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Abstract: The aplyronine C|-C|| subunit 4, containing 4 stereocentres and the (£ ,E)-diene system,
was prepared in 7 steps from ethyl ketone (R)-8 using a boron-mediated anti aldol reaction. The
corresponding C15—Ca7 subunit 5, containing 6 stereogenic centres and an (E)-alkene, was obtained
in 10 steps from ketone (S)- 14 using a tin(II)-mediated sw aldol reaction and CBS enone reduction.
© 1998 Elsevier Science Ltd. All rights reserved.

In 1993, Yamada and co-workers reported the isolation and characterisation of aplyronines A (1), B (2)
and C (3) from the Japanese sea hare Aplysia kurodai.! Aplyronine A, which showed potent cytotoxicity
against HeLa-S3 cells (ICs( 0.039 ng/mL) and pronounced activity in vivo against a range of tumours, ! is a
complex 24-membered macrolide with distinctive amino acid residues at C7 and Cag along with an elaborate
C>3 side-chain, terminating in a vinyl N-methyl formamide group. More recently, the Yamada group
confirmed the absolute stereochemistry of the aplyronines by total synthesis. >
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Scheme 1

As part of our studies towards the total synthesis of this novel class of bioactive marine macrolides,?
we now report a stereocontrolled synthesis of the aplyronine C —Cyj and C5—Cp7 subunits, 4 and § in Scheme
1. using aldol chemistry developed in our laboratory. A key feature ot the synthesis of the iodide 4 was the
temporary masking ot the C |-Cs (£,E)-diene ester as an alkyne ester, facilitating the use of a boron-mediated
anti aldol coupling for the installation of the C7 and Cy stereocentres. In the case of the aldehyde 5, the
construction of the C23-Cogq stereotetrad was based on the use of a tin(1l)-mediated syn aldol reaction. In the
accompanying paper.4 we describe the efficient coupling of these subunits through an appropriate C2-C14
linker 6 to generate the truncated seco acid 7, followed by its transformation into the desired 24-membered

macrolide framework of the aplyronines.
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The synthesis of the C;—Cy) subunit 4 is outlined in Scheme 2. Using our standard conditions for the
generation of the (£)-enol borinate,> enolisation of ethyl ketone (R )-8¢ was followed by addition of aldehyde
9.7 Ieading to formation of the anfi-anti aldol adduct 10 in 96% yield with 297% ds.8 Notably, the acetylenic
ester was carried through this reaction without difficulty. Stereoselective reduction of the Cy carbonyl of 10
was achieved using a modified, samarium-catalysed, Evans-Tishchenko reaction.? Hence, treatment of 10
with a premixed solution of Sml7 (15 mol%) and EtCHO gave the 1,3-anti reduction product 11 in 77% yield
with 297% ds. !0 After some experimentation, it was found that the isomerisation!! of the alkyne ester to the
desired (£.E)-diene was best achieved at this stage. Use of Ph3P in conjunction with PhOH smoothly
cquilibrated the alkyne tn 11 to diene 12 (95%), isolated as a single geometric isomer. Next, ester cleavage
(K2CO 3/ MeOH) in 12 gave a diol which was protected as its p-methoxyphenyl (PMP) acetal 13.12 Selective
deprotection '3 of the PMB ether of 13 with DDQ was followed by conversion of the primary alcohol into the
corresponding iodide 4.
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Scheme 2: () (¢-Hex)2 BCL Et3N, Et70,0°C, | h: 9,-78 = -20 °C. 12 h; H2O2. MeOH, pH7 bufter: (b) Smla (15 mol%).
FICHO. THE. 0 °C, 15 min; 10, 0 °C. 2 h; (¢) Ph3 P, PhOH, benzene, 20 °C. 14 h; (d) K2CO3. McOH, 20 °C, 2 h: (¢) p-
MeO(C gHy JCH(OMe ). PPTS, CH2Cla, 20 °C. 14 h: (1) DDQ, CH>Cla, pH7 buffer, 20 °C. 1 h: (g) 1o, PPh3. imid, McCN,
Fa0.0 = 20°C. 3 h,

