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Graphical abstract 

A gold(I)-catalyzed highly convergent strategy is described for the efficient synthesis 

of a β-(1,3)-glucan hexadecasaccharide. 
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Abstract:  

Elucidation of the structure-activity relationships of β-(1,3)-glucans is hampered by the 

difficulty to isolate the β-(1,3)-glucan polysaccharides from natural sources. We describe a 

gold(I)-promoted approach for the efficient assembly of a β-(1,3)-glucan hexadecasaccharide 

via the orthogonal and consecutive activation of thioglycosides and glucosyl ortho-

hexynylbenzoates in a highly convergent manner. The synthetic hexadecasaccharide serves as 

the basis for further evaluation of their biological functions. 

 

Keywords: Glycosylation; β-(1,3)-glucan; polysaccharide; gold; glycosyl ortho-

hexynylbenzoate 

 

Introduction 

In nature, β-(1,3)-glucans are widely distributed as the essential constituents of fungi and 

seeweeds.1,2 By interaction with the complement receptor type 3 and dectin-1, β-(1,3)-glucans 

are regarded as an important type of biological response modifiers that are able to stimulate 
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the immune system and exhibit antitumor, antifungal, and antibacterial effects.3-14 The strong 

binding between β-(1,3)-glucans and dectin-1 has been explored for searching modulators of 

innate immunity.15,16 Glycoconjugate vaccines based on β-(1,3)-glucans can provide 

protection in mice against fungal pathogens such as Candida albicans and Aspergillus 

fumigatus.17-22 However, biological studies of naturally occurring β-(1,3)-glucans containing 

short 6-O-branched β-glucans or their hydrolysates may lead to contradictory results due to 

the heterogeneity of natural β-glucans.23-25 As such, synthetic β-(1,3)-glucans are highly 

desirable for understanding the mechanism and structure-activity relationships of β-(1,3)-

glucans in the interaction with cell surface receptors. 

Chemical synthesis of β-(1,3)-glucans has aroused much interest in carbohydrate 

community aiming at development of immunomodulatory agents and antifungal vaccines.26-30 

To access the β-(1,3)-glucan polysaccharides, various approaches were developed to produce 

linear deca-,27 undeca-,28 dodeca-,27 trideca-,28 hexadeca-,29 and branched 

heptadecasaccharides29 in solution phase. Recently, Seeberger and coworkers reported the 

automated solid-phase synthesis of dodeca- and branched tridecasaccharides for identifying 

antibody epitopes.30 However, synthesis of long β-(1,3)-glucans with more than 15 glucose 

units is very rare. Hence, efficient assembly strategies are highly pursued for the synthesis of 

ultralong β-(1,3)-glucan polysaccharides. 

In terms of the synthesis of β-(1,3)-glucans, the solution-phase convergent [n + n] 

strategy is usually considered as one of the most efficient approaches for the block assembly 

of β-(1,3)-glucans from the perspective of symmetry. Based on this strategy, at least four 

glycosylation steps are required for the assembly of a β-(1,3)-glucan hexadecasaccharide 

skeleton. Nevertheless, in the solution-phase synthesis of the β-(1,3)-glucan 

hexadecasaccharide via the glycosylation with the trichloroacetimidates and ethyl 
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thioglycosides as donors reported by H. Tanaka and coworkers, extension of the sugar chain 

did not go above tetrasaccharide donors.29 Here, we report the gold(I)-promoted highly 

convergent [8 + 8] synthesis of a β-(1,3)-glucan hexadecasaccharide based on the orthogonal 

and consecutive activation of thioglycosides and glucosyl ortho-hexynylbenzoates. 

