December 1985 Communications 1161

treatment with triphenylphosphine¹⁻⁵, or substituted by an acetylenide anion^{6,7}, or converted to a Grignard reagent with magnesium in tetrahydrofuran⁸, after suitable protection of the alcohol group.

The conversion of diols 1 into ω -bromoalkanols 2 is amply described in the literature. Diols 1 have been heated with aqueous hydrogen bromide in ligroin¹⁰, or reacted with aqueous hydrogen bromide using a continuous extraction apparatus employing non-polar solvents such as cyclohexane^{7,8}, toluene⁹, and petroleum ether^{1,11,12}. Under these conditions it was difficult to obtain the pure monobromoalkanols 2 uncontaminated by the dibromoalkane or unreacted diol, even after column chromatography or fractional distillation.

HO-
$$(CH_2)_n$$
-OH
$$\frac{\frac{HBr/C_6H_6}{reflux, 18-30 h}}{40-90 \%} Br-(CH_2)_n$$
-OH
$$1a-j$$

$$2a-j$$

An Effective Method for the Preparation of ω -Bromoalkanols from α,ω -Diols

SUK-KU KANG*, WON-SUP KIM, BYOUNG-HO MOON

Department of Chemistry, Sung Kyun Kwan University, Natural Science Campus, Suwon, 170 Korea

Pure ω -bromoalkanols 2 (n = 2-12), not contaminated by any dibromoalkanes or unreacted diols 1, were prepared in good yields by refluxing a mixture of diols 1, aqueous (48 %) hydrogen bromide, and benzene using a Dean-Stark water separator.

 ω -Bromoalkanols are of special value as intermediates in the synthesis of insect pheromones. The bromide function of the ω -bromoalkanols can be converted to a Wittig reagent by

In a model experiment conducted by us, a mixture of 1,10-decanediol (1i) and aqueous hydrogen bromide (48%) heated to 110°C was continously extracted with petroleum ether in a liquid-liquid extractor ¹¹. After removal of the solvent, the G.L.C. analysis (silicon OV 101, 170-230°C) of the resulting low-melting solid indicated it to be a mixture of 10-bromo-1-decanol (2i), 1,10-dibromodecane, and the starting 1,10-decanediol (1i) in a ratio of 85:13:2. Hence a search for more efficient and convenient methods for the preparation of monobromoalkanols from diols is still very worthwhile.

We have now accomplished an efficient conversion of diols 1 into monobromoalkanols 2 by simply refluxing a mixture of

Table. ω-Bromoalkanols 2 prepared

Product No.	n	Reaction time [h]	Yield ^a [%]	b.p. [°C]/torr ^b	Molecular Formula ^c or Lit. b.p. [°C]/torr	¹ H-N. M. R. (CDCl ₃ /TMS _{int}) δ[ppm]
2a	2	20	40	30-33°/5	56-57°/20	2.20 (s, 1H); 3.55 (t, 2H, $J = 7$ Hz); 3.80 (t, 2H, $J = 7$ Hz)
2 b	3	20	90	52-55°/3	62°/5	1.80 (s, 1H); 2.15 (m, 2H); 3.55 (t, 2H, J = 7 Hz); 3.80 (t, 2H, J = 7 Hz)
2c	4	24	65	57-59°/3	C ₄ H ₉ BrO (153.0) ^d	1.60–2.20 (m, 5H); 3.45 (t, 2H, $J = 7$ Hz); 3.70 (t, 2H, $J = 7$ Hz)
2d	5	28	68	66-69°/3	C ₅ H ₁₁ BrO (167.1)	1.40–2.10 (m, 7H); 3.45 (t, 2H, $J = 7$ Hz); 3.70 (t, 2H, $J = 7$ Hz)
2e	6	18	60	88-90°/2	97-98°/2.54	1.20–2.10 (m, 9 H); 3.45 (t, 2 H, $J = 7$ Hz); 3.70 (t, 2 H, $J = 7$ Hz)
2f	7	20	77	98–100°/2	111-112°/49	1.20–2.00 (m, 11 H); 3.40 (t, 2 H, $J = 7$ Hz); 3.65 (t, 2 H, $J = 7$ Hz)
2g	8	18	78	110-119°/2	$81^{\circ}/0.06^{7}$	1.20–2.00 (m, 13H); 3.40 (t, 2H, $J = 7$ Hz); 3.65 (t, 2H, $J = 7$ Hz)
2h	9	20	72	118-120°/3	$97100^{\circ}/0.06^{12}$	1.20–2.00 (m, 15H); 3.40 (t, 2H, $J = 7$ Hz); 3.65 (t, 2H, $J = 7$ Hz)
2i	10	30	80	125-127°/3	166-169°/10 ¹¹	1.20–2.00 (m; 17H); 3.40 (t, 2H, $J = 7$ Hz); 3.65 (t, 2H, $J = 7$ Hz)
2j	12	20	88	155°/4	155°/4 ¹³	1.20–2.00 (m, 21H); 3.40 (t, 2H, $J = 7$ Hz); 3.65 (t, 2H, $J = 7$ Hz)

