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Thioamide Directed Co(III) Catalyzed Selective Amidation of 

C(sp
3
)-H Bonds 

Peng Wen Tan, Adrian M. Mak, Michael B. Sullivan, Darren J. Dixon* and Jayasree Seayad* 

Abstract: A mild, oxidant-free and selective Cp*Co
III
-catalyzed 

amidation of thioamides with robust dioxazolone amidating agents 

via C(sp
3
)-H bond activation to generate the desired amidated 

products is reported. The method is efficient and allows for the C-H 

amidation of a wide range of functionalized thioamides with aryl-, 

heteroaryl- and alkyl- substituted dioxazolones under the Cp*Co
III
 

catalyzed conditions. The observed regioselectivity towards primary 

C(sp
3
)-H activation is supported by computational studies and the 

cyclometalation is proposed to proceed via an external carboxylate 

assisted concerted metalation/ deprotonation mechanism. The 

reported method is a rare example of the use of a directing group 

other than the commonly used pyridine/quinolone classes for 

Cp*Co
III 

catalyzed C(sp
3
)-H functionalization and the first to exploit 

thioamides. 

The arena of C-H functionalization has witnessed 

tremendous growth over the past decade.[1] The  

activation/functionalization of ubiquitous C-H bonds in place of 

traditional pre-activated functional groups is particularly 

attractive in terms of its directness, resource efficiency and atom 

economy for carbon-carbon / carbon-heteroatom bond formation. 

In the majority of cases, C-H bond activation/functionalization 

reactions employ precious metal catalyst complexes of 

palladium, rhodium, iridium or ruthenium, owing to their 

phenomenal reactivity and ease of handling and a plethora of 

important studies have been published.[1] However, it is not until 

only recently that the field has witnessed a substantial shift 

towards using earth-abundant first-row transition-metal catalysts 

as alternatives due to, among other reasons, their lower cost 

and toxicity.[2] Of the first row transition metals, cobalt complexes 

have revealed exemplary reactivity in this regard, ranging from 

transformations catalyzed by low-valent cobalt complexes to 

high-valent cobalt catalyzed C-H functionalization reactions.[3-9] 

Notably, high-valent Cp*CoIII catalysts have received significant 

attention due to their great stability yet outstanding reactivity[3-8], 

analogous to that of their RhIII and IrIII counterparts.[10-11] Despite 

the substantial amount of preceding work that has demonstrated 

transformations pivoting on Cp*CoIII catalyzed C(sp2)-H bond 

activation, studies on the C(sp3)-H activation/functionalization by 

Cp*CoIII catalysts remain limited.[8,9] This scarcity of reports 

prompted us to explore possible transformations that could 

uncover and advance the potential of cobalt catalysis for C(sp3)-

H bond activation, a process that is often beset by the poor 

reactivity of C(sp3)-H bonds.[12]  

Thioamides, a versatile class of building blocks derived from 

carboxylic acids, are known for their convenient synthetic 

applicability to furnish heterocyclic compounds.[13] Thioamide 

motifs are also used as biologically active compounds in 

pharmaceuticals and agrochemicals.[14] Consequently, new 

synthetic methods for their efficient and direct modification via C-

H functionalization strategies are attractive. In 2015, Miura and 

co-workers demonstrated that tertiary thioamide derivatives 

could serve as effective directing groups (DGs) to effect Cp*RhIII 

catalyzed ortho C(sp2)-H activation/alkenylation of 

benzothioamides (Figure 1a).[15] Furthermore, Yu et al. disclosed 

the thioamide directed PdII-catalyzed α-C(sp3)-H cross-coupling 

of cyclic amines with aryl- and heteroarylboronic acids (Figure 

1b).[16] Inspired by these recent studies we envisaged that the 

thioamide moiety could likely serve as an efficient directing 

group to facilitate C(sp3)-H activation for further transformations 

under Cp*CoIII catalyzed conditions. To this end, herein we 

disclose the discovery and development of a direct, selective, 

mild and oxidant-free Cp*CoIII catalyzed C(sp3)-H 

activation/amidation of thioamides using readily prepared and 

easy-to-handle dioxazolones as amidating reagents (Figure 1c).  

