Dalton Transactions

Cite this: DOI: 10.1039/c2dt30968h

TeX₄ (X = F, Cl, Br) as Lewis acids – complexes with soft thio- and seleno-ether ligands[†] \ddagger

Andrew L. Hector, Andrew Jolleys, William Levason and Gillian Reid*

Received 3rd May 2012, Accepted 25th June 2012 DOI: 10.1039/c2dt30968h

TeF₄ reacts with OPR₃ (R = Me or Ph) in anhydrous CH₂Cl₂ to give the colourless, square based pyramidal 1:1 complexes $[TeF_4(OPR_3)]$ only, in which the OPR₃ is coordinated basally in the solid state, (R = Me: d(Te-O) = 2.122(2) Å; R = Ph: d(Te-O) = 2.1849(14) Å). Variable temperature ¹⁹F{¹H}, ${}^{31}P{}^{1}H{}$ and ${}^{125}Te{}^{1}H{}$ NMR spectroscopic studies strongly suggest this is the low temperature structure in solution, although the systems are dynamic. The much softer donor ligands SMe₂ and SeMe₂ show a lower affinity for TeF₄, although unstable, yellow products with spectroscopic features consistent with $[TeF_4(EMe_2)]$ are obtained by the reaction of TeF₄ in neat SMe₂ or via reaction in CH₂Cl₂ with SeMe₂. TeX₄ (X = F, Cl or Br) causes oxidation and halogenation of TeMe₂ to form X_2 TeMe₂. The Br₂TeMe₂ hydrolyses in trace moisture to form [BrMe₂Te–O–TeMe₂Br], the crystal structure of which has been determined. TeX₄ (X = Cl or Br) react with the selenoethers SeMe₂, MeSe(CH₂)₃SeMe or $o-C_6H_4(SeMe)_2$ (X = Cl) in anhydrous CH₂Cl₂ to give the distorted octahedral monomers $trans-[TeX_4(SeMe_2)_2]$, $cis-[TeX_4[MeSe(CH_2)_3SeMe_3]$ and $cis-[TeCl_4[o-C_6H_4(SeMe_2)_3]$, which have been characterised by IR, Raman and multinuclear NMR (${}^{1}H$, ${}^{77}Se{}^{1}H$ } and ${}^{125}Te{}^{1}H$) spectroscopy, and via X-ray structure determinations of representative examples. Tetrahydrothiophene (tht) can form both 1 : 1 and 1 : 2 Te : L complexes. For X = Br, the former has been shown to be a Br-bridged dimer, $[Br_3(tht)Te(\mu-Br)_2TeBr_3(tht)]$, by crystallography with the tht ligands *anti*, whereas the latter are *trans*octahedral monomers. Like its selenoether analogue, MeS(CH₂)₃SMe forms distorted octahedral cischelates, $[TeX_4 {MeS(CH_2)_3SMe}]$, whereas the more rigid $o-C_6H_4(SMe)_2$ unexpectedly forms a zig-zag chain polymer in the solid state, $[TeCl_4 {o-C_6H_4(SMe)_2}]_n$, in which the dithioether adopts an extremely unusual bridging mode. This is in contrast to the chelating monomer, $cis_{6}[TeCl_{4}(o-C_{6}H_{4}(SeMe)_{2})]$ formed with the analogous selenoether and may be attributed to small differences in the ligand chelate bite angles. The wider bite angle xylyl-linked bidentates, $o-C_6H_4(CH_2EMe_2)_2$ behave differently; the thioether forms *cis*-chelated $[TeX_4{o-C_6H_4(CH_2SMe)_2}]$ confirmed crystallographically, whereas the selenoether undergoes C-Se cleavage and rearrangement on treatment with TeX₄, forming the cyclic selenonium salts, $[C_9H_{11}Se]_2[TeX_6]$. The tetrathiamacrocycle, $[14]aneS_4$ (1,4,8,11tetrathiacyclotetradecane), does not react cleanly with TeCl₄, but forms the very poorly soluble $[TeCl_4([14]aneS_4)]_n$, shown by crystallography to be a zig-zag polymer with *exo*-coordinated [14]aneS₄ units linked via alternate S atoms to a cis-TeCl₄ unit. Trends in the 125 Te{¹H} NMR shifts for this series of Te(IV) halides chalcogenoether complexes are discussed.

