A Modular Approach for the Synthesis of Oligosaccharide **Mimetics**

Anupama Patel and Thisbe K. Lindhorst^{*,†}

Institute of Organic Chemistry, Christiana Albertina University Kiel, Otto-Hahn-Platz 4, D-24111 Kiel, Germany

tklind@oc.uni-kiel.de

Received October 5, 2000

To allow modular syntheses of oligosaccharide mimetics, the potentially trifunctional glycoside 7 was synthesized and used as a scaffold for the successive attachment of further monosaccharide derivatives to lead to the di-, tri-, and tetrasaccharide mimetics 11, 13, and 16. This synthetic strategy can also be used to prepare oligovalent neoglycoconjugates, e.g., 18, which contains nine mannosyl units. The applied concept implies numerous options for the synthesis of a wide array of structural variations, biolabeling, or solid-phase synthesis as well as combinatorial approaches.

Introduction

Complex oligosaccharides as part of glycoconjugates play an important role in biological communication processes.¹ They store information in the form of their three-dimensional structures which is "decoded" in molecular recognition processes involving carbohydraterecognizing proteins called lectins and selectins.² However, the exact structures of optimal lectin ligands are often not known, and therefore, the synthesis of carbohydrate ligands that are necessary for biological investigations cannot generally be based on a rational design. While chemical and enzymatic methods for the preparation of oligoantennary carbohydrates according to the natural example structures has been developed enormously during the last years,³ the synthesis of every target molecule remains an individual and difficult task. Consequently, efforts have been directed toward the synthesis of structurally modified sugar-containing molecules, "glycomimetics".4 These do not necessarily have to be assembled by glycosidation reactions, while the biological properties of their natural counterparts might be preserved or even surpassed. No strict definition of the term glycomimetic has yet been made. It seems to be generally accepted that the approach to obtain biologically active carbohydrate-containing molecules by artificial design bears the potential to implement a number

* To whom correspondence should be addressed. Fax: Int (+49)431-8807410.

[†] Dedicated to Prof. Dr. Joachim E. Thiem on the occasion of his 60th birthday.

(1) (a) Varki, A. Glycobiology 1993, 3, 97-130. (b) Essentials of Glycobiology, Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G., Marth J., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1999.

(2) (a) Lis, H.; Sharon, N. Chem. Rev. 1998, 98, 637-674. (b)

(2) (a) Lis, H.; Sharon, N. Chem. Rev. 1998, 98, 637-674. (b)
Lawrence, M. B. Curr. Opin. Chem. Biol. 1999, 3, 659-664.
(3) (a) Vankar, Y. D.; Schmidt, R. R. Chem. Soc. Rev. 2000, 29, 201-216. (b) Gridley, J. J.; Osborn, H. M. I. J. Chem. Soc., Perkin Trans. 1
2000, 1471-1491. (c) Unverzagt, C. Angew. Chem. 1996, 108, 2507-2510; Angew. Chem Int., Ed. Engl. 1996, 35, 2350-2353. (d) Seifert, J.; Lergenmüller, M.; Ito, Y. Angew. Chem. 2000, 112, 541-544; Angew. Chem., Int. Ed. 2000, 39, 531-534. (e) Křen, V.; Thiem, J. Chem. Soc. Rev. 1997, 26, 463-473. (f) Crout, D. H. G.; Vic, G. Curr. Opin. Chem. *Biol.* **1998**, *2*, 98–111.

(4) Sears, P.; Wong, C.-H. Angew. Chem. **1999**, 111, 2446–2471; Angew. Chem., Int. Ed. Engl. **1999**, 38, 2300–2324.

of relevant advantages. These include (i) simplified synthesis, (ii) greater flexibility with regard to possible structural modifications, (iii) feasible access to libraries of structurally related mimetics, (iv) improvement of stability and specificity, (v) improvement of affinity by the incorporation of additional functional groups, and/or (vi) increasing affinity by designing glycomimetics as multivalent molecules.5

Various molecular scaffolds have been used for the synthesis of oligosaccharide mimetics, such as branched, oligofunctional non-carbohydrate core molecules⁶ or monosaccharides as oligofunctional scaffolds for the synthesis of oligosaccharide mimetics.⁷ Herein, we introduce a trifunctional monosaccharide scaffold that can be used for carbohydrate clustering while preserving some of its hydroxyl groups for molecular recognition. In Figure 1 the principal structure of such a derivative is shown, designed as an ABC-type building block, carrying three potentially reactive sites, namely A, B, and C. These can be subsequently addressed in coupling reactions leading to disaccharide mimetics of type II or trisaccharide mimetics of type III, carrying the remaining functional group C. Eventually, C can be used in many different ways, such as for the attachment of a further monosaccharide unit to obtain tetrasaccharide mimetics, attachment to the solid phase, biolabeling, or incorporation of

^{(5) (}a) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem. **1998**, *110*, 2908–2953; *Angew. Chem., Int. Ed. Engl.* **1998**, *37*, 2754–2794. (b) Kiessling, L. L.; Pohl, N. L. *Chem. Biol.* **1996**, *3*, 71–77. (c) Lindhorst, Th. K.; Kieburg, C.; Krallmann-Wenzel, U. *Glycoconjugate* J. 1998, 15, 605–613. (d) Roy, R.; Page, D.; Perez, S. F.; Bencomo, V.
 V. *Glycoconjugate J.* 1998, 15, 251–263. (e) Sanders, W. J.; Gordon,
 E. J.; Dwir, O.; Beck, P. J.; Alon, R.; Kiessling, L. L. J. Biol. Chem. 1999, 274, 5271-5278. (f) Ashton, P. R.; Hounsell, E. F.; Jayaraman, N.; Nilsen, T. N.; Spencer, N.; Stoddart, J. F.; Young, M. J. Org. Chem.
 1998, 63, 3429–3437. (g) Strong, L. E.; Kiessling, L. L. J. Am. Chem.
 Soc. 1999, 121, 6193–6196. (h) Sadalapure, K.; Lindhorst, Th. K. Angew. Chem. 2000, 112, 2066-2069; Angew. Chem., Int. Ed. 2000, 39, 2010–2013. (i) Turnbull, W. B.; Pease, A. R.; Fraser Stoddart, J. ChemBioChem 2000, 1, 70-74.

^{(6) (}a) Aoi, K.; Itoh, K.; Okada, M. *Macromolecules* **1995**, *28*, 5391– 5393. (b) Grandjean, C.; Rommens, C.; Gras-Masse, H.; Melnyk, O. Angew. Chem. 2000, 112, 1110-1114; Angew. Chem., Int. Ed. 2000, *39*, 1068–1072.

^{(7) (}a) Dubber, M.; Lindhorst, Th. K. *Carbohydr. Res.* **1998**, *310*, 35–41. (b) Kitov, P. I.; Sadowska, J. M.; Mulvey, G.; Armstrong, G. D.; Ling, H.; Pannu, N. S.; Read, R. J.; Bundle, D. R. *Nature* **2000**, *403*, 669–672.