To our knowledge this is the first example of a Cp*CoIII catalyzed 

C(sp3)-H functionalization reaction using a thioamide as an 

alternative directing group to the commonly used 

pyridine/quinoline classes.  

Figure 1. Thioamide directed transition metal catalyzed C(sp
3
/sp

2
)-H 

functionalization reactions. 

To assess the potential of the Cp*CoIII catalysis for any 

desired C(sp3)-H functionalization, we began a preliminary 
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investigation using model substrates thioamide 1a and 

dioxazolone 2a (Table 1) in the presence of catalytic 

[Cp*Co(MeCN)3][SbF6]2 in dichloroethane (DCE) at 40 °C for 

24h (entry 1). Encouragingly, the reaction proceeded smoothly 

to furnish the amidated product 3a in 56% yield (determined by 
1H NMR by integration against an internal standard). It was 

noteworthy that exclusive mono amidation with selective C(sp3)-

H activation at one of the primary methyl groups of the thioamide 

1a instead of the -methylene protons in the piperidine ring was 

observed.  To optimize the yield of the reaction further, different 

carboxylic acids and their salts were evaluated as additives. 

Importantly, addition of 20 mol% sodium benzoate resulted in a 

significant increase in yield (89%, entry 4). While DCE proved to 

be the optimal solvent, other solvents such as trifluoroethanol, 

dioxane and toluene (entries 5, 6 & 7), completely suppressed 

reactivity and the reactions yielded trace or no product. 

Switching  [Cp*Co(MeCN)3][SbF6]2 for Cp*Co(CO)I2 (entry 8) or 

[Cp*Rh(MeCN)3][SbF6]2  (entry 9) or no transition metal catalyst 

at all (entry 10) led to diminished or no reactivity. While the 

reaction worked at room temperature with slightly lower yield 

(entry 12), a higher catalyst loading (entry 11) did not result in an 

improvement to the yield relative to entry 4. A control reaction 

using 2,2-dimethyl-1-(piperidin-1-yl)propan-1-one, the amide 

precursor of 1a, as the substrate instead of 1a showed no 

reactivity confirming the role of the thioamide as directing group 

for this intriguing primary C(sp3)-H activation.  

Table 1. Optimization studies on C(sp
3
)- H activation/ amidation reactions of 

1a & 2a 

 

Entry
 [a]

 Catalyst 
(mol%) 

Solvent Additive 
(mol%) 

Yield
[c] 

(%) 

1 [Cp*Co(MeCN)3][SbF6]2 

(5) 
DCE - 56 

2 [Cp*Co(MeCN)3][SbF6]2 

(5) 
DCE PivOH 

(20) 
79 

3 [Cp*Co(MeCN)3][SbF6]2 

(5) 
DCE PhCO2H 

(20) 
85 

4 [Cp*Co(MeCN)3][SbF6]2 

(5) 
DCE PhCO2Na 

(20) 
89 (86) 

5 [Cp*Co(MeCN)3][SbF6]2 

(5) 
TFE PhCO2Na 

(20) 
- 

6 [Cp*Co(MeCN)3][SbF6]2 

(5) 
Dioxane PhCO2Na 

(20) 
5 

7 [Cp*Co(MeCN)3][SbF6]2 

(5) 
Toluene PhCO2Na 

(20) 
- 

8 Cp*Co(CO)I2 

(5) 
DCE PhCO2Na 

(20) 
- 

9 [Cp*Rh(MeCN)3][SbF6]2 

(5) 
DCE PhCO2Na 

(20) 
71 

10 - DCE PhCO2Na 
(20) 

- 

11 [Cp*Co(MeCN)3][SbF6]2 

(10) 
DCE PhCO2Na 

(40) 
85 

12
[b] 

[Cp*Co(MeCN)3][SbF6]2 

(5) 
DCE PhCO2Na 

(20) 
71 

[a] Reaction condition: 1a (0.3 mmol), 2b (0.36 mmol), catalyst, additive, 
solvent (3 mL), T= 40 °C, 24 h. [b] Reaction was carried out at RT. [c] 

1
H NMR 

yield using CH2Br2 as internal standard; isolated yield in parentheses. 