Introduction

Recent years have seen greatly increased interest in the coordination chemistry of the heavier p-block elements.¹ Much of the drive has stemmed from the importance particularly of the metallic elements (Ga, In, Ge *etc.*) in electronics,^{2,3} and from the need to develop organ-specific carriers for medicinal radioisotopes (*e.g.* ⁶⁸Ga, ¹¹¹In, ^{113m}In, ^{117m}Sn).^{4,5} Similar chemistry of the more non-metallic elements has received less attention, particularly with neutral donor ligands.^{6,7} Tellurium(IV) halides, TeX₄ (X = F, Cl, Br, I) are Lewis acids, but whilst there are a modest number of complexes of TeCl₄ or TeBr₄, TeI₄ seems to have little affinity for neutral donors,⁸ whilst TeF₄ has been very little studied.^{9,10} We recently reported¹¹ the first examples of thioether adducts of TeCl₄ and TeBr₄, including [X₃(SMe₂)Te-(μ -X)₂TeX₃(SMe₂)] and [TeX₄{RS(CH₂)₂SR}] (X = Cl or Br, R = Me, Et or ⁱPr), which have distorted octahedral coordination at Te, composed of short (primary) Te–X bonds and longer

School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK. E-mail: G.Reid@soton.ac.uk

[†]Dedicated to Professor David Cole-Hamilton on the occasion of his retirement and for his outstanding contribution to transition metal catalysis.

[‡]Electronic supplementary information (ESI) available. CCDC 881025–881039. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2dt30968h

(secondary) Te–S bonds. The formal lone pair on the Te(IV) centre was not apparently stereochemically active, although there is no simple explanation for the (small) distortions from regular six-coordinate geometries (similar effects are seen in Te(IV) complexes of charged sulfur ligands, including dithiocarbamates, and dithiolates).¹² TeX₄ adducts of the diphosphine disulfide Ph₂P(S)CH₂P(S)Ph₂ are also known,^{13,14} but with other phosphine sulfides and with phosphine selenides reduction to Te(II) occurs.¹³ We also note that TeX₄ cause halogenation of tertiary phosphines,^{15,16} and that no adducts are known.

Here we report the preparation, spectroscopic and structural properties of the first series of complexes of TeX_4 (X = Cl or Br) with selenoether coordination and the reactions of TeX_4 with $TeMe_2$. Thioether complexes, which reveal new structure types, are described, together with the first examples with TeF_4 . Selected OPR₃ complexes with TeF_4 are included for comparison.

Results and discussion

TeF₄ complexes

Crystalline TeF₄ contains square pyramidal TeF₅ units linked via two (cis) basal fluorines into zig-zag chains,^{17,18} whilst in the gas phase it has a monomeric *pseudo*-trigonal bipyramidal ("saw-horse") geometry.⁹ The anion [TeF₅]⁻ is also square pyramidal,^{19,20} but despite claims in the older literature, $[TeF_6]^{2-}$ has never been certainly identified.^{20,21} The common structural features in the solid compounds are that the Te is situated somewhat below the TeF₄ plane and Te– $F_{ax} <$ Te– F_{eq} ,⁹ consistent with the vacant vertex being occupied by the lone pair. The only structurally authenticated Group 16 donor ligand complexes of TeF₄ are with ether ligands, including $[TeF_4(thf)_2]$,¹⁰ $[TeF_4\{MeO(CH)_2 OMe_{2}$, $[TeF_4(dioxane)]$ and $[TeF_4(OEt_2)]$.⁹ The last has a structure close to that of solid TeF₄ with a weakly associated ether molecule (Te-O = 2.44(1), 2.42(1) Å), but the others contain discrete TeF₄ molecules similar to the gas phase, with very long contacts to the oxygens (~2.45-2.98 Å). For comparison, the covalent radii sum for Te-O is ~2.15 Å and the Van der Waals radii sum is ~ 3.5 Å.²² We suspected that since ether ligands form only weak adducts with other p-block fluorides including SnF_4 ,²³ GeF₄,²⁴ and SiF₄,²⁵ and do not complex with AsF₃ or SbF₃,²⁶ these complexes might not be representative of other neutral oxygen donors. In contrast, phosphine oxides form stable adducts with all five of these fluorides, 26-29 and hence we synthesised examples with TeF₄ as model oxygen donor complexes.