Figure 1. ABC-type carbohydrate building block I, carrying the three functions A, B, and C. These can be consecutively functionalized with various sugar moieties to lead to disaccharide mimetics of type II and in the next step to trisaccharide mimetics of type III. The remaining function C in building block III can be utilized in different ways, e.g., for the attachment of further carbohydrate units, for biolabeling or solid-phase synthesis, for the combination with other oligosaccharide mimetics, or for clustering of III to obtain the respective multivalent analogues. ABC building block I was realized as mannoside 7, II as compound 11, and III as the derivative 13. Further enlargement of 13 was demonstrated with the synthesis of 16 and 18.

a further group to add affinity. Furthermore, coupling to other oligosaccharide mimetics or clustering on an oligovalent scaffold is possible in order to obtain oligovalent oligosaccharide mimetics. This concept also implies the possibility to synthesize oligosaccharide analogues with mixed carbohydrate configurations as well as combinatorial applications.

As we have been especially interested in the development of mannose-containing glycoclusters for the inhibition of mannose-specific adhesion of Escherichia coli

^a Key: (a) Pd-C, H₂, (Boc)₂O, ethyl acetate, rt, 12 h, 91%; (b) NH₃–MeOH, 0 °C, 12 h, 94%; (c) TsCl, pyridine, 0 °C \rightarrow rt, 2 h, 68%; (d) NaN₃, DMF, 60 °C, 8 h, 78%; (e) Pd-C, H₂, MeOH, rt, 6 h, 80%; (f) methyl acrylate, MeOH, 0 °C \rightarrow rt, 15 h, 70%.

bacteria to their host cells,⁸ the concept outlined in Figure 1 was demonstrated on the basis of mannose as the principal sugar. Thus, building block I was realized as mannoside 7, II as the disaccharide analogue 11, and III as 14. Furthermore, enlargement of 14 to the tetrasaccharide analogue 16 was shown as well as its oligomerization to glycocluster 18, containing nine mannose moieties. The prepared glycoclusters will eventually be tested as inhibitors of mannose-specific bacterial adhesion.

Synthesis

The key steps in the synthetic route to the potentially trifunctional building block 7 starting with D-mannose are glycosidation, regioselective protection of the 6-position of the sugar ring, and controlled Michael-analogue addition reaction as the last step (Scheme 1). First, the Lewis acid-catalyzed mannosylation of 2-bromoethanol⁹ with peracetylated mannose followed by nucleophilic displacement of the bromo substituent in the aglycon part of the resulting mannoside with sodium azide gave rise to the known 2-azidoethyl mannoside derivative 1.¹⁰ Then, catalytic hydrogenation of the azide group in 1 succeeded in order to obtain the respective amine. This reaction was carried out in the presence of Boc₂O to avoid

^{(8) (}a) Kötter, S.; Krallmann-Wenzel, U.; Ehlers, S.; Lindhorst, Th. K. J. Chem. Soc., Perkin Trans. 1 1998, 2193-2200. (b) König, B.; Fricke, T.; Wassmann, A.; Krallmann-Wenzel, U.; Lindhorst, Th. K. Tetrahedron Lett. 1998, 39, 2307-2310.

⁽⁹⁾ Dahmen, J.; Frejd, T.; Grönberg, G.; Lave, T.; Magnusson, G.; Noori, G. *Carbohydr. Res.* 1983, *116*, 303–307.
(10) Chernyak, A. Y.; Sharma, G. V. M.; Kononov, L. O.; Radha Krishna, P.; Levinsky, A. B.; Kochetkov, N. K.; Ramarao, A. V. *Carbohydr. Res.* 1992, *223*, 303–309.

 $O \rightarrow N$ acetyl group migration and to achieve in situ protection of the resulting free amine in the same reaction vessel. This procedure furnished the acetylated N-Boc-protected mannoside 2 in 91% yield. For 2 an upfield shift of the protons adjacent to the NHBoc group (3.36 compared to 3.46 ppm for the azide 1) and a singlet for the Boc group at 1.46 ppm were observed in its ¹H NMR spectrum. Mannoside 2 was easily deacetylated to 3, which was regioselectively tosylated to the 6-activated glycoside 4. A nucleophilic substitution reaction using sodium azide afforded the 6-azido-6-deoxy-mannoside 5, which was reduced to the corresponding amine 6 by catalytic hydrogenation in 92% overall yield.

The exhaustive Michael-analogue addition of primary amines to methyl acrylate is known as one of two synthetic steps in the construction of PAMAM dendrimer generations.¹¹ While in this reaction an excess of methyl acrylate is used to obtain the bis-addition product, a stoichiometric amount of methyl acrylate allowed the conversion of the amine 6 into the mono-Michael adduct 7 in 70% yield. To avoid the formation of polymeric side products resulting from photochemical reactions of methyl acrylate, the reaction was carried out under the exclusion of light. The structure of 7 was easily confirmed by ¹H and ¹³C NMR spectroscopy, which displayed the signals for the methoxycarbonylethyl spacer as expected. The chemical shifts for singlets of methoxycarbonyl groups in ¹H NMR are normally obtained in the range of 3.6-4.0 ppm, and a corresponding chemical shift of 3.63 ppm was recorded for the methoxycarbonyl group of 7 when the ¹H NMR spectrum was recorded in acetone- d_6 . However, when **7** was dissolved in methanol- d_4 or D_2O_2 , respectively, the CH₃-singlet was observed at 3.33 ppm after 12 h at ambient temperature, whereas the chemical shifts of the other signals remained unchanged. NMR studies revealed that this change was due to ester hydrolysis of the methoxycarbonyl group by water, which was also present in the methanol- d_4 used. The observed singlet at 3.33 ppm corresponds to the CH₃ group of resulting methanol. In the ¹³C NMR spectrum of 7, two peaks were observed for the carbonyl carbon of the Boc group (at 158.9 and 158.8 ppm), thus revealing the presence of E,Z isomers that result from the partial double-bond character of the Boc C-N bond. As a result of this isomerism, broadening of the signal for the anomeric proton is observed in the ¹H NMR spectrum.

Mannoside 7 represents the desired building block of type I as suggested in Figure 1. It carries three potentially reactive functions, an unprotected secondary amine, a methyl ester that is cleavable under basic conditions, and a Boc-protected amine that can be liberated under mild acidic conditions, which leave the glycosidic bond intact. The secondary amino group in 7 can be functionalized by thiourea bridging¹² or peptide coupling, for example, and was addressed first (Scheme 2). Thus, 7 was reacted with acetylated mannosyl isothiocyanate 8,13 allowing the formation of the partially protected thiourea derivative 9. The formation of the thiourea bridge was confirmed by downfield shifts (in the range of 1 ppm) of the signals for both diastereotopic H-6 as well as the

^a Key: (a) CH₂Cl₂, rt, 6 h, 89%; (b) NH₃-MeOH, rt, 2 h, 91%; (c) LiOH·H₂O, MeOH-H₂O (2:1), 0 °C, 12 h, quant; (d) HATU, DIPEA, DMF, $rt \rightarrow 40$ °C, 12 h, 43%; (e) Me₂S-CF₃CO₂H (1:2), 0 °C, 4 h, quant; (f) HATU, DIPEA, DMF, rt \rightarrow 40 °C, 12 h, 71%.