As shown in Scheme 3, the C23-Cog stereotetrad was generated by a Sn(OTf), mediated syn -aldol
coupling '+ of TIPS ether protected ketone (S)-14!5 with aldehyde 15. which gave the adduct 16 in 88% yield
with 90% ds. This was followed by a Me4NBH(OAc) 3 reduction 19 of the Cas ketone to generate the 1,3-anti
diol which was subsequently protected as the di-terr-butyl silylene 17 (83%). Benzyl ether hydrogenolysis and
Dess-Martin periodinane oxidation !7 gave the aldehyde 18 (94%) in preparation for a HWE chain extension.
The synthesis of the required ketophosphonate 19 started with commercially available (R)-methyl-3-methyl
glutarate (20). Chemoselective reduction of the carboxylic acid (BHz*Me2S, THF)!8 was immediately
followed by hydroxyl protection (PMBOC(=NH)CCI3, 0.3 mol% TfOH)'? to give the PMB ether 21. Under
these conditions, luctonisation of the hydroxy ester was not observed. Chain extension by condensation with
lithiated dimethyl methylphosphonate 20 gave the C5—-Cag segment 19 in 79% yield (3 steps).

The HWE coupling of phosphonate 19 with aldehyde 18 was best performed using Ba(OH)» as a mild
base.2! This gave the (F)-enone 22 selectively in 94% yield. 1.2-Reduction of the enone was now required
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and, not surprisingly, achiral reagents gave an ca 1:1 mixture of epimeric alcohols. However, a good level of
reagent control was achieved using Corey's proline-derived oxazaborolidine.22 Treatment of 22 with (5)-23
(10 mol%) in THF solution with BH3*Me)S (0.6 equiv.) gave a 98% yield of C 9 alcohols with 9:1
diastereoselectivity. Assignment of the configuration of the epimeric alcohols was made by Mosher ester
analysis2+ and was in agreement with the anticipated sense of stereoinduction.?3 Methylation of the
chromatographically separable (19R)-alcohol 24 gave the ether 25 and oxidative PMB removal (DDQ),26
followed by oxidation, gave the aldehyde 5 (85%. 3 steps) representing the complete C s—-C27 subunit.
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Scheme 3: (a) Sn(OTH)2, Et3N, CHzClp: 15, -78 °C, 2 h; (b) Me4NBH(OAc)3, AcOH, CH3CN, 20 °C. 48 h; (¢) (+
Bu)2Si(OTH 2. 2.6-lutidine, CH2Cla, 20 °C. 12 h: (d) H. Pd/C, EtOAc, 20 °C, 11 h: (c) Dess-Martin periodinane, CH2Clp, 20
*C. 70 min; (1) BH3sMe2S, THE, 0 — 20 °C. 90 min: (g) PMBOC(NH)CCl 3. TfOH (0.3 mol%), E170. 20 °C, 14 h: (h)
MeP(OYOMe) 2, n-BuLi, THF, -78 °C. 10 min; 21. -78 °C. 1.5 h; (i) 19, Ba(OH)2. THFE:H20 (40:1), 20 °C. 30 min; 18, 20 °C,
2 h: () (5)-23. BH3*Me2S, THF, 0 °C. 40 min; (k) NaH, Mcl. THF. 0 — 20 °C. 15 h: (1) DDQ, pH7 butfer. CH2Cl, H2 0. 20
‘C. 1 h: (m) Dess-Martin periodinane. CH2Clp, 20°C. 2 h.

In conclusion, the C{—C subunit 4, containing 4 stereocentres and the (E,F)-diene system, was
prepared in 7 steps from ethyl ketone (R}-8 in 38% yield with 294% ds. The corresponding C5-C27 subunit 5,
containing 6 stereogenic centres and an (E)-alkene, was obtained in 10 linear steps from ethy! ketone (5)-14,
with an overall yield of 53% and 75% ds. The elaboration of these two subunits into an advanced macrolide
intermediate for the aplyronines is discussed in the accompanying paper.*
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