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Abstract: Four O-perbenzylated glycosyl cyanides (a- and b-D-
mannopyranosyl, a-D-galactopyranosyl, and a-D-arabinofuranosyl)
were converted by treatment with BrCH2CO2Et/Zn in THF at reflux
(Blaise–Kishi reaction) into the corresponding C-glycosyl b-en-
amino esters which in turn were reduced by NaBH(OAc)3 to give
four pairs of C-glycosyl (R)- and (S)-b-amino esters.
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It is abundantly demonstrated that oligosaccharide
fragments attached through O- and N-glycosidic linkages
to the polyamide backbone derived from a-amino acid
residues, i.e. in native glycoproteins, exert crucial roles on
the various properties (structure, protease resistance, sta-
bility, and solubility) and biological activities of these
biomolecules.1 Protein glycosylation has been implicated
in a variety of processes such as the immune response,
intracellular targeting, intercellular recognition, infection
by viruses and bacteria adhesion. The introduction of one
or more carbon-linked glycosyl b-amino acid residues in
a natural glycopeptide induces two elements of diversity
at the same time, namely the nature of the linkage holding
the sugar moieties and the primary structure of the peptide
backbone. Both changes may have dramatic effects on the
structure and function of the original a-peptide and there-
fore these artificial products can be used as valuable
probes in mechanistic studies of biological processes at
the molecular level and may serve to modulate one or
more of those processes. In line with these concepts we
began to tackle a project to synthesize C-glycosyl b-ami-
no acids2 which, in contrast with C-glycosyl a-amino
acids,3 are difficult to prepare. Accordingly, we reported
very recently on the three-component Mannich- and
Reformatsky-type syntheses of C-glycosyl b-amino acids
and in this way paved the route for the preparation of
libraries of these compounds.4 Both methods involved, as
the initial step, the coupling of a C-glycosyl formaldehyde
with p-methoxybenzylamine to furnish an intermediate
imine which in turn was captured by a ketene silyl acetal
in the Mannich route and a bromozinc enolate in the Re-
formatsky route. Both processes offered a high degree of
chemical efficiency and an astonishing stereoselectivity
as demonstrated by the formation of a single b-amino acid

diastereoisomer in very good yield from each reaction.
However, the execution of these reactions with such a de-
gree of efficiency appeared to be conditioned by the avail-
ability and stability of the starting sugar aldehydes. Hence
the intrinsic configurational instability of a-linked formyl
C-glycosides5 precluded the synthesis of the correspond-
ing a-linked C-glycosyl b-amino acids. To overcome this
limitation we have developed a new reaction sequence
that avoids the use of sugar aldehydes and exploits instead
glycosyl cyanides as starting material. These C-glyco-
sides are readily accessible as both a- or b-anomers via
Lewis acid catalyzed coupling of activated glycosyl do-
nors with trimethylsilyl or tetrabutylammonium cyanide6

and are configurationally stable. Hence, following in part
a route developed in our laboratory and leading to C(2)-
glycosylated Hantzsch dihydropyridines,7 we have
transformed four known glycosyl cyanides 1a–d (a, tetra-
O-benzyl-a-D-mannopyranosyl;6a b, tetra-O-benzyl-b-D-
mannopyranosyl;6a c, tetra-O-benzyl-a-D-galactopyrano-
syl;6a d, tri-O-benzyl-a-D-arabinofuranosyl8) into the
corresponding glycosylated b-amino acrylates 2a–d
(enamino esters) and these were submitted to hydride re-
duction to give pairs of (R)- and (S)-b-amino esters 3a–d
(Scheme 1). The results of this study are presented below.
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Treatment of the glycosyl cyanides 1a–d with a four mo-
lar excess of ethyl bromoacetate in the presence of zinc
dust in THF at reflux according to the Kishi improved
conditions of the Blaise reaction9 gave the corresponding
C-glycosyl enamino esters 2a–d in yields ranging from
86% up to 98% (Table 1), each product being present as a
single (unidentified) E/Z stereoisomer.10 On the other
hand, the retention of the original anomeric configuration
of starting glycosyl cyanides was confirmed for enamino
esters 2a–d by estimating the J4,5 values in the corre-
sponding 1H NMR spectra or by the aid of NOE measure-
ments, as appropriate. In fact, the a-galactopyranosyl
derivative 2c showed a J4,5 value around 6.0 Hz. The a-
and b-mannopyranosyl derivatives 2a,b instead displayed
probing NOE values between H-4 and H-7 or H-4 and H-
8, respectively, while the a-arabinofuranosyl 2d showed
NOE interactions between H-4 and H-6. Next we consid-
ered the key transformation of the enamino esters 2 into
the target b-amino esters 3. This kind of process has been
earlier reported by Palmieri and co-workers11 to occur
readily and chemoselectively in achiral systems by the use
of sodium triacetoxyborohydride [NaBH(OAc)3] in acetic
acid at room temperature. Hence we were delighted to
observe that this hydride releasing agent under the same
conditions worked efficiently on our C-glycosyl enamino