^a Yield of isolated pure product. The yields have not been optimized. H. P. L. C. analysis of the reaction mixture shows that all the products 2 are formed in almost pure state.

^d I. R. (Film): v = 3500, 2900, 1040 cm⁻¹.

^b Kugelrohr distillation, bath temperature given.

Satisfactory microanalyses obtained: $C \pm 0.33$, $H \pm 0.17$.

1162 Communications synthesis

the diol 1, aqueous hydrogen bromide (48%) and benzene using a Dean-Stark apparatus to remove the water formed. This way the reaction mixture is made less polar and pure monobromoalkanols 2 (> 99% by H.P.L.C.) are formed in good to excellent yields.

5-Bromo-1-pentanol (2d); Typical Procedure:

To a solution of 1,5-pentanediol (1 d; 10.4 g, 100 mmol) and benzene (200 ml) is added hydrobromic acid (48 %, 12.5 ml), and the mixture is heated at reflux for 28 h while trapping the water formed using a Dean-Stark water separator. The mixture is washed with 6 normal sodium hydroxide solution (100 ml), 10 % hydrochloric acid (100 ml), water (2 \times 200 ml), and brine (150 ml). The organic layer is dried with anhydrous magnesium sulfate and evaporated under reduced pressure. The residue is purified by Kugelrohr distillation; yield: 11.4 g (68 %); b. p. 66–69 °C/3 torr.

Received: February 26, 1985

- Goto, G., Shima, T., Mauya, H., Masuoka, Y., Hiraga, K. Chem. Litt. 1975, 103.
- ² Klug, J. T., Skorka, J., Shani, A. Chem. Ind. (London), 1982 372.
- ³ Horiike, M., Hirano, C. Agric. Biol. Chem. 1980, 44, 2229.
- ⁴ Martinez, A.G., Ruiz, M.O. Synthesis, 663 (1983).
- ⁵ Bestmann, H. J., Koschatzky, K. B., Schätzke, W., Süß, J., Vostrowsky, O. Liebigs Ann. Chem. 1981, 1705.
- ⁶ Maurer, B., Grieder, A. Helv. Chim. Acta. 1977, 60, 1155.
- ⁷ Rossi, R., Carpita, A., Gaudenzi, M.L. Synthesis 1981, 359.
- ⁸ Babler, J. H., Invergo, B. J. J. Org. Chem. 1979, 44, 3723.
- ⁹ Mori, K. Tetrahedron 1974, 30, 3807.
- Teijin Chemicals, Ltd., Japan Kokai Kokkyo Koho JP 57 130 943 (1982), C. A. 1983, 98, 16 274.
- Pattison, F. L. M., Stothers, J. B., Woolford, R. G. J. Am. Chem. Soc. 1956, 78, 2255.
- Butenandt, A., Hecker, E., Hopp, M., Koch, W. Justus Liebigs Ann. Chem. 1962, 658, 39.
- ¹³ Chuit, P., Boelsing, F., Hausser, J., Malet, G. *Helv. Chim. Acta* **1927**, *10*, 167.