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a b s t r a c t

Treatment of a range of trisubstituted b,c-unsaturated esters with 2 equiv of (�)-mono-
isopinocampheylborane results in hydroboration of their alkene functionalities and reduction of their
ester groups to afford chiral 1,3-diols containing two new vicinal b,c-(anti)-stereocentres in 67–85%
enantiomeric excess.

� 2012 Elsevier Ltd. All rights reserved.
The development of ‘one-pot’ protocols that enable reagents or
catalysts to be used to transform two different functional groups in
the same substrate represents an atom-efficient strategy. Borane
reagents have been widely used to hydroborate substituted al-
kenes with good levels of regiocontrol, which upon oxidative
work-up afford primary or secondary alcohols in good yields.1 They
may also be used to reduce the carbonyl functionalities of ester,
aldehyde and ketone groups to afford primary and secondary alco-
hols, respectively.2 Molander and Bobbitt have previously reported
that treatment of a range of allyl-ketones with dii-
sopinocampheylborane ((�)-Ipc)2BH) 2 results in tandem hydrob-
oration/reduction reactions to afford enantiomerically enriched
chiral 1,4-diols.3 For example, treatment of allyl-ketone 1 with
1.5 equiv of (�)-Ipc)2BH 2 gave 1,4-diol 5 containing one new ste-
reocentre in 88% enantiomeric excess (ee) (Scheme 1).3 In this case,
hydroboration of the allyl group of 1 results in a trialkylborane
intermediate 3 that then undergoes stereoselective intramolecular
reduction of its ketone group (with elimination of (+)-a-pinene) to
afford a cyclic borinate ester 4 that on oxidative work-up affords
1,4-diol 5 (Scheme 1).

A review of the literature revealed that Martin and co-workers
had reported that treatment of cyclic b,c-unsaturated ester 6 with
excess BH3 resulted in tandem alkene hydroboration/ester reduction
to afford diol 7 in a 6:1 diastereomeric ratio (dr) (Scheme 2, Eq. i).4

Furthermore, Brown and coworkers had shown that hydroboration
of trisubstituted arylalkene 8 with monoisopinocampheylborane
ll rights reserved.
((�)-IpcBH2) 9,5 followed by oxidative work-up, gave (anti)-alcohol
10 in 81% ee (Scheme 2, Eq. ii).6 Therefore, it was decided to investi-
gate whether treatment of methyl (E)-4-aryl-pent-3-enoates 11
with excess (�)-IpcBH2 9 would result in stereoselective tandem
hydroboration/reduction reactions occurring to afford chiral 1,3-
diols 12 containing two new stereocentres in good ee (Fig. 1).

A series of seven (E)-b,c-unsaturated esters 11a–g were pre-
pared via Knoevanagel-type reaction of the enolate of malonic acid
with a range of 2-arylpropionaldehydes 13a–g7 to afford their
respective (E)-b,c-unsaturated acids 14a–g,8 that were then sub-
jected to acid catalysed esterification reactions with methanol
(Scheme 3).9 Treatment of methyl (E)-4-phenylpent-3-enoate
11a10a with 2 equiv of (�)-IpcBH2 9 at �17 ? 0 �C, followed by oxi-
dation with alkaline hydrogen peroxide, resulted in the clean for-
mation of (3S,4R)-4-phenylpentane-1,3-diol 12a10b in 60% yield
and 82% ee (Scheme 4).11 The enantiomeric excess of diol 12a
was determined via treatment with 2-formylphenylboronic acid
16 and (S)-a-methylbenzylamine 17 that gave a mixture of diaste-
reomeric imino-boronate esters 18 and 19, whose 82% dr was
determined by 1H NMR spectroscopic analysis (Scheme 5).12 The
absolute configuration of (3S,4R)-4-phenylpentane-1,3-diol 12a
was determined via its two-step conversion into (2R,3S)-2-phe-
nylpentan-3-ol 1510c (½a�25

D +6.3 (c 1.6, CHCl3); (lit.13 for (2S,3R)-
15 = �11.4 (neat)), involving mono-tosylation of its primary
alcohol group, followed by subsequent reduction with LiAlH4

(Scheme 4). This configurational assignment was consistent with
the enantiofacial selectivity previously observed for hydroboration
of the trisubstituted (E)-arylalkene functionality of (E)-trisubsti-
tuted alkene 8 with (�)-IpcBH2 9 (Scheme 2, Eq. ii).6
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Scheme 2. (i) Hydroboration of cyclic b,c-unsaturated ester 6 with excess BH3

affords diol 7 in a 6:1 dr;4 (ii) Hydroboration of (E)-2-phenyl-2-butene 8 with (�)-
IpcBH2 9 affords (2S,3R)-3-phenylbutan-2-ol 10 in 81% ee.6
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Scheme 1. Hydroboration of allyl-ketone 1 with 1.5 equiv of ((�)-Ipc)2BH 2,
followed by oxidative work-up, affords 1,4-diol 5 in 88% ee.
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Modification of the reaction conditions employed for hydrob-
oration, involving the treatment of ester 11a with 2 equiv of (�)-
IpcBH2 9 in THF at �25 �C over a period of 48 h, followed by
Ar

Me

CO2Me Ar

Me
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OH
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Figure 1. Proposed tandem hydroboration/reduction of trisubstituted b,c-unsatu-
rated esters 11 to afford chiral 1,3-diols 12 containing two new stereocentres.
quenching with methanol at �25 �C and oxidative work-up with
alkaline H2O2, resulted in the clean formation of methyl (3S,4R)-
3-hydroxy-4-phenylpentanoate 2010d in 75% ee (Scheme 6).14,15

This demonstrates that the alkene functionality of 11a is hydrob-
orated at a significantly faster rate than its ester group is re-
duced. This implies that hydroboration of 11a occurs to afford
a chiral organoborane intermediate 21, the ester group of which
is then reduced via intramolecular hydride transfer to give a cyc-
lic borinate ester 22. Subsequent loss/addition of the methoxide
group of intermediate 22 would then occur to afford boronate-
coordinated aldehyde 23 that is then reduced by excess (�)-
IpcBH2 9 (Fig. 2).

The remaining b,c-unsaturated esters 11b–g were then sub-
jected to our standard reaction conditions using two equivalents
of (�)-IpcBH2 9 in THF at �17 to 0 �C, over 16 h, followed by oxida-
tive work-up with H2O2/NaHCO3 to afford their corresponding chi-
ral diols 12b–g in 41–77% isolated yields and 67–85% ees (Table 1).

In conclusion, we have shown that treatment of a range of tri-
substituted b,c-unsaturated esters 11 with an excess of the chiral
hydroborating agent (�)-IpcBH2 9 results in ‘one-pot’ hydrobora-
tion of their alkene functionalities, followed by the reduction of
their ester groups, to afford chiral 1,3-diols 12 containing two
new vicinal b,c-(anti)-stereocentres in 67–85% enantiomeric
excess.



Table 1
Treatment of trisubstituted b,c-unsaturated esters 11a–g with (�)-IpcBH2 results in formation of 1,3-diols 12a–g
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aIsolated yields for chromatographically purified diols.
bees determined via derivatisation with 2-formylphenylboronic acid 16 and (S)-a-methyl-benzylamine 17, followed by 1H NMR spectroscopic analysis of the dr of the
resultant diastereomeric imino-boronate esters (see Scheme 5).12

cLower 41% yield due to competing formation of a 10% yield of its corresponding b-hydroxy ester.
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Figure 2. Proposed mechanism for the tandem hydroboration/reduction of b,c-
unsaturated ester 11a.
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