A Selective and Sensitive "Turn-on" Fluorescent Chemosensor for **Recognition of Hg²⁺ Ion in Water**

Huiling Dai, Yuanyuan Yan, Yong Guo, Lingling Fan, Zhiping Che, and Hui Xu^{*[a]}

Heavy and transition-metal (HTM) ions usually play important roles in various biological systems or have an extremely toxic impact on the environment.^[1] In particular, mercury ions are considered to be very dangerous environmental pollutants by bioaccumulating through the food chain when they are ingested or inhaled by human beings,^[2] consequently, the development of fluorescent chemosensors for the detection of the Hg²⁺ ion over other HTM ions with excellent selectivity and sensitivity is still a challenging task.

Recently, a lot of sensors for the recognition of Hg^{2+} ion have been developed with good performance.^[3] Furthermore, many attractive probes for the detection of mercury ions based on the specific mercury-promoted desulfurization reaction have also been reported.^[4] More recently, another series of new interesting sensors, based on the mercury-promoted deprotection of dithioacetals groups, have been developed.^[5] However, these probes for the recognition of the Hg²⁺ ion were conducted in organic solutions.^[5] Meanwhile, 1,8-naphthalimides have been frequently used as the fluorophores to prepare fluorescent chemosensors for metal cations and protons in recent years.^[6] Encouraged by the above-mentioned results, herein, we have designed a simple chemosensor 1 (Scheme 1) by incorporating a 1,8-naphthalimide fragment with a dithioacetal that contained two hydrophilic carboxylic groups, into a single molecular framework. We envisaged that the two carboxylic groups at the dithioacetal group would make 1 operate in aqueous solution, and therefore enable us to disclose a new highly sensitive and selective probe for the Hg²⁺ ion over other HTM ions in pure water without the requirement for additional organic solvent.

As described in Scheme 1, 4-bromo-1,8-naphthalimide reacted with piperidine to give 4-piperidine-1,8-naphthalimide (2, 86%),^[7] which was further allowed to react with ethanolamine to afford 3 in a 79% yield.^[8] Then 4 was obtained in a 68% yield by the reaction of 3 with phosphorus tribromide.^[9] In the presence of K₂CO₃ and KI, subsequently, intermediate 4 was allowed to react with 4-hydroxybenzalde-

[a]	Dr. H. Dai, Y. Yan, Y. Guo, L. Fan, Z. Che, Prof. Dr. H. Xu
	Laboratory of Pharmaceutical Design & Synthesis
	College of Sciences, Northwest A&F University
	Yangling 712100 (P.R. China)
	Fax: (+86)29-87091952
	E-mail: orgxuhui@nwsuaf.edu.cn

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201201604.

Scheme 1. Synthetic approach for chemosensor 1.

hyde to produce 5 in a 56% yield,^[10] which smoothly reacted with methyl thioglycolate to give 6 (96%).^[5a] Finally, the target compound **1** was obtained in a 53% yield by hydrolysis of 6 with potassium hydroxide in a water-methanol mixture.^[11] The chemical structures of compounds **1–6** were well characterized by IR spectrometry, ¹H and ¹³C NMR spectroscopy, and HRMS (see the Supporting Information).

The pK_a' of **1** was about 3.3, and the fluorescent intensity was almost a constant minimal value at pH values >4.24 in water (Figure S1, see the Supporting Information). It suggested that 1 could function over a wide range of pH values for detection. Figure 1 shows the fluorescent intensity ratio (I/I_0) of sensor 1 in the presence of Hg²⁺, Ag⁺, Zn²⁺, Fe³⁺, Cd²⁺, Pb²⁺, Ca²⁺, Cu²⁺, Mg²⁺, and Ba²⁺ ions in water. The fluorescent behavior of sensor 1 was very weak. Interestingly, only when Hg²⁺ ion was added to the pure water solution of 1, a 155-fold increase of the fluorescent intensity was observed at 535 nm. This was because the dithioacetal of sensor 1 was deprotected by Hg^{2+} ion to give aldehyde 5,

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

🕅 WILEY 师

These are not the final page numbers!