The reaction of finely powdered TeF₄ with a solution of OPR₃ (R = Me or Ph) in a 1 : 1 molar ratio, in anhydrous dichloromethane, resulted in the formation of colourless solutions from which colourless crystals of [TeF₄(OPR₃)] were isolated in good yield. The same complexes were formed using a two-fold excess of phosphine oxide, and *in situ* NMR studies showed no evidence for other complexes. Crystals of both complexes were obtained by refrigerating CH₂Cl₂/hexane solutions, and their structures (Fig. 1 and 2) reveal discrete square pyramidal molecules with apical fluorine. The pattern of Te–F bond lengths is much as expected from the structure of solid TeF₄ discussed above, with Te–F_{ax} < Te–F_{trans} < Te–F_{trans} and with F_{ax}–Te–F_{basal} < 90°.

Fig. 1 Crystal structure of $[TeF_4(OPMe_3)]$ showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Te1-F1 = 1.897(2), Te1-F2 = 1.971(2), Te1-F3 = 1.923(2), Te1-F4 = 1.962(2), Te1-O1 = 2.122(2), P1-O1 = 1.556(2), F1-Te1-F2 = 79.23(8), F1-Te1-F3 = 82.04(7), F1-Te1-F4 = 81.43(9), F2-Te1-F3 = 88.23(8), F2-Te1-F4 = 160.56(8), F3-Te1-F4 = 87.06(8), F1-Te1-O1 = 80.83(7), F2-Te1-O1 = 89.52(8), F3-Te1-O1 = 162.84(7), F4-Te1-O1 = 89.44(8).

Fig. 2 Crystal structure of $[TeF_4(OPPh_3)]$ showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. The phenyl groups are numbered cyclically starting at the *ipso* C atom, and an adjacent C atom is labelled to indicate the sequence order. Selected bond lengths (Å) and angles (°): Te1-F1 = 1.8575(12), Te1-F2 = 1.9488(14), Te1-F3 = 1.9005(13), Te1-F4 = 1.9464(16), Te1-O1 = 2.1849(14), P1-O1 = 1.5275(14), F1-Te1-F2 = 80.71(6), F1-Te1-F3 = 82.95(6), F1-Te1-F4 = 80.64(6), F2-Te1-F3 = 89.92(6), F2-Te1-F4 = 161.31(5), F3-Te1-F4 = 88.98(6), F1-Te1-O1 = 80.04(6), F2-Te1-O1 = 89.85(6), F3-Te1-O1 = 62.80(5), F4-Te1-O1 = 85.76(6).

However, significantly, the Te–O bonds are much shorter than in the ether adducts (2.122(2) Å (R = Me) and 2.185(1) Å (R = Ph)). The d(P–O) are lengthened by ~0.05 Å compared to the parent phosphine oxides,²⁷ similarly suggesting a strong Te–O bond. In contrast, TeX₄ (X = Cl or Br) give *cis* octahedral [TeX₄(OPR₃)₂] adducts, with slightly longer d(Te–O) bonds,^{13,14} although this may mostly reflect the higher coordination number at Te and screening by the stereochemically inactive lone pair in the 5s orbital. In [TeF₄(OPMe₃)] long intermolecular Te···F contacts (2.965(2) Å) weakly associate the molecular units into zig-zag chains.