NCH₂ protons in the ¹H NMR spectrum. Furthermore, the structure of 9 was confirmed by the appearance of a peak for the thiocarbonyl group (C=S) in the ¹³C NMR spectrum; MALDI-TOF analysis gave the expected peak $(m/z = 798.6 \text{ for } [M + H]^+)$. Compound **9** can be regarded as a disaccharide mimetic in which two monosaccharide units are connected by nonglycosidic linkages. Treatment of 9 under mild basic conditions afforded the OHunprotected methyl ester 10 in quantitative yield. Using an excess of lithium hydroxide in aqueous methanol led to concomitant hydrolysis of the acetates and the methyl ester providing the propanoic acid derivative 11. This was subjected to a peptide coupling reaction in order to prepare the trisaccharide mimetic of type III (Figure 1). Methyl 6-amino-6-deoxy- α -D-mannopyranoside (12)¹⁴ was used as the amino component and uronium salt HATU¹⁵ as coupling reagent. This reaction provided the desired glycopeptide mimetic 13, which was purified by two subsequent size-exclusion chromatography steps. First gel permeation chromatography (GPC) using Sephadex

⁽¹¹⁾ Meltzer, A. D.; Tirrell, D. A.; Jones, A. A.; Inglefield, P. T.; Hedstrand, D. M.; Tomalia, D. A. Macromolecules 1992, 25, 4541-4548

⁽¹²⁾ Lindhorst, Th. K.; Kieburg, C. Angew. Chem. 1996, 108, 2083-2086; Angew. Chem., Int. Ed. Engl. 1996, 35, 1953-1956.

⁽¹³⁾ Lindhorst, Th. K.; Kieburg, C. Synthesis **1995**, 1228–1230.

⁽¹⁴⁾ Wang, P.; Shen, G.-J.; Wang, Y.-F.; Ichikawa, Y.; Wong, C.-H. J. Org. Chem. **1993**, 58, 3985-3990.

⁽¹⁵⁾ Carpino, L. A. J. Am. Chem. Soc. 1993, 115, 4397–4398.

^{*a*} Key: (a) **14**, HATU, DIPEA, DMF, $rt \rightarrow 40$ °C, 12 h, 30%.

LH-20 and methanol as the eluent allowed the isolation of a mixture of **13** and **11**, which was separated from reagent impurities. Then GPC on Bio-Gel P-2 using 15mM NH₄HCO₃ buffer as the eluent was suited to separate **13** from **11** and furnished **13** in 43% yield and 35% recovered carboxylic acid **11**. The NMR spectra of **13** showed the expected signals of the additional monomeric mannoside unit with its methyl aglycone as a useful NMR reporter group. The MALDI-TOF spectrum showed the correct $[M + H]^+$ peak at m/z = 791.2.

The obtained trisaccharide mimetic **13** carries a Bocprotected amino group that was regarded as "function C" in Figure 1. According to the possibilities outlined in Figure 1, **13** can be modified in a variety of ways. Here, we demonstrate the functionalization of **13** with another mannose moiety leading to the tetrasaccharide mimetic **16** and, furthermore, the utilization of **13** as a molecular wedge leading to the trivalent conjugate **18** (Scheme 3).

To synthesize the tetrasaccharide mimetic **16**, **13** was subjected to Boc deprotection in an anhydrous mixture of trifluoroacetic acid and dimethyl sulfide (2:1)¹⁶ to yield the respective free amine **14**. In this reaction after concentration of the reaction mixture it was important to neutralize the last traces of TFA with aqueous ammonia in order to avoid trifluoroacetylation of the product

amine **14** in the next step. The amine **14** was then subjected to a peptide-coupling reaction using the mannouronic acid derivative **15**. Analogous reaction conditions as used previously for synthesis of compound **13** afforded the mannose cluster **16** in 70% yield. The anomeric hydrogen and carbon atoms resonated as distinct signals both in the ¹H as well as the ¹³C NMR spectrum. The MALDI-TOF mass spectrum showed $[M + H]^+$ at m/z =881.8.

For clustering of 14, trimesic acid (17) was used as a trivalent core (Scheme 3). Deprotection of 13 to 14, followed by HATU-mediated peptide-coupling reaction with 17, afforded the complex glycocluster 18 in 30% yield. Compound 18 resembles a trimeric derivative of the trisaccharide mimetic 14. Its purification was problematic and succeeded best when it was carried out using GPC on Bio-gel P-2 on a small scale. NMR spectra of 18 were very similar to those of 13 except for the missing signals for the Boc group and the appearance of those for the aromatic core moiety, which were detected as expected (8.34 ppm in ¹H NMR). A clean MALDI-TOF mass spectrum (m/z = 2227.8 for $[M + H]^+$) further confirmed the structure of 18.

Discussion and Conclusions

En route to the oligosaccharide mimetics **13**, **16**, and **18**, respectively, three peptide-coupling reactions were elaborated. Interestingly, the coupling step proceeded

⁽¹⁶⁾ Katano, K.; Aoyagi, H. A. Y.; Overhand, M.; Sucheck, S. J.; Stevens, W. C., Jr.; Hess, C. D.; Zhou, X.; Hecht, S. M. *J. Am. Chem. Soc.* **1998**, *120*, 11285–11296.

with yields around 70%, when **14** was used as the amine component. Consequently, cluster **18**, in which three peptide linkages had to be formed, was obtained in 30% overall yield. On the other hand, peptide coupling under the same conditions proceeded with modest yields when the carboxylic function of **11** was addressed as significant amounts of **11** did not react in this step. A possible reason for the limited reactivity of this system may be the formation of an intramolecular hydrogen bond between the carboxylic acid proton and the nitrogen atom resulting in a stable six-membered-ring arrangement.

For the structural characterization of the OH-unprotected compounds 9, 10, 13, 16, and 18 with molecular weights 797.8, 629.7, 790.8, 880.8, and 2228.7, respectively, extensive NMR-spectroscopic experiments were necessary. While some parts of their ¹H NMR spectra are rather poorly resolved, the anomeric protons of the contained sugar moieties are always separated from the other signals and can be used as immediate indicators for the success of the reaction. ¹³C NMR spectra of these compounds, on the other hand, were well resolved, and thus, together with 2D NMR experiments all hydrogen and carbon atoms of each derivative could be detected and all signals unequivocally assigned. The structures of all glycoclusters were confirmed by MALDI-TOF mass spectrometry, which was also an excellent and important tool for monitoring the reactions described herein.

On the basis of the presented building block system, a wide array of oligosaccharide mimetics is accessible without utilizing the notoriously difficult glycosylation chemistry. The suggested concept implies synthetic routes for biolabeling, combinatorial approaches, or synthesis of oligovalent neoglycoconjugates, for example. It is important to note that the orthogonal functional group pattern in 7 allows the successive attachment of very different (sugar) moieties including pharmacophores and the preparation of "mixed" glycoclusters, representing various three-dimensional ensembles of functional groups that are otherwise assembled by the oligosaccharide parts of complex glycoconjugates. This might be of relevance when bacterial adhesion of wild-type strains has to be inhibited, which normally carry pili of different specificities. We will explore the presented concept to optimize ligand structures for various lectins and adhesion systems.

