 128.1, 128.3, 128.5, 128.6, 132.0, 137.4.

HRMS (APCI): $m/z \ [M + H]^+$ calcd for C₉H₁₀N₃: 160.0874; found: 160.0824.

5-Butyl-1-methyl-1*H*-1,2,3-triazole (3b)

Yield: 253 mg (1.82 mmol; 92%) using method A; trace using method B; yellow oil.

¹H NMR (500 MHz, CDCl₃): δ = 0.96 (t, *J* = 7.4 Hz, 3 H), 1.39–1.45 (m, 2 H), 1.62–1.66 (m, 2 H), 2.62 (t, *J* = 7.7 Hz, 2 H), 3.95 (s, 3 H), 7.45 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 13.4, 21.9, 22.5, 29.7, 34.0, 131.7, 137.2.

HRMS (APCI): $m/z \ [M + H]^+$ calcd for $C_7H_{14}N_3$: 140.1187; found: 140.1154.

5-Cyclopropyl-1-methyl-1*H*-1,2,3-triazole (3c)

Yield: 211 mg (1.71 mmol; 80%) using method A; trace using method B; orange oil.

 1H NMR (500 MHz, CDCl₃): δ = 0.68–0.72 (m, 2 H), 1.03–1.08 (m, 2 H), 1.67–1.72 (m, 1 H), 4.05 (s, 3 H), 7.26 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 3.4, 6.3, 34.1, 130.3, 139.5.

HRMS (APCI): $m/z [M + H]^+$ calcd for C₆H₁₀N₃: 124.0874; found: 124.1042.

1-Benzyl-5-phenyl-1*H*-1,2,3-triazole (3d)

Yield: 11 mg (0.05 mmol; 6%) using method A; 213 mg (0.91 mmol; 72%) using method B; orange oil.

¹H NMR (500 MHz, CDCl₃): δ = 5.55 (s, 2 H), 7.06–7.09 (m, 2 H), 7.24–7.29 (m, 5 H), 7.39–7.44 (m, 3 H), 7.75 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 51.8, 126.8, 127.1, 128.1, 128.77, 128.84, 128.9, 129.5, 133.2, 135.4.

HRMS (APCI): $m/z [M + H]^+$ calcd for $C_{15}H_{14}N_3$: 236.1187; found: 236.1261.

1-Ethyl-5-phenyl-1*H*-1,2,3-triazole (3e)

Yield: 54 mg (0.31 mmol; 71%) using method A; 213 mg (1.23 mmol; 72%) using method B; orange oil.

¹H NMR (500 MHz, CDCl₃): δ = 1.49 (t, *J* = 7.3 Hz, 3 H), 4.41 (q, *J* = 7.3 Hz, 2 H), 7.39 (m, 2 H), 7.47–7.51 (m, 3 H), 7.70 (s, 1 H). ¹³C NMR (125 MHz, CDCl₃): δ = 15.5, 43.3, 127.1, 128.6, 129.0, 129.3, 133.0, 137.3.

HRMS (APCI): $m/z [M + H]^+$ calcd for $C_{10}H_{12}N_3$: 174.1031; found: 174.0943.

1-Butyl-5-phenyl-1*H*-1,2,3-triazole (3f)

Yield: 115 mg (0.57 mmol, 93%) using method A; 90 mg (0.45 mmol; 51%) using method B; orange oil.

¹H NMR (500 MHz, CDCl₃): δ = 0.86 (t, *J* = 6.2 Hz, 3 H), 1.25– 1.31 (m, 2 H), 1.80–1.84 (m, 2 H), 4.35 (t, *J* = 6.2 Hz, 2 H), 7.37– 7.40 (m, 2 H), 7.47–7.51 (m, 3 H), 7.69 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 13.2, 19.4, 31.9, 47.8, 125.4, 127.0, 128.50, 128.54, 128.9, 129.2, 132.7, 137.5.

HRMS (APCI): $m/z \,[M + H]^+$ calcd for $C_{12}H_{16}N_3$: 202.1344; found: 202.1448.

2-(5-Phenyl-1*H*-1,2,3-triazol-1-yl)ethanol (3g)

Yield: 38 mg (0.20 mmol; 58%) using method A; 30 mg (0.16 mmol; 46%) using method B; colorless oil.

¹H NMR (500 MHz, CDCl₃): δ = 4.14 (t, *J* = 5.0 Hz, 2 H), 4.42 (t, *J* = 5.0 Hz, 2 H), 7.42–7.46 (m, 2 H), 7.48–7.52 (m, 3 H), 7.72 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 50.4, 61.0, 126.6, 129.00, 129.04, 129.5, 132.6, 138.8.

HRMS (APCI): m/z [M + H]⁺ calcd for C₁₀H₁₂N₃O: 190.0980; found: 190.1083.

1-(4-Bromobenzyl)-5-phenyl-1H-1,2,3-triazole (3h)

Yield: 191 mg (0.61 mmol; 49%) using method A; 142 mg (0.45 mmol; 36%) using method B; yellow oil.

¹H NMR (500 MHz, CDCl₃): δ = 5.51 (s, 2 H), 7.50 (m, 1 H), 7.16 (m, 1 H), 7.21–7.28 (m, 3 H), 7.40–7.46 (m, 4 H), 7.74 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 53.4, 119.4, 122.8, 125.8, 128.2, 128.75, 128.83, 129.0, 129.6, 131.9, 132.2, 133.7, 148.3.

HRMS (APCI): m/z [M + H]⁺ calcd for C₁₅H₁₃N₃Br: 314.0293 (⁷⁹Br), 316.0272 (⁸¹Br); found: 314.0343 (⁷⁹Br), 316.0321 (⁸¹Br).