CHEMISTRY

A EUROPEAN JOURNAL

Figure 1. Fluorescent intensity ratio (I/I_0) of **1** in distilled water at 293 K in the presence of 10.0 equiv of different metal ions. Inset: Photograph of **1** in the presence of different metal ions. A: **5** $(1.0 \times 10^{-5} \text{M})$; B: **1** $(1.0 \times 10^{-5} \text{M})$; C-L: **1**+Hg²⁺, Ag⁺, Zn²⁺, Fe³⁺, Ca²⁺, Mg²⁺, Ba²⁺, Pb²⁺, Cd²⁺, and Cu²⁺ $(1.0 \times 10^{-4} \text{M})$.

accompanied by the transformation of weak fluorescence (colorless, inset of Figure 1) to strong fluorescence (yellowgreen). However, the addition of other metal ions, namely, Ag^+ , Zn^{2+} , Fe^{3+} , Ca^{2+} , Mg^{2+} , Ba^{2+} , Pb^{2+} , Cd^{2+} , and Cu^{2+} , did not lead to a clear enhancement of the fluorescent intensity of **1**. The reaction time profile of **1** (1×10^{-5} M) towards Hg^{2+} (1×10^{-5} M) in water was examined in Figure S3 (in the Supporting Information), and the time for the reaction time curve to reach a stable plateau was 3 min after Hg^{2+} ion addition.

To obtain more insight into the fluorescent properties, the titration reaction curve of 1 toward the Hg²⁺ ion was investigated as shown in Figure 2. The fluorescent intensity of sensor 1 increased in response to the increase in the concen-

Figure 2. Fluorescence titration of **1** $(1 \times 10^{-5} \text{ M})$ with Hg(ClO₄)₂ in distilled water at 293 K. [Hg²⁺]: 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 5.0, 10 × 10⁻⁵ M. The excitation wavelength was 416 nm and the emission intensity was measured at 535 nm.

tration of the added Hg^{2+} ion in water, and the titration reaction curve showed a steady increase until a plateau was reached when 1 equiv of Hg^{2+} ion was added.

To investigate the utility of **1** as an ion-selective fluorescent chemosensor for Hg^{2+} ions, cross-contamination experiments were conducted in the presence of Hg^{2+} at a concentration of 1×10^{-5} M mixed with other metal ions, such as Ag⁺, Zn²⁺, Fe³⁺, Ca²⁺, Mg²⁺, Ba²⁺, Pb²⁺, Cd²⁺ and Cu²⁺, at a concentration of 1×10^{-4} M. As indicated in Figure 3, it clearly suggested that the selectivity of **1** towards Hg^{2+} was almost completely unaffected by other competitive ions (10 equiv).

Figure 3. Results of the competition experiments between Hg²⁺ and selected metal ions in distilled water at 293 K; the concentration of Hg²⁺ was 1×10^{-5} M and that of each competing metal ions was 1×10^{-4} M; the excitation wavelength was 416 nm and the emission intensity was measured at 535 nm.

To examine the sensitivity of **1** towards Hg²⁺, its detection limit was evaluated. As shown in Figure 4, the fluorescence titration profile of **1** (10⁻⁶ M) with Hg²⁺ demonstrated that Hg²⁺ could be detected at least down to 3×10^{-8} M, and the fluorescent intensity of **1** increased linearly with the concentration of Hg²⁺ (0–1.00)×10⁻⁶ M (R^2 =0.9951).

As depicted in the partial ¹H NMR spectra in Figure 5 a (sensor 1), b $(1+Hg^{2+})$, and c (5, for comparison), when 1 was treated with 1.1 equiv of Hg^{2+} , the resonance of the aldehyde proton appeared similar to that in Figure 5 c. Based upon the above ¹H NMR data, the proposed sensing mechanism was described as depicted in Figure 5 d.

In summary, we have developed a new water-soluble "turn on" chemosensor with high selectivity and sensitivity for recognition of Hg^{2+} ion over other HTM ions in pure water. The sensor was designed based upon a unique and irreversible Hg^{2+} -promoted deprotection reaction of the dithioacetal by transforming a weakly fluorescent precursor

Figure 4. Fluorescence titration of $1~(1\times10^{-6}\,\text{m})$ with $Hg(ClO_4)_2$ in distilled water at 293 K. $[Hg^{2+}]$: 0, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, $1.0\times10^{-6}\,\text{m}.$

Figure 5. Partial ¹H NMR spectra of **1** (a), complex $(1+1.1 \text{ equiv of } \text{Hg}^{2+}$ in [D₆]DMSO (b), **5** in CDCl₃ (c), and the sensing mechanism of **1** with Hg^{2+} ion (d).

(colorless) to a highly fluorescent aldehyde product (yellowgreen) with a 155-fold increase in fluorescent intensity. Moreover, **1** could behave as a fluorescent sensor over a wide range of pH values for the detection of Hg^{2+} . Based on its good water solubility, and highly selective and sensitive response to Hg^{2+} , this probe could be used to determine Hg^{2+} ion concentrations in aqueous environments. These results will encourage us to design more chemosensors for other specific ions in water.