Experimental Section

General Methods and Materials. TLC as well as flash chromatography were performed on silica gel, and detection was carried out by charring with 20% ethanolic sulfuric acid solution containing 5% of α -naphthol and under UV light when applicable. For size-exclusion chromatography, Sephadex LH-20 was used with methanol as the eluent and Biogel P-2 with 15 mM aqueous NH_4HCO_3 buffer (pH = 7.8-8.0) as the eluent. Organic solutions were concentrated using a rotary evaporator at bath temperatures <45 °C. Aqueous solutions were concentrated by lyophilization. ¹H and ¹³C NMR spectra were recorded at 298 K at 400 MHz (for ¹H, 100.67 MHz for ¹³C NMR) or 500 MHz (for ¹H, 125.84 MHz for ¹³C NMR). Chemical shifts are given in ppm relative to internal TMS (0.00 ppm for ¹H and ¹³C NMR), and when the samples were measured in D₂O the spectra were calibrated referring to internal HOD (4.63 ppm for ¹H NMR) and in the case of ¹³C NMR to MeOH d_4 (49.30 ppm for ¹³C NMR) which was added to the solution. J values are given in Hz. Two-dimensional $^{1}H^{-1}H$ and $^{1}H^{-1}$ ¹³C COSY (HMQC) experiments were performed for complete signal assignments wherever necessary. Melting points are

uncorrected. For MALDI-TOF measurements the samples were prepared as solutions in TFA–acetonitrile–water, 0.1: 2:1, with a concentration of 1 mg of compound in 1 mL of solution. Dihydroxybenzoic acid (DHB) was used as the matrix for the crystallization of compounds **9**, **11**, **13**, **16**, and **18**. The mass peaks obtained with these samples were calibrated in reference to the [M + H]⁺ peaks of angiotensin II (1046.54), angiotensin I (1296.69), bombesin (1619.82), and to the [2M + H]⁺ peak of α -cyano-4-hydroxycinamic acid (380.02). Optical rotations were recorded at the Na D line, 589 nm, 20 °C, cell length 10 cm. Elemental analyses were carried out in the microanalytical laboratory of the Institut für Organische Chemie der Universität Hamburg. Methyl α -D-mannopyranuronic acid **15** was synthesized from methyl α -D-mannopyranoside according to a literature procedure.¹⁷

2-tert-Butyloxycarbonylamidoethyl 2,3,4,6-Tetra-Oacetyl-α-D-mannopyranoside (2). A suspension of the azide 1 (7.10 g, 17.02 mmol), activated Pd catalyst (10% on charcoal, 100 mg), and di-tert-butyl dicarbonate (5.57 g, 25.53 mmol) in ethyl acetate (50 mL) was hydrogenated under atmospheric pressure for 6 h at rt. Then the reaction mixture was filtered through a thin Celite bed, and the filtrate was concentrated. The crude product was purified by flash chromatography (ethyl acetate-petroleum ether, 1:2) to afford the Boc-protected mannoside **2** in the form of a white solid (7.60 g, 15.47 mmol, 91%): $[\alpha]_D = +36^\circ$ (*c* = 1.10 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.33 (dd, $J_{3,4} = 9.7$ Hz, 1H, H-3), 5.28 (dd, $J_{4,5} = 9.2$ Hz, 1H, H-4), 5.26 (dd, J_{2,3} =3.1 Hz, 1H, H-2), 4.93 (s, 1H, NH), 4.83 (d, $J_{1,2} = 1.5$ Hz, 1H, H-1), 4.28 (dd, $J_{6a,6b} = 12.2$ Hz, 1H, H-6a), 4.10 (dd, $J_{6a,6b} = 12.2$, $J_{5,6b} = 5.1$ Hz, 1H, H-6b), 3.98 (ddd, $J_{5,6} = 2.5$, $J_{5,6b} = 5.1$ Hz, 1H, H-5), 3.76 (ddd, 1H, OCH_a), 3.54 (ddd, 1H, OCH_b), 3.36 (m_c, 2H, CH₂N), 2.18, 2.12, 2.05, 2.01 (each s, each 3H, 4 COCH₃), 1.46 (s, 9H, t-Bu); ¹³C NMR (100.67 MHz, CDCl₃) δ 172.7, 172.0, 171.9, 171.8 (4) COCH₃), 158.8 (BocCO), 99.3 (C-1), 80.6 (C(CH₃)₃), 71.2 (C-2), 71.1 (C-3), 70.3 (C-5), 68.6 (OCH2), 67.7 (C-4), 63.9 (C-6), 41.4 (CH₂N), 29.2 (C(CH₃)₃), 21.1, 21.07, 21.02 (4 COCH₃). Anal. Calcd for C₂₁H₃₃NO₁₂ (491.49): C, 51.32; H, 6.77; N, 2.85. Found: C, 51.30; H, 6.84; N, 2.83.

2-tert-Butyloxycarbonylamidoethyl α-D-mannopyranoside (3). To a solution of the tetraacetylated mannoside 2 (7.60 g, 15.47 mmol) in methanol (50 mL), was added saturated NH₃-MeOH (10 mL) at 0 °C and the reaction mixture was stirred at 0 °C for 2 h. Then it was concentrated and the crude product was purified by flash chromatography (MeOH-CH₂Cl₂, 1:10) to yield **3** in the form of a white solid (4.67 g, 14.45 mmol, 94%): $[\alpha]_D = +60^\circ$ (c = 1.21 in MeOH); ¹H NMR (400 MHz, [D₄]-MeOH): $\delta = 4.76$ (d, $J_{1,2} = 1.5$ Hz, ${}^{1}J_{C1,H1} =$ 168.5, 1H, H-1), 3.82 (dd, $J_{6a,5} = 2.6$ Hz, 1H, H-6a), 3.81 (dd, $J_{2,3} = 3.1$ Hz, 1H, H-2), 3.75 - 3.68 (m, 2H, H-6b, OCH_a), 3.69(dd, $J_{3,4} = 9.7$ Hz, 1H, H-3), 3.61 (dd, $J_{4,3} = 9.7$ Hz, 1H, H-4), 3.56-3.44 (m, 2H, H-5, OCH_b), 3.24 (m_c, 2H, NCH₂), 1.44 (s, 9H, t-Bu); ¹³C NMR (100.62 MHz, [D₄]-MeOH): $\delta = 158.3$ (BocCO), 101.7 (C-1), 80.1 (C(CH₃)₃), 74.7 (C-5), 72.5 (C-3), 72.1 (C-2), 68.6 (C-4), 67.6 (OCH2), 62.9 (C-6), 41.2 (CH2N), 28.8 (C(CH₃)₃). Anal. Calcd for $C_{13}H_{25}NO_8 \times 1H_2O$ (341.36): C, 45.74; H, 7.97; N, 4.10. Found: C, 45.68; H, 7.74; N, 3.89.