1-(4-Methylbenzyl)-5-phenyl-1*H*-1,2,3-triazole (3i)

Yield: 90 mg (0.36 mmol; 35%) using method A; 80 mg (0.32 mmol; 31%) using method B; yellow oil.

¹H NMR (500 MHz, CDCl₃): δ = 2.31 (s, 3 H), 5.51 (s, 2 H), 6.99 (d, *J* = 8.0 Hz, 2 H), 7.09 (d, *J* = 8.0 Hz, 2 H), 7.25–7.28 (m, 2 H), 7.41–7.46 (m, 3 H), 7.74 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 20.9, 51.4, 126.8, 127.0, 128.7, 128.8, 129.3, 129.6, 132.3, 133.0, 137.7, 137.9.

HRMS (APCI): $m/z \,[M + H]^+$ calcd for $C_{16}H_{16}N_3$: 250.1344; found: 250.1410.

1-(3-Bromobenzyl)-5-phenyl-1*H*-1,2,3-triazole (3j)

Yield: 100 mg (0.32 mmol; 28%) using method A; 115 mg (0.37 mmol; 33%) using method B; colorless oil.

 ^1H NMR (500 MHz, CDCl₃): δ = 5.50 (s, 2 H), 6.98 (m, 1 H), 7.14–7.27 (m, 4 H), 7.37–7.50 (m, 4 H), 7.65 (s, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 51.0, 125.7, 129.0, 129.6, 130.2, 130.3, 130.9, 131.3, 131.9, 133.3, 137.5, 138.1.

HRMS (APCI): m/z [M + H]⁺ calcd for C₁₅H₁₃N₃Br: 314.0292 (⁷⁹Br), 316.0272 (⁸¹Br); found: 314.0336 (⁷⁹Br), 316.0320 (⁸¹Br).

References

- (a) Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. D.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953. (b) Holla, B. S.; Mahalinga, M.; Karthikeyan, M. S.; Poojary, B.; Akberali, P. M.; Kumari, N. S. Eur. J. Med. Chem. 2005, 40, 1173.
- (2) (a) Buckle, D. R.; Rockell, C. J. M.; Smith, H.; Spicer, B. A. *J. Med. Chem.* **1986**, *29*, 2262. (b) Buckel, D. R.; Outred, D. J.; Rockell, C. J. M.; Smith, H.; Spicer, B. A. *J. Med. Chem.* **1983**, *26*, 251. (c) Buckel, D. R.; Rockell, C. J. M.; Smith, H.; Spicer, B. A. *J. Med. Chem.* **1984**, *27*, 223.
- (3) Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; De Clercq, E.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. J. Med. Chem. 1994, 37, 4194.
- (4) Al-Masoudim, N. A.; Al-Soud, Y. A. *Tetrahedron Lett.* **2002**, *43*, 4021.
- (5) (a) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem. Int. Ed. 2004, 43, 3928.
 (b) Aucagne, V.; Hänni, K. D.; Leigh, D. A.; Lusby, P. J.; Walker, D. B. J. Am. Chem. Soc. 2006, 128, 2186. (c) Ye, C. F.; Gard, G. L.; Winter, R. W.; Syvret, R. G.; Twamley, B.; Shreeve, J. M. Org. Lett. 2007, 9, 3841. (d) Liu, Q.; Zhao, P.; Chen, Y. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 3330. (e) Nandivada, H.; Jiang, X. W.; Lahann, J. Adv. Mater. 2007, 19, 2197. (f) Angelos, S.; Yang, Y. W.; Patel, K.; Stoddart, J. F.; Zink, J. I. Angew. Chem. Int. Ed. 2008, 45, 1435.

- (6) (a) Wacharasindhu, S.; Bardhan, S.; Wan, Z.-K.; Tabei, K.; Mansour, T. S. J. Am. Chem. Soc. 2009, 131, 4174. (b) Liu, Y.; Yan, W.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2008, 10, 5385. (c) Katritzky, A. R.; Bobrov, S.; Kirichenko, K.; Ji, Y.; Steel, P. J. J. Org. Chem. 2003, 68, 5713. (d) Reid, A. K.; McHugh, C. J.; Richie, G.; Graham, D. Tetrahedron Lett. 2006, 47, 4201. (e) Verma, A. K.; Singh, J.; Chaudhary, R. Tetrahedron Lett. 2007, 48, 7199. (f) Dai, Q.; Gao, W.; Liu, D.; Kapzes, L. M.; Zhang, X. J. Org. Chem. 2006, 71, 3928.
- (7) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596. (b) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (c) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853. (d) Rodionov, V. O.; Presolski, S. I.; Díaz Díaz, D.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12705.
- (8) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998.
- (9) Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Org. Lett. 2007, 12, 2333.
- (10) (a) Coats, S. J.; Link, J. S.; Gauthier, D.; Hlasta, D. J. Org. Lett. 2005, 7, 1469. (b) Kloss, F.; Kohn, U.; Jahn, B. O.; Hager, M. D.; Gorls, H.; Schubert, U. S. Chem. Asian J. 2011, 6, 2816.
- (11) Krasinski, A.; Fokin, V. V.; Sharpless, K. B. Org. Lett. 2004, 6, 1237.
- (12) Kwok, S. W.; Fotsing, J. R.; Fraser, R. J.; Rodionov, V. O.; Fokin, V. V. Org. Lett. 2010, 12, 4217.
- (13) Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.; Chang, S. Angew. Chem. Int. Ed. 2007, 46, 1730.