esters 2a–d to give the corresponding b-amino esters 3a–
d, in each case as a mixture of diastereoisomers, in good
isolated yields (Table 1).12 The chiral sugar fragment ad-
jacent to the enamino group exerted a very light asymmet-
ric induction on the formation of the new stereocenter as
shown by the small to modest diastereomeric excess (de)
values of the major products reported in Table 1. Attempts
to improve the diastereoselectivity of this reaction by the
use of other hydride donor reagents [NaBH4, ZnI2–
NaBH4, NaBH3CN, and (i-Bu)2AlH] have been unsuc-
cessful so far. Hence we were forcedly led to consider the
lack of stereoselectivity in a positive sense as a way to ob-
tain pairs of b-amino esters (R)- 3 and (S)-3 in almost
equal amounts by the reduction of each individual en-
amino ester 2. This approach may allow the construction
of a collection of these artificial sugar amino acids having
the configuration of the b-amino acid moiety as one of
the elements of diversity.

In order to transform the b-amino esters 3 to N-protected
derivatives suitable for peptide synthesis, the inseparable
pair of a-D-mannosyl (S)-3a and (R)-3a and each individ-
ual compound b-D-mannosyl (S)-3b and (R)-3b, a-D-ga-
lactosyl (S)-3c and (R)-3c, and a-D-arabinosyl (S)-3d and
(R)-3d were transformed by a standard method into the
corresponding N-Boc derivatives 4a–d in very high yields

Table 1 C-Glycosyl Enamino Esters 2 and C-Glycosyl b-Amino Esters 3 Prepared

Sugar nitrile Enamino ester Yield (%)a b-Amino esterb Yield,c ded (%)

1a

2a

87

(S)-3a

70, 15

1b

2b

97

(S)-3b

70, 25

1c

2c

86

(S)-3c

65, 5

1d

2d

98

(R)-3d

75, 35

a Isolated yield.
b Only the major diastereoisomer is shown.
c Overall yield of the mixture of diastereoisomers.
d Determined by 1H NMR analysis of the crude reaction mixture.
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(Table 2). Fortunately, the a-D-mannosyl (S)-4a and (R)-
4a were separable by column chromatography and there-
fore the eight compounds reported in Table 2 constitute a
collection of pure C-glycosyl N-Boc b-amino esters.13

The anomeric configuration of the sugar fragment of b-
amino esters 3 and 4 was taken as that established in the
corresponding b-enamino esters 2 (see above), while the
absolute configuration of the carbon atom bearing the
amino group in the side chain of 3 was assigned by the
same NMR-based procedure illustrated in our recent re-
port.4 This procedure follows the protocol developed by
Riguera and co-workers14 for the assignment of the abso-
lute configuration of chiral primary amines. Succinctly,
each pure b-amino ester 3 was transformed into the corre-
sponding hydroxy-free Mosher’s amides (2¢R)-5 and
(2¢S)-5 by treatment with (R)- and (S)-methoxytrifluoro-
methylphenylacetic acid (MTPA) in the presence of di-
cyclohexylcarbodiimide (DCC) followed by benzyl group
hydrogenolysis. Next, the 1H NMR spectra were com-
pared to give chemical shift difference values DdRS of pro-
ton signals belonging to the two groups linked to the
asymmetric carbon, i.e. the sugar moiety and the alkyl
chain.15 The positive or negative DdRS values of each set
of signals allowed the spatial disposition of the relevant

groups attached to the stereogenic carbon to be estab-
lished and this allowed the assignment of the absolute
configuration. The example reported in Scheme 2 illus-
trates the various steps of this protocol leading to the
assignment of the 3R configuration of the b-amino ester
(R)-3c.

In conclusion simple methodology has been delineated
that allows the chain extension of glycosyl cyanides into
b-amino esters with both R and S configuration. This
method owns a special importance for the synthesis of a-
anomers, which are difficult to access via the Mannich-
and Reformatsky-type routes starting from glycosyl
aldehydes. Studies on the stereoselective reduction of
enamino ester 2 using chiral hydride donor reagents are
currently underway in our laboratory.
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