As depicted in Scheme 1, the β-(1,3)-glucan hexadecasaccharide 1 can be derived 

from odourless 5-tert-butyl-2-methyl phenyl thioglucoside 2 that might avoid glycoside 

transfer,31 in which the orthogonal TBS group is attached to the 3-OH position of the non-

reducing end. The benzoyl groups installed at the 2-OH positions of the glucose units can 

ensure the stereoselective formation of β-glucosides via the neighboring-group participation 

effect. Based on the highly convergent strategy, the hexadecasaccharide 2 is dissected into 

octasaccharide ortho-hexynylbenzoate32 3 and thioglycoside 4, which could be constructed by 

coupling of tetrasaccharide ortho-hexynylbenzoate 5 and thioglycoside 6 followed by 

functional group transformations. Similarly, tetrasaccharide building blocks 5 and 6 are 

further divided into disaccharide ortho-hexynylbenzoate 7 and thioglycoside 8 that can be 

obtained by glycosylation of monosaccharide ortho-hexynylbenzoate 9 and thioglycoside 10 

and subsequent functional group transformations. 
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Scheme 1. Retrosynthetic analysis of the β-(1,3)-glucan hexadecasaccharide 1. 

 
Result and discussion 

Starting from the commercially available β-D-glucose pentaacetate 11, alcohol 12 was 

prepared in 72% overall yield over six steps according to the literature procedures (Scheme 

2).30 Benzylation of alcohol 12 with benzyl bromide in the presence of sodium hydride in a 

mixture of THF and DMF gave thioglycoside 13 in 94% yield. Subjection of thioglycoside 13 

to an NIS/DTBP/AgOTf system in acetonitrile and water led to the formation of the 

corresponding hemiacetal, which was condensed with ortho-hexynylbenzoic acid under the 

promotion of EDCI and DMAP to provide glucosyl ortho-hexynylbenzoate 9 in 88% yield 

over two steps. Exposure of 13 to HF�pyridine in dichloromethane resulted in the cleavage of 
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the TBS group, affording glucosyl acceptor 10 in 87% yield without migration of the 2-

benzoyl group into the 3-OH position. 

 

Scheme 2. Synthesis of the monosaccharide building blocks 9 and 10. 

At the outset, PPh3AuOTf (0.2 eq.)-catalyzed glycosylation of ortho-hexynylbenzoate 

9 with glucosyl acceptor 10 was performed in dichloromethane at room temperature to give 

the desired β-linked disaccharide 14 in 70% yield, as determined by analysis of the coupling 

constants between H-1 and H-2 of the corresponding glucoses (3JH1,H2 = 8.0, 10.0 Hz, 

respectively). Interestingly, by replacing dichloromethane with toluene, the coupling gave a 

cleaner reaction and the glycosylation yield was improved to 88% due to the solvent effects33 

(Scheme 3). Compound 14 was then transformed into disaccharide ortho-hexynylbenzoate 7 

in 63% yield over two steps via selective removal of the anomeric thiol ether with 

NIS/DTBP/AgOTf and subsequent condensation with ortho-hexynylbenzoic acid. Removal of 

the TBS group in 14 with HF�pyridine in dichloromethane generated disaccharide acceptor 8 

in a moderate 67% yield accompanied by the recovery of starting material 14 in 11% yield. 

However, treatment of 14 with HF�pyridine in THF proceeded smoothly to afford 

disaccharide acceptor 8 in an excellent 95% yield. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

 

Scheme 3. Synthesis of the disaccharide building blocks 7 and 8.  

The [2 + 2] glycosylation of 7 with 8 catalyzed by PPh3AuOTf (0.1 eq.) was originally 

investigated in dichloromethane at room temperature, producing β-linked tetrasaccharide 15 

in only 41% yield. Exhilaratingly, when toluene was used as solvent, the PPh3AuOTf (0.1 

eq.)-catalyzed glycosylation of 7 with 8 resulted in a very clean reaction, furnishing the β-

linked tetrasaccharide 15 in 83% yield (Scheme 4). The β-glycosidic linkages of 

tetrasaccharide 15 were confirmed by analysis of the coupling constants between C-1 and H-1 

of the corresponding glucoses (1JC1,H1 = 156.0, 162.0, 162.5 Hz, respectively). In a manner 

similar to the functional group transformations from 14 to 7, compound 15 was converted into 

tetrasaccharide ortho-hexynylbenzoate 5 in 75% yield over two steps. The TBS group in 15 

was removed using HF�pyridine in THF to provide tetrasaccharide acceptor 6 in 92% yield. 
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Scheme 4. Synthesis of the tetrasaccharide building blocks 5 and 6. 