Acknowledgements

The present research was partly supported by the National Natural Science Foundation of China (Nos.: 31071737, 31171896), the Fok Ying Tong Education Foundation for Young Talents (No.: 121032), and the Special Funds of Central Colleges Basic Scientific Research Operating Expenses (QN2009045). We also thank to Prof. H. L. Zhang for the NMR experiments.

Keywords: dithioacetals • fluorescence • mercury • sensors

- a) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, *Chem. Rev.* 1997, 97, 1515–1566; b) B. Valeur, I. Leray, *Coord. Chem. Rev.* 2000, 205, 3–40; c) H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, J. Yoon, *Chem. Soc. Rev.* 2008, 37, 1465–1472; d) A. W. Czarnik, *Acc. Chem. Res.* 1994, 27, 302–308.
- [2] a) I. Onyido, A. R. Norris, E. Buncel, *Chem. Rev.* 2004, 104, 5911–5929; b) H. H. Harris, I. Pickering, G. N. George, *Science* 2003, 301, 1203–1203.
- [3] For selected examples, see: a) A. B. Descalzo, R. Martinez-Manez, R. Radeglia, K. Rurack, J. Soto, J. Am. Chem. Soc. 2003, 125, 3418-3419; b) X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, R. Q. Yu, Anal. Chem. 2002, 74, 821-825; c) M. C. Aragoni, M. Arca, F. Demartin, F. A. Devillanova, F. Isaia, A. Garau, V. Lippolis, F. Jalali, U. Papke, M. Shamsipur, L. Tei, A. Yari, G. Verani, Inorg. Chem. 2002, 41, 6623-6632; d) J. P. Xie, Y. G. Zheng, J. Y. Ying, Chem. Commun. 2010, 46, 961-963; e) Y. Zhou, C. Y. Zhu, X. S. Gao, X. Y. You, C. Yao, Org. Lett. 2010, 12, 2566-2569; f) B. L. Ma, F. Zeng, F. Y. Zheng, S. Z. Wu, Chem. Eur. J. 2011, 17, 14844-14850; g) G. Pelossof, R. Tel-Vered, X. Q. Liu, I. Willner, Chem. Eur. J. 2011, 17, 8904-8912; h) T. Kang, S. M. Yoo, I. Yoon, S. Lee, J. Choo, S. Y. Lee, B. Kim, Chem. Eur. J. 2011, 17, 2211-2214; i) B. Tang, B. Y. Ding, K. H. Xu, L. L. Tong, Chem. Eur. J. 2009, 15, 3147-3151; j) R. Shunmugam, G. J. Gabriel, C. E. Smith, K. A. Aamer, G. N. Tew, Chem. Eur. J. 2008, 14, 3904-3907; k) L. Liu, G. X. Zhang, J. F. Xiang, D. Q. Zhang, D. B. Zhu, Org. Lett. 2008, 10, 4581-4584; I) X. F. Guo, X. H. Qian, L. H. Jia, J. Am. Chem. Soc. 2004, 126, 2272-2273; m) Z. Guo, W. Zhu, M. Zhu, X. Wu, H. Tian, Chem. Eur. J. 2010, 16, 14424-14432; n) H. N. Kim, W. X. Ren, J. S. Kim, Chem. Soc. Rev. 2004, 33, 3210-3244; o) H. N. Kim, S. Nam, K. M. K. Swamy, Y. Jin, X. Chen, Y. Kim, S. Kim, S. Park, J. Yoon, Analyst 2011, 136, 1339-1343.
- [4] a) M. Y. Chae, A. W. Czarnik, J. Am. Chem. Soc. 1992, 114, 9704–9705; b) M. H. Lee, S. W. Lee, S. H. Kim, C. Kang, J. S. Kim, Org. Lett. 2009, 11, 2101–2104; c) M. H. Lee, B.-K. Cho, J. Yoon, J. S. Kim, Org. Lett. 2007, 9, 4515–4518; d) J. S. Wu, I.-C. Hwang, K. S. Kim, J. S. Kim, Org. Lett. 2007, 9, 907–910; e) K. C. Song, J. S. Kim, S. M. Park, K. C. Chung, S. Ahn, S. K. Chang, Org. Lett. 2006, 8, 3413–3416; f) M. G. Choi, Y. H. Kim, J. E. Namgoong, S. K. Chang, Chem. Commun. 2009, 3560–3562; g) W. Jiang, W. Wang, Chem. Commun. 2009, 3913–3915; h) G. X. Zhang, D. Q. Zhang, S. W. Yin, X. D. Yang, Z. G. Shuai, D. B. Zhu, Chem. Commun. 2005, 2161–