Having identified the optimal reaction conditions for the 

synthesis of 3a, various substituted dioxazolones were then 

evaluated to determine their influence on the overall reactivity 

and to establish the reaction scope with respect to the amidating 

reagent (Table 2). In general, this C(sp3)-H functionalization 

methodology was amenable to a range of aryl-substituted 

dioxazolones bearing various electron-withdrawing and electron-

donating substituents, furnishing the corresponding amidated 

products in typically good to excellent yields. Whereas a low 

yield was obtained in the case of reaction with para-CF3-

substituted 3-phenyldioxazolones (3h), Cl- (3b) and Br- (3c) 

substituents in the para-position were well-tolerated delivering 

products that are synthetically useful for downstream 

transformations. Furthermore, reactions with heteroaryl-

containing dioxazolone substrates proceeded smoothly under 

the optimized conditions to afford 3k and 3l in 83% and 75% 

yield respectively. Considering the difficulty of installing alkyl N-

acyl amide moiety using other amidating reagents such as alkyl 

acyl azides,[17] it was gratifying to note that alkyl-substituted 

dioxazolone substrates performed well to afford 3m and 3n in 

good yields. 

Table 2. C(sp
3
)-H activation/amidation of thioamide 1 with various substituted 

dioxazolones  

 

Subsequently, the scope of our protocol was broadened to 

include various thioamides derived from different cyclic or 

acyclic amines and carboxylic acids. As presented in Table 3, 
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thioamide substrates containing piperazine (4a and 4b) and 

morpholine (4c) scaffolds worked well to afford the desired 

amidated products in synthetically useful yields of 60-77%. 

While simple acyclic thioamide substrate (4d) displayed good 

reactivity, reactions with thioamides containing different ring 

sizes of azacycles (4e and 4f) were also shown to be successful. 

4-Substituted piperidinyl thioamides proceeded well in this 

transformation to generate products 4h and 4i in moderate to 

good yields. Remarkably, primary C(sp3)-H activation was 

favored even in the presence of benzylic methylene protons – as 

showcased by reaction products 4g, 4h and 4l – thus pointing 

towards steric factors as overriding determinants of reactivity.[18] 

Furthermore, isopropyl piperidinylthioamide 1k also reacted well 

under these conditions to furnish 4j in 57% yield. Unfortunately, 

cyclopropanethioamide 1n, cyclohexanethioamide 1o and 

propionthioamide 1p were unreactive under the standard 

conditions.  

Table 3: C(sp
3
)-H activation/amidation of various thioamides with 3-

phenyldioxazolones 2a 

 
[a] Reaction was carried out at 60 °C. 

To investigate the efficiency and further practicality of this 

transformation, a three-fold scale-up of the reaction using the 

standard substrates 1a and 2a was performed (Scheme 1a). 

Pleasingly, negligible deviation in the obtained yield of 3a was 

observed. Additionally, diversification of the amidated product to 

access other important functionalities was achieved through 

simple chemical modifications. For example conversion of 

thioamide 3a to amide 5a was efficiently carried out with Ag(I) 

carbonate (Scheme 1b),[19] whilst selective reduction of the 

thioamide using nickel boride afforded amine 6a in 60% yield 

(Scheme 1c).[20]  

 

Scheme 1. a) Three-fold scale-up reaction. b) Oxidative desulfurization of 
thioamide 3a. c) Reduction of thioamide 3a. 

  

In line with prior art[5,6] and our preliminary  computational 

studies using ab initio and DFT methods implemented in Q-

Chem 5.0,[21] a redox-neutral Cp*CoIII catalytic cycle for the 

C(sp3)-H activation/amidation of 1a and 2a is postulated to be in 

operation in this chemistry as depicted in Scheme 2. Firstly, we 

presumed that the first benzoate anion coordinates with 

[Cp*Co]2+ to form the intermediate, A in a 2 coordination mode. 