Coupling of tetrasaccharide ortho-hexynylbenzoate 5 with tetrasaccharide acceptor 6 

under the promotion of PPh3AuOTf (0.2-0.5 eq.) in toluene at room temperature afforded the 

β-linked octasaccharide 16 in around 55% yield with the concomitant hydrolysis of donor 5. 

By lowering the temperature to –30 °C, the PPh3AuOTf (0.4 eq.)-promoted [4 + 4] 

glycosylation of 5 with 6 provided the β-linked octasaccharide 16 as the only anomer in 79% 

yield (Scheme 5). The β-glycosidic linkages of octasaccharide 16 were confirmed by analysis 

of the coupling constants between C-1 and H-1 of the corresponding glucoses (1JC1,H1 = 160.0, 

161.0, 161.5 Hz, respectively). Steps similar to the 15 → 5 conversion were then employed to 

prepare octasaccharide ortho-hexynylbenzoate 3 from 16 (71% over two steps). Cleavage of 

the TBS group in 16 with HF�pyridine in THF produced octasaccharide acceptor 4 in 92% 

yield. 
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Scheme 5. Synthesis of the octasaccharide building blocks 3 and 4. 

With octasaccharide ortho-hexynylbenzoate 3 and octasaccharide acceptor 4 in hand, 

we commenced to couple them into the β-(1,3)-glucan hexadecasaccharide 1 (Scheme 6). 

Exhilaratingly, [8 + 8] coupling of 3 with 4 promoted by PPh3AuOTf (0.4 eq.) in toluene at –

40 °C proceeded smoothly to furnish β-linked hexadecasaccharide skeleton 2 as the single 

anomer in 89% yield. The desired β-glycosidic linkages of hexadecasaccharide 2 were 

confirmed by analysis of the coupling constants between C-1 and H-1 of the corresponding 

glucoses (1JC1,H1 = 156.5, 160.5, 161.0, 161.5, 162.0, 162.5, 163.0 Hz, respectively). 

Unexpectedly, glycosylation of 2 with methanol under the promotion of NIS and TfOH 

afforded compound 17 as a mixture of α-methylated and β-methylated anomers in only 51% 

yield. With the assistance of IBr and AgOTf, the glycosylation yield was improved to 93% 

albeit accompanied by the formation of almost equal amount of α/β anomers (1JC1,H1 = 174.0, 

159.0, 159.6, 160.2, 157.2 Hz, respectively). Similarly, glycosylation of monosaccharide 13 

with methanol promoted by IBr and AgOTf gave a mixture of the desired methyl glycoside in 
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89% yield (β/α = 3:1), testifying that the neighboring-group participation effect did not play a 

decisive role in this type of glycosylation reactions.34 Global deprotection of 17 involving 

removal of the TBS group with HF�pyridine, saponification with sodium methoxide in 

methanol and dichloromethane, hydrogenolysis of the benzyl groups over Pd(OH)2/C in a 

mixture of THF, water and acetic acid, provided hexadecasaccharide 1 in 55% yield over 

three steps. The structure of 1 was confirmed by analysis of 1H NMR spectrum and MALDI-

TOF. The 1H NMR spectrum of synthetic 1 was found to be in good agreement with those 

reported in the literature.29,30,35 

 

Scheme 6. Synthesis of the β-(1,3)-glucan hexadecasaccharide 1. 

Conclusion 

In conclusion, we have described the gold(I)-promoted synthesis of a β-(1,3)-glucan 

hexadecasaccharide via the orthogonal and consecutive activation of thioglycosides and 

glucosyl ortho-hexynylbenzoates. The highly convergent synthetic approach required only 

four glycosylation steps for procurement of the β-(1,3)-glucan hexadecasaccharide skeleton 

starting from the monosaccharide building blocks. The couplings with glucosyl ortho-

hexynylbenzoates as donors and PPh3AuOTf as promoter in toluene proved to be very 
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efficient for the construction of β-(1,3)-glucan polysaccharides. The synthetic approach 

described here lays the foundation for further biological evaluation of β-(1,3)-glucan 

polysaccharides.  
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• Efficient synthesis of a β-(1,3)-glucan hexadecasaccharide.  

• Orthogonal and consecutive activation of thioglycosides and glucosyl 
ortho-hexynylbenzoates 

• Gold(I)-catalyzed highly convergent approach in toluene. 