Chem. Eur. J. **2012**, 00, 0–0

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

These are not the final page numbers! **77**

COMMUNICATION

2163; i) B. Liu, H. Tian, Chem. Commun. 2005, 3156–3158; j) X. Zhang, Y. Xiao, X. Qian, Angew. Chem. 2008, 120, 8145–8149; Angew. Chem. Int. Ed. 2008, 47, 8025–8029; k) J. Ros-Lis, M. D. Marcos, R. Martinez-Manez, K. Rurack, J. Soto, Angew. Chem. 2005, 117, 4479–4482; Angew. Chem. Int. Ed. 2005, 44, 4405–4407; l) F. Wang, S. Nam, Z. Guo, S. Park, J. Yoon, Sens. Actuators B 2012, 161, 948–953.

- [5] a) X. Cheng, S. Li, H. Jia, A. Zhong, C. Zhong, J. Feng, J. Qin, Z. Li, *Chem. Eur. J.* **2012**, *18*, 1691–1699; b) X. Cheng, Q. Li, C. Li, J. Qin, Z. Li, *Chem. Eur. J.* **2011**, *17*, 7276–7281.
- [6] For selected examples, see: a) E. B. Veale, D. O. Frimannsson, M. Lawler, T. Gunnlaugsson, Org. Lett. 2009, 11, 4040-4043; b) E. B. Veale, T. Gunnlaugsson, J. Org. Chem. 2008, 73, 8073-8076; c) H. D. P. Ali, P. E. Kruger, T. Gunnlaugsson, New J. Chem. 2008, 32, 1153-1161; d) V. B. Bojinov, D. B. Simeonov, N. I. Georgiev, Dyes Pigm. 2008, 76, 41-50; e) R. Parkesh, T. C. Lee, T. Gunnlaugsson, Org. Biomol. Chem. 2007, 5, 310-317; f) F. M. Pfeffer, M. Seter, N. Lewcenko, N. W. Barnett, Tetrahedron Lett. 2006, 47, 5241-5245; g) D. W. Cui, X. H. Qian, F. Y. Liu, R. Zhang, Org. Lett. 2004, 6, 2757-2760; h) A. P. de Silva, T. E. Rice, Chem. Commun.

1999, 163–164; i) A. P. de Silva, H. Q. N. Gunaratne, J. Habib-Jiwan, C. P. McCoy, T. E. Rice, J. Soumillion, Angew. Chem. 1995, 107, 1889–1891; Angew. Chem. Int. Ed. Engl. 1995, 34, 1728–1731; j) H. L. Dai, H. Xu, Bioorg. Med. Chem. Lett. 2011, 21, 5141–5144; k) Z. Xu, K. Baek, H. N. Kim, J. Cui, X. Qian, D. R. Spring, I. Shin, J. Yoon, J. Am. Chem. Soc. 2010, 132, 601–610.

- [7] A. T. Peters, M. J. Bide, Dyes Pigm. 1985, 6, 349-375.
- [8] D. H. Wang, X. L. Zhang, C. He, C. Duan, Org. Biomol. Chem. 2010, 8, 2923–2952.
- [9] M. S. Refat, N. M. El-Metwaly, Spectrochim. Acta Part A 2011, 81, 215–227.
- [10] S. Eagon, N. Ball-Jones, D. Haddenham, J. Saavedra, C. DeLieto, M. Buckman, B. Singaram, *Tetrahedron Lett.* 2010, 51, 6418–6421.
- [11] a) T. Gunnlaugsson, T. C. Lee, R. Parkesh, Org. Lett. 2003, 5, 4065–4068; b) M. Choi, M. Kim, K. D. Lee, K. N. Han, I. A. Yoon, H. J. Chung, J. Yoon, Org. Lett. 2001, 3, 3455–3457.

Received: May 8, 2012 Published online: ■ ■ 1,0000

COMMUNICATION

Based upon highly selective and irreversible Hg^{2+} -promoted deprotection of the dithioacetal reaction, a new water-soluble "turn on" fluorescent chemosensor **1** was prepared and exhibited high selectivity and sensitivity towards the Hg^{2+} ion over other

heavy and transition-metal ions in pure water by transforming a weakly fluorescent precursor (colorless) to a highly fluorescent aldehyde (yellowgreen; see figure) with a 155-fold increase in fluorescent intensity.

Fluorescence

A Selective and Sensitive "Turn-on" Fluorescent Chemosensor for Recognition of Hg²⁺ Ion in Water

These are not the final page numbers!