2-*tert*-**Butyloxycarbonylamidoethyl 6**-*O*-(**toluene-4sulfonyl**)- α -**D**-**mannopyranoside (4).** To a solution of the *O*-unprotected mannoside **3** (4.67 g, 14.45 mmol) in pyridine (20 mL) was added tosyl chloride (4.13 g, 21.68 mmol) at 0 °C under argon atmosphere. Then the reaction mixture was allowed to attain rt and was further stirred for 2 h. The reaction was quenched with MeOH at 0 °C and the solvent was removed. The crude product so obtained was purified by flash chromatography (CH₂Cl₂-MeOH, 10:1) to give the 6-*O*tosylated derivative **4** (4.60 g, 9.64 mmol, 68%) as a white solid: [α]_D = +36° (*c* = 1.96 in MeOH); ¹H NMR (400 MHz, [D₄]-MeOH): δ = 7.80 (d, *J* = 8.1 Hz, 2H, aryl-H), 7.40 (d, *J* = 8.1 Hz, 2H, aryl-H), 4.66 (s, 1H, H-1), 4.32 (dd, *J*_{5,6,6} = 1.5, *J*_{6a,6b} = 10.7 Hz, 1H, H-6b), 4.17 (dd, *J*_{6a,6b} = 10.7 Hz, 1H,

⁽¹⁷⁾ Davis, N. J.; Flitsch, S. L. Tetrahedron Lett. 1993, 34, 1181–1184.

H-6a), 3.78 (dd, $J_{2,3} = 3.1$ Hz, 1H, H-2), 3.66 (m_c, $J_{5,6a} = 6.6$, $J_{5,6b} = 1.5$ Hz, 1H, H-5), 3.64 (dd, $J_{3,4} = 9.7$ Hz, 1H, H-3), 3.6 (m_c, 1H, OCH_a), 3.52 (dd, 1H, H-4), 3.4(m_c, 1H, OCH_b), 3.2 (m_c, 2H, CH₂N), 2.45 (s, 3H, TsCH₃), 1.43 (s, 9H, *t*-Bu); ¹³C NMR (100.62 MHz, [D₄]-MeOH): $\delta = 158.1$ (BocCO), 146.84 (aryl-C_q), 134.81 (aryl-C_q), 131.4 (aryl-CH), 131.2 (aryl-CH), 129.6 (2 aryl-CH), 102.1 (C-1), 80.1 (*C*(CH₃)₃), 72.8 (C-5), 72.6 (C-3), 72.2 (C-2), 71.7 (C-6), 68.5 (C-4), 68.1 (OCH₂), 41.5 (CH₂N), 29.2 (C(*C*H₃)₃, 22.0 (TsCH₃). Anal. Calcd for C₂₀H₃₁NO₁₀S × 1H₂O (495.54): C, 48.48; H, 6.71; N, 2.83, S, 6.47. Found: C, 48.82; H, 6.51; N, 3.22, S, 6.34.

2-tert-Butyloxycarbonylamidoethyl 6-azido-6-deoxy- α -**D**-mannopyranoside (5). A suspension of the tosylated mannoside 4 (4.60 g, 9.64 mmol), NaN₃ (1.90 g, 29.22 mmol) and a catalytic amount of tetra-*n*-butylammonium iodide (100 mg) in dry DMF (25 mL) was stirred at 60 °C for 8 h. After completion of the reaction (monitored by TLC with CH₂Cl₂-MeOH, 10:1) DMF was removed under high vacuum and the residual solid was dissolved in ethyl acetate and filtered through a thin Celite bed to remove the excess of NaN₃ from the product mixture. Then the solvent was removed and the crude product was purified by flash chromatography (CH₂Cl₂-MeOH, 10:1) to yield the azide 5 (2.60 g, 7.47 mmol, 78%) as a colorless syrup: $[\alpha]_D = +29^\circ$ (c = 4.43 in MeOH); ¹H NMR (400 MHz, $[D_4]$ -MeOH): $\delta = 4.77$ (s, 1H, H-1), 3.82 (dd, $J_{2,1} =$ 1.5, J_{2.3} = 3.1 Hz, 1H, H-2), 3.74 (m_c, 1H, OCH_b), 3.68 (dd, J_{3.4} = 9.2 Hz, 1H, H-3), 3.66 (m_c, 1H, H-5), 3.57 (dd, 1H, H-4), 3.43 (dd, $J_{6a,5} = 6.6$, $J_{6a,6b} = 13.2$ Hz, 1H, H-6a), 3.43 - 3.53 (m, $J_{6a,6b}$ = 13.2 Hz, 2H, H-6b, OCH_a), 3.24 (m_c, 2H, CH₂N), 1.45 (s, 9H, t-Bu); ^{13}C NMR (100.62 MHz, [D₄]-MeOH): δ = 158.9 (BocCO), 102.2 (C-1), 80.6 (C(CH₃)₃), 74.3 (C-5), 72.7 (C-3), 72.4 (C-2), 69.8 (C-4), 68.2 (OCH2), 53.3 (C-6), 41.6 (CH2N), 29.2 (C(CH3)3). Anal. Calcd for $C_{13}H_{24}N_4O_7 \times 1H_2O$ (366.1): C, 42.61; H, 7.10. Found: C, 42.82; H, 6.98.

2-tert-Butyloxycarbonylamidoethyl 6-amino-6-deoxy- α -**D**-mannopyranoside (6). To a solution of the azide 5 (2.60 g, 7.47 mmol) in MeOH (20 mL) was added activated Pdcatalyst (10% on charcoal, 50 mg), and the reaction mixture was hydrogenated under atmospheric pressure for 6 h at rt. Then it was filtered through a thin Celite bed and the filtrate was concentrated. The crude product was purified by flash chromatography (MeOH-CH2Cl2, 1:1) to give 6 (1.93 g, 5.99 mmol, 80%) as a white solid: $[\alpha]_{D} = +45^{\circ} (c = 0.80 \text{ in MeOH});$ ¹H NMR (400 MHz, [D₄]-MeOH): $\delta = 4.74$ (s, 1H, H-1), 3.8 (s, 1H, H-2), 3.6-3.8 (m, 2H, OCH_b, H-3), 3.55-3.4 (m, 2H, OCH_a, H-5), 3.5 (dd, 1H, H-4), 3.3 (d, 1H, H-6b), 3.22 (m_c, 2H, CH₂N), 2.8 (m_c, 1H, H-6a), 1.5 (s, 9H, t-Bu); ¹³C NMR (100.62 MHz, [D₄]-MeOH): $\delta = 158.4$ (BocCO), 101.6 (C-1), 79.1 (*C*(CH₃)₃), 74.3 (C-5), 72.3 (C-3), 72.0 (C-2), 69.8 (C-4), 67.3 (OCH₂), 43.5 (C-6), 41.2 (CH₂N), 28.7 (C(CH₃)₃). A correct elemental analysis for C13H26N2O7 (322.36) was not obtained.