The IR and Raman spectra of [TeF4(OPR3)] show single strong v(PO) vibrations (R = Me 1032 cm⁻¹, R = Ph, 1048 cm⁻¹), markedly lowered from those in the parent OPR₃ (1166 and 1196 cm⁻¹ respectively),²⁸ and several strong bands 480-650 cm⁻¹ assigned as terminal Te-F modes (theory $C_s =$ 3A' + A''), consistent with the crystal structures. In solution in anhydrous CD₂Cl₂ at 295 K, the ¹⁹F{¹H} NMR spectra show very broad single resonances indicative of dynamic systems, but on cooling the solution of $[TeF_4(OPMe_3)]$ to 178 K, three broad singlets with ¹²⁵Te satellites were resolved $\delta = -23.8$ (s, [1F], ${}^{1}J_{\text{FTe}} = 2325$ Hz), -40.3 (s, [2F], ${}^{1}J_{\text{FTe}} = 1313$ Hz), -58.6 (s, [1F], ${}^{1}J_{\text{FTe}} = 1721$ Hz), which from the integrals and by comparison with the spectrum of $[\text{TeF}_{5}]^{-20}$ are assigned to TeF_{ax} , TeF_{transF} and TeF_{transO} respectively. The 178 K spectrum of [TeF₄(OPPh₃)] (Experimental section) is similar. Notably, for both complexes the resonances are still quite broad and no $^{2}J_{\text{FF}}$ couplings were resolved. The $^{31}P\{^{1}H\}$ NMR spectra of both complexes at 178 K were singlets with substantial high frequency coordination shifts. Neither complex exhibited a ¹²⁵Te{¹H} NMR spectrum at 220 K, but on further cooling a broad resonance appeared and then split, and at 178 K both spectra approximated to twelve line multiplets centred $\sim \delta$ + 1150 (expect d,d,t). However, even at this temperature the lines were still quite broad and somewhat distorted, showing that the low temperature limiting spectrum had not been reached at the freezing point of CD₂Cl₂. Addition of a small excess of the appropriate OPR₃ to solutions of [TeF₄(OPR₃)] showed only a singlet in the ³¹P{¹H} NMR spectrum of each even at 178 K, consistent with fast exchange of the OPR₃. Excess OPR₃ caused some sharpening of the ${}^{19}F{}^{1}H{}$ resonances, suggesting suppression of ligand dissociation, although no new complexes formed. The solution data show that the complexes are dynamic down to very low temperatures, both dissociative exchange of the OPR₃ and fluxionality of the TeF₄ unit being present.

The reaction of TeF₄ with OAsPh₃ in anhydrous CH₂Cl₂ solution gave a good yield of colourless crystals identified by their unit cell³⁰ and ¹⁹F{¹H} NMR spectrum ($\delta = -89.5$)²⁶ as Ph₃AsF₂, showing fluorination of the arsine oxide instead of coordination. Tertiary arsine oxide complexes are known for SnF₄²⁹ and GeF₄,²⁸ but AsF₃ causes only fluorination,²⁶ whilst with SbF₃, the square pyramidal [SbF₃(OAsR₃)₂] are the major products, although some R₃AsF₂ also form.²⁶

The reaction of TeF₄ with neat SMe₂ led to dissolution of the TeF₄ to give a colourless solution, and following removal of the excess SMe₂, a sticky yellow solid formed, which could be stored for some days in the freezer, but darkened over ca. 24 h at room temperature. TeF₄ and SeMe₂ react similarly in CH₂Cl₂ to form a yellow, unstable product. ¹H NMR spectroscopy shows a single resonance for each complex substantially to high frequency of the 'free' ligand resonance, which is little changed over the temperature range 295 to 193 K. Room temperature ¹⁹F{¹H} NMR spectra on each showed a relatively sharp singlet which broadened on cooling the solution to 193 K, but remained a single resonance. Together with the absence of any 77 Se{¹H} or ¹²⁵Te{¹H} NMR resonances over this temperature range, these data are consistent with the complexes being dynamic in solution. These observations are consistent with expectations for a soft chalcogenoether complex of the hard Lewis acidic TeF₄. As discussed above, even the hard OPR₃ donor complexes are

dynamic down to very low temperatures. The IR spectra for each complex shows strong features in the region expected for Te–F stretching vibrations, and comparable with