Subsequent binding of 1a to A to form B was found to be 

exergonic (G298 = -117.0 kJmol-1). Approach of a second 

external benzoate anion (ext) promotes the internal coordinated 

benzoate (int) converting from a 2 to a 1 ligand forming C, 

facilitated by an agostic interaction of Ha with Co. The 

regioselectivity of C(sp3)-H activation in 1a was then analyzed. 

Thus the interatomic distances of Hb—Ob (3.913 Å) and Cb—Co 

(4.959 Å) in intermediate C were calculated to be much larger 

than that of Ha—Oa (2.365 Å) and Ca—Co (2.396 Å) at the local 

minimum (see supporting information, Table S1), rendering Cb—

Hb unlikely to be activated by Co. This supports the observed 

selective C-H amidation at the primary methyl group of the 

thioamide. The cyclometalation in complex C then leads to the 

intermediate D potentially by an external carboxylate assisted 

concerted metalation/ deprotonation (CMD-ext) mechanism[8a, 22]. 

The activation barrier for CMD-ext was determined to be lower 

(G‡
298 = 4.5 kJmol-1) than the traditional intramolecular 

concerted metalation/deprotonation (CMD-int) (G‡
298 = 40.9 

kJmol-1) thus favoring the former.  Subsequently, the 

coordination of intermediate D with dioxazolone 2a followed by 

migratory insertion of the amido group results in a synchronous 

CO2 extrusion to afford the amido complex F. Proto-

demetalation of F would release product 3a and concurrently 

regenerate active species A ready for further catalytic turnovers.  

The absence of reactivity observed in compound 1n and 1o 

were further examined and based on our preliminary 
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calculations, their most stable conformations have CH3 groups 

oriented away from the metal center (a dihedral of ~120° to the 

C=S) when coordinated to A (see supporting information, Figure 

S3). Therefore, an effective cyclo-cobaltation is less likely to 

occur. Further investigations on the mechanism will be 

discussed in detail in our subsequent work. 

 

Scheme 2: Postulated mechanism for C(sp
3
)-H activation/amidation of 

thioamide 1a  with dioxazolone 2a. All bond lengths are in Ångstroms and 
relative free energies are in kJmol

-1
 for density functional theory (DFT)-

optimized structures of intermediate C and TSCMD-ext. 

 

In conclusion, we have discovered and developed a mild, 

efficient and selective method for C(sp3)-H bond activation / 

amidation employing thioamides as the directing group, with 

aryl-, heteroaryl- and alkyl- substituted dioxazolones under 

CoIIICp* catalytic conditions. Additionally, a wide range of 

thioamides with piperazine, morpholine, tetrahydroisoquinoline 

and other substituted N-containing heterocycles were well-

tolerated. This work stands as a rare example of Cp*CoIII 

catalyzed C(sp3)-H functionalization using an alternative 

directing group to the commonly used pyridine/quinoline classes 

and the first using a thioamide. Computational studies support 

the observed regioselectivity towards primary C(sp3)-H activation 

and suggest that the cyclometalation proceeds via an external 

carboxylate assisted concerted metalation/ deprotonation 

mechanism.  Investigations into other synthetically relevant 

CoIIICp* catalyzed C(sp3)-H bond functionalization reactions 

directed by thioamide moieties – from ubiquitous amides, amino 

acids and peptides – are currently ongoing and the results will 

be disclosed in due course.  

Experimental Section 

General procedure for the synthesis of 3: In a N2-filled glovebox, 

a 8 mL reaction vial was charged with thioamide 1a (0.30 mmol, 

1 equiv), dioxazolone 2 (0.36 mmol, 1.2 equiv), PhCOONa (0.03 

mmol, 4.32 mg), [Cp*Co(MeCN)3][SbF6]2 (0.015 mmol, 11.8 mg) 

in DCE (3 mL).  The sealed reaction vial was then brought out of 

the glovebox and reaction was run under inert atmosphere at 

40-60 °C. After 24 hours, the reaction mixture was cooled to 

room temperature and solvent was removed in vacuo. The crude 

reaction mixture was then purified and products were isolated by 

flash column chromatography (EtOAc/ PE = 1/9 to 2/3). 
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