2-tert-Butyloxycarbonylamidoethyl 6-deoxy-6-[N-(2methoxycarbonylethyl)amino]-α-D-mannopyranoside (7). To a solution of the amino-functionalized mannoside 6 (1.93 g, 5.99 mmol) in dry MeOH (8 mL) was added freshly distilled methyl acrylate (0.54 mL, 5.99 mmol) at 0 °C under argon atmosphere and the reaction mixture was stirred in the dark for 15 h at rt. Then it was concentrated and the residue was purified by flash chromatography (CH₂Cl₂-MeOH, 1:1) to afford the Michael-adduct 7 (1.70 g, 4.16 mmol, 70%) as a white solid: $[\alpha]_D = +35^\circ$ (*c* = 1.50 in MeOH); ¹H NMR (400 MHz, [D₄]-MeOH): $\delta = 4.74$ (s, 1H, H-1), 3.80 (s, 1H, H-2), 3.76-3.6 (m, 3H, H-5, OCH_a, H-3), 3.68 (s, 3H, CO₂CH₃), 3.53-3.43 (m, 2H, H-4, OCH_b), 3.34-3.15 (m, 2H, CH₂NHBoc), 2.98 (dd, 1H, H-6a), 2.90 (mc, 2H, NCH2), 2.76 (dd, 1H, H-6b), 2.57 (mc, 2H, CH₂CO), 1.43 (s, 9H, *t*-Bu); ¹³C NMR (100.62 MHz, [D₄]-MeOH): $\delta = 174.9$ (CO₂CH₃), 158.9 (BocCO), 102.1 (C-1), 80.5 (C(CH₃)₃), 72.8 (C-3), 72.5 (C-5), 72.4 (C-2), 71.2 (C-4), 68.0 (OCH2), 52.6 (CO2CH3), 52.2 (C-6), 46.3 (NCH2), 41.6 (CH2-NBoc), 35.0 (CH₂CO), 29.26 (C(CH₃)₃). Anal. Calcd for $C_{17}H_{32}N_2O_9 \cdot x \ 1H_2O \ (426.46)$: C, 47.88; H, 8.04; N, 6.57. Found: C, 48.34; H, 7.91; N, 6.17.

2-*tert*-Butyloxycarbonylamidoethyl 6-deoxy-6-*N*-[(2',3', 4',6'-tetra-*O*-acetyl-α-D-mannopyranosyl)thiocarbamoyl]-*N*-[2-(methoxycarbonyl)ethyl]amino-α-D-mannopyrano-

side (9). Mannoside 7 (1.10 g, 2.69 mmol) and the mannosyl isothiocyanate derivative 8 (1.15 g, 2.96 mmol) were dissolved in dry CH₂Cl₂ (10 mL) and stirred at rt for 12 h. When the reaction was complete (monitored by TLC with MeOH- CH_2Cl_2 , 1:9) it was concentrated and the crude product was purified by flash chromatography (MeOH-CH₂Cl₂, 1:9) to give the thiourea-bridged disaccharide mimetic 9 as a white solid (1.90 g, 2.38 mmol, 89%): $[\alpha]_{\rm D}=+7^\circ$ (c=1.30 in MeOH); $^1{\rm H}$ NMR (500 MHz, [D₄]-MeOH): $\delta = 6.20$ (d, $J_{I',Z} = 1.9$ Hz, 1H, H-1'), 5.36–5.25 (m, 3H, H-2', H-4', H-3'), 5.02 (s, 1H, H-1), 4.35 (dd, $J_{6,5} = 4.1$, $J_{6a',6b'} = 12.0$ Hz, 1H, H-6a'), 4.3-4.0 (m, $J_{6',5'} = 4.1, J_{6a',6b'} = 12.0$ Hz, 4H, H-5', H-6b', NCH₂), 3.96-3.85 (m, 3H, H-5, H-6a, H-6b), 3.83 (dd, $J_{1,2} = 1.6$, $J_{2,3} = 2.8$ Hz, 1H, H-2), 3.73 (dd, $J_{3,4} = 9.2$ Hz, 1H, H-3), 3.68 (s, 3H, CO₂CH₃), 3.66 (m_c, 1H, OCH_a), 3.60–3.50 (m, 2H, H-4, OCH_b), 3.23 (m_c, 2H, CH₂NHBoc), 2.90 (t, 2H, CH₂CO), 1.90, 2.00, 2.10, 2.20 (each s, each 3H, 4 COCH₃), 1.44 (s, 9H, t-Bu); ¹³C NMR (125.84 MHz, $[D_4]$ -MeOH): $\delta = 186.0$ (C=S), 172.9, 172.1, 171.9, 171.7 (4 COCH₃, CO₂CH₃), 158.8 (BocCO), 102.5 (C-1), 82.9 (C(CH₃)₃), 80.6 (C-1'), 72.7 (C-3), 72.1 (C-2, C-5), 71.5 (C-5'), 71.4 (C-3'), 71.1 (C-2'), 69.4 (C-4), 68.5 (OCH2), 67.9 (C-4'), 63.7 (C-6'), 53.43 (NCH₂), 52.7 (CO₂CH₃), 51.5 (C-6), 41.5 (CH₂NHBoc), 32.8 (CH₂CO), 29.2 (C(CH₃)₃), 21.16 (4 COCH₃); MALDI-TOF MS: $m/z = 798.6 [M+H]^+$, 820.7 $[M+Na]^+$ and 836.6 [M+K]⁺ observed for C₃₂H₅₁N₃O₁₈S (797.28). Anal. Calcd for C₃₂H₅₁N₃O₁₈S x 1H₂O (815.84): C, 47.11; H, 6.55; N, 5.15; S, 3.93. Found: C, 47.19; H, 6.46; N, 5.09; S, 4.14.

2-tert-Butyloxycarbonylamidoethyl 6-deoxy-6-N-[(α-Dmannopyranosyl)thiocarbamoyl]-N-[2-(methoxycarbonyl)ethyl]amino-α-D-mannopyranoside (10). A solution of compound 9 (0.142 g, 0.178 mmol) in MeOH (2 mL) was treated with saturated NH₃-MeOH solution (2 mL) at 0 °C for 2 h. Then the solvent was evaporated and the crude product was purified by flash chromatography (MeOH-CH₂Cl₂, 1:1) providing **10** (0.102 g, 0.161 mmol, 91%) as a light yellow solid, which showed hygroscopic properties: $[\alpha]_D = -41^\circ$ (c = 0.97 in H₂O); ¹H NMR (500 MHz, $\hat{D}_2 \hat{O}$): $\delta = 5.97$ (d, $J_{I,Z} = 1.9$ Hz, 1H, H-1'), 4.85 (bs, 1H, H-1), 4.18 (m_c , 1H, NCH_a), 4.0 (m_c , 1H, NCH_b), 3.96-3.91 (m, 2H, H-2, H-2'), 3.81-3.73 (m, $J_{5.6a} = 4.1$ Hz, $J_{5',6a'} = 2.5$ Hz, $J_{6a',6b'} = 13.6$ Hz, 4H, H-6a, H-6b, H-6a', H-6b'), 3.74 (m_c, 1H, H-5), 3.71-3.67 (m, 2H, H-3', H-3), 3.66 (s, 3H, CO2CH3), 3.58-3.45 (m, 4H, OCH2, H-4', H-4), 3.41 (mc, 1H, H-5'), 3.23 (m_c, 2H, CH₂NHBoc), 2.83 (m_c, 2H, CH₂CO), 1.39 (s, 9H, *t*-Bu); ¹³C NMR (125 MHz, D₂O): δ = 183.2 (C=S), 174.9 (CO2CH3), 158.4 (BocCO), 100.5 (C-1), 83.5 (C'-1), 81.3 (C(CH₃)₃), 77.9 (C'-5), 74.5 (C'-4, C-4), 71.3 (C-5), 70.3, 70.2 $(C'-2, C-2), 67.4 (OCH_2), 67.2 (C-3, C'-3), 61.2 (C'-6), 52.8$ (CO2CH3), 52.0 (C-6), 49.7 (NCH2), 39.9 (CH2NHBoc), 32.1 (CH_2CO) , 28.1 (C $(CH_3)_3$); MALDI-TOF MS m/z = 630.8 [M + $[H]^+$, 652.8 $[M + Na]^+$ and 668.8 $[M + K]^+$ obsd for $C_{24}H_{43}N_3O_{14}S_{14}$ (629.24). Anal. Calcd for C₂₄H₄₃N₃O₁₄S·1H₂O (647.69): C, 44.51; H, 7.00; N, 6.49; S, 4.95. Found: C, 44.3; H, 6.94; N, 6.63; S, 5.00.

2-tert-Butyloxycarbonylamidoethyl 6-Deoxy-6-N-[(a-Dmannopyranosyl)thiocarbamoyl]-N-[2-[(6"-deoxy-1"-Omethyl-a-d-mannopyranos-6"-yl)carbamoyl]ethyl]aminoα-**D**-mannopyranoside (13). The thiourea derivative 9 (500 mg, 0.627 mmol) was dissolved in MeOH-H₂O (1:2; 5 mL) and treated with LiOH·1H₂O (131.6 mg, 3.135 mmol) at 0 °C for 12 h. Then the pH of the basic reaction mixture was neutralized at 0 °C to a value of 6 by the careful addition of 2 N HCl solution. The clear solution that was obtained was freeze-dried to afford the crude carboxylic acid 11 as a white solid (385 mg), which was subjected to peptide coupling without purification. It was dissolved in dry DMF (10 mL), and the 6-aminomodified methyl mannoside 12 (144 mg, 0.751 mmol), HATU (285 mg, 0.751 mmol), and Hünig's base (DIPEA, 0.22 mL, 1.25 mmol) were added at rt under argon atmosphere. The reaction mixture was stirred at 40 °C for 12 h, and then DMF was removed in vacuo. The resulting crude product was a pale yellow syrup that was subjected to gel permeation chromatography on Biogel P-2. This afforded the title compound 13 (215 mg, 0.272 mmol, 43%) with 145 mg (0.235 mmol, 37%) of the intermediate acid 11 being recovered in pure form. Product 13 was obtained as a white lyophilisate that showed hygro-

scopic properties: $[\alpha]_{D} = -30^{\circ} (c = 1.15 \text{ in } H_{2}\text{O}); {}^{1}\text{H NMR}$ (500 MHz, D_2O) δ 5.5 (bs, 1H, H-1'), 4.86 (bs, 1H, H-1), 4.68 (d, $J_{1'',2''} = 1.6$ Hz, 1H, H-1''), 4.2 (bs, 1H, NCH_a), 3.93 (bs, 1H, H-2'), 3.90 (bs, 1H, NCH_b), 3.88 (bs, 1H, H-2), 3.87 (dd, J_{2".3"} = 3.2 Hz, 1H, H-2"), 3.83 (bs, 1H, H-6a'), 3.76-3.70 (m, 3H, H-6a, H-3, H-6b), 3.70-3.64 (m, 4H, H-5, H-3", H-3', H-6b'), 3.61 (d, 1H, H-6a"), 3.60-3.45 (m, 6H, H-4", OCH_a, H-4, H-4', H-5", OCH_b), 3.40 (m_c, $J_{5',6a'}$ = 3.8, $J_{5',6b'}$ = 6.0, $J_{4',5'}$ = 9.8 Hz, 1H, H-5'), 3.35 (m_c, 1H, H-6b"), 3.33 (s, 3H, OCH₃), 3.20 (m_c, 2H, CH₂NHBoc), 2.72 (m_c, 2H, CH₂CO), 1.4 (s, 9H, t-Bu); ¹³C NMR (125.84 MHz, D₂O, MeOH-d₄) δ 183.5 (C=S), 174.5 (CONH), 158.8 (BocCO), 101.57 (C-1"), 100.32 (C-1), 83.87 (C-1'), 81.65 (C(CH₃)₃), 78.23 (C-5'), 74.18 (C-3'), 71.4 (C-2'), 71.37 (C-4"), 71.1 (C-5, C-3"), 70.66 (C-3), 70.59 (C-2, C-2"), 68.82 (C-4', C-5''), 68.3 (C-4), 67.73 (OCH₂), 61.95 (C-6'), 55.44 (OCH₃), 52.29 (C-6), 51.3 (NCH₂), 40.82 (C-6"), 40.29 (CH₂-NHBoc), 34.22 (CH2CO), 28.47 (C(CH3)3); MALDI-TOF MS m/z = 791.2 $[M + H]^+$, 813.2 $[M + Na]^+$ and 829.2 $[M + K]^+$ observed for C₃₀H₅₄N₄O₁₈S (790.31). Anal. Calcd for C₃₀H₅₄-N4O18S·2H2O (826.87): C, 43.58; H, 7.07; N, 6.78; S, 3.88. Found: C, 43.25; H, 7.14; N, 6.90; S, 3.98.

2-Aminoethyl 6-Deoxy-6-*N*-[(α -D-mannopyranosyl)thiocarbamoyl]-*N*-[2-[(α "-deoxy-1"-*O*-methyl- α -D-mannopyranos-6"-yl)carbamoyl]ethyl]amino- α -D-mannopyranoside (14). The Boc-protected trisaccharide mimetic 13 (120 mg, 0.151 mmol) was dissolved in a freshly prepared solution of Me₂S-CF₃CO₂H (1:2; 2 mL) at 0 °C and stirred at 0 °C for 3 h. Then the reaction mixture was concentrated. Traces of trifluoroacetic acid which were left in the reaction mixture were carefully neutralized at 0 °C with saturated NH₃-H₂O solution (5 mL). Then lyophilization of the mixture afforded crude amine 14 (104 mg, quant) as a pale yellow solid, which was used for the synthesis of 16 and 18 without purification.

2-[(6^m-Deoxy-1^m-O-methyl-α-D-mannopyranos-6^m-yl)carbamoyl]ethyl 6-Deoxy-6-*N*-[(α-D-mannopyranosyl)thiocarbamoyl]-N-[2-[(6"-deoxy-1"-O-methyl-α-D-mannopyranos-6"-yl)carbamoyl]ethyl]amino-α-D-mannopyranoside (16). The amine 14 (32 mg, 0.0463 mmol), the mannouronic acid derivative 15 (18 mg, 0.086 mmol), HATU (34.35 mg, 0.090 mmol), and Hünig's base (DIPEA, 0.025 mL, 0.15 mmol) were dissolved in dry DMF (5 mL) at rt under argon atmosphere and stirred at 40 °C for 12 h. Then the reaction mixture was concentrated, and the resulting pale yellow syrup was subjected to gel permeation chromatography on Bio-gel P-2 to afford 16 (29 mg, 0.032 mmol, 71%) as a white lyophilisate that showed hygroscopic properties: $[\alpha]_D = -3^\circ$ (*c* = 1.23 in H₂O); ¹H NMR (500 MHz, $\hat{D}_2\hat{O}$) δ 5.51 (bs, 1H, H-1'), 4.87 (bs, 1H, H-1), 4.77 (s, 1H, H-1"), 4.68 (s, 1H, H-1"), 4.16 (bs, 1H, NCHa), 4.5-3.8 (m, 7H, NCHb, H-5", H-2', H-2, H-2" H-2", H-6a'), 3.8-3.64 (m, 9H, H-6a, H-3, H-4", H-6b, H-3", H-6b', H-5, H-3", H-3'), 3.64-3.42 (m, 8H, H-6b", OCH_a, H-4" OCH_b, H-4', H-4, H-5", CH_bN), 3.42-3.32 (m, 3H, H-5', H-6a", CH_aN), 3.36, 3.32 (2s, 6H, 2 OCH₃), 2.72 (m, 2H, CH₂CO); ¹³C NMR (125.84 MHz, D₂O) δ 183.43 (C=S), 174.39 (CONH), 171.77 (NHCO), 101.78 (C-1"), 101.26 (C-1"), 100.03 (C-1), 83.57 (C-1'), 77.93 (C-5'), 73.85 (C-3''), 72.56 (C-5''', C-2'), 71.06 (C-4''), 70.78 (C-5), 70.76 (C-3'), 70.55(C-3''), 70.28 (C-2), 70.26 (C-2''), 70.04 (C-2'''), 68.74 (C-3, C-4'''), 68.48 (C-5'', C-4), 67.02 (C-4'), 66.26 (OCH₂), 61.57 (C-6'), 55.63, 55.11 (2 OCH₃), 52.01 (C-6), 50.92 (NCH₂), 40.47 (C-6''), 39.14 (CH₂N), 33.89 (*C*H₂-CO); MALDI-TOF MS *m*/*z* 881.8 [M + H]⁺, 903.2 [M + Na]⁺, 919.2 [M + K]⁺ obsd for $C_{32}H_{56}N_4O_{22}S$ (880.31). A correct elemental analysis for $C_{32}H_{56}N_4O_{22}S$ (880.87) was not obtained.

1,3,5-[Tris-N-[2-(6-deoxy-6-N-[(α-D-mannopyranosyl)thiocarbamoyl]-N-[2-((6"-deoxy-1"-O-methyl-α-D-mannopyranos-6"-yl)carbamoyl)ethyl]amino-α-D-mannopyranosyloxyethyl]]benzenetriamide (18). The amino-functionalized trisaccharide mimetic 14 (8.10 mg, 0.0117 mmol), trimesic acid 17 (1.70 mg, 0.008 mmol), HATU (15.30 mg, 0.04 mmol), and Hünig's base (DIPEA, 8 μ L, 0.048 mmol) were dissolved in dry DMF (3 mL) at rt under argon atmosphere. The reaction mixture was stirred at 40 °C for 12 h and then concentrated to dryness. The resulting crude product was a pale yellow syrup that was subjected to gel permeation chromatography on Bio-gel P-2 to afford the title cluster 18 (7.80 mg, 0.0035 mmol, 30%) as a white lyophilisate that showed hygroscopic properties: $[\alpha]_D = -9^\circ$ (c = 0.8 in H₂O); ¹H NMR (500 MHz, D_2O) δ 8.34 (s, 3H, 3 aryl-H), 5.48 (bs, 3H, 3 H-1'), 4.9 (bs, 3H, 3 H-1), 4.67 (s, 3H, 3 H-1"), 3.95 (bs, 3H, 3 H-2), 3.90-3.82 (m, 12H, 3 NCH_a, 3 H-2", 3 H-6a', 3 H-2'), 3.82-3.70 (m, 6H, 3 H-3, 3 OCHa), 3.72-3.60 (m, 27H, 3 OCH_b, 3 CH_aNHCO, 3 H-6b, 3 H-6b', 3 H-3', 3 H-5, 3 H-3" 3 H-6a, 3 CH_bNHCO), 3.60-3.45 (m, 18H, 3 H-6a", 3 NCH_b, 3 H-5", 3 H-4", 3 H-4', 3 H-4), 3.45-3.36 (m, 3H, 3 H-5'), 3.36-3.3 (m, 3H, 3 H-6b"), 3.3 (s, 9H, 3 OCH₃), 2.67-2.47 (m, 6H, 3 CH₂CO); ¹³C NMR (125.84 MHz, D₂O): $\delta = 183.40$ (3 C=S), 175.94 (3 aryl-CONH), 174.24 (3 NHCO), 129.75 (3 aryl-C), 101.22 (3 C-1"), 100.00 (3 C-1), 83.51 (3 C-1), 77.92 (3 C-5"), 73.81 (3 C-3", 3 C-5), 71.01 (3 C-5", 3 C-4"), 70.98 (3 C-3"), 70.76 (3 C-3), 70.33 (3 C-2"), 70.26 (3 C-2, 3 C-2"), 68.45 (3 C-4', 3 C-4), 67.07 (3 OCH₂), 61.82 (3 C-6'), 55.07 (3 OCH₃), 52.36 (3 C-6), 51.4 (3 NCH₂), 40.43 (3 C-6"), 40.1 (3 CH₂NH), 33.78 (3 CH₂CO); MALDI-TOF MS m/z 2227.8 [M + H]⁺, 2250.0 $[M + Na]^+$, 2265.9 $[M + K]^+$, obsd for $C_{84}H_{138}N_{12}O_{51}S_3$ (2226.77). A correct elemental analysis for C₈₄H₁₃₈N₁₂O₅₁S₃ (2228.25) was not obtained.

Acknowledgment. This work was made possible through the support of the Deutsche Forschungsgemeinschaft DFG (SFB 470), the VW Foundation, and the Karl-Ziegler-Stiftung. We are indebted to Dr. V. Sinnwell (Hamburg) and Dr. C. Wolff (Kiel) for NMR experiments and to Dipl.-Chem. M. Dubber for MALDI-TOF measurements.

Abbreviations used: HATU, *O*-(7-azabenzotriazol1-y1)-N, N, N', N'-tetramethyluroniumhexafluorophosphate; DIPEA, diisopropylethylamine.

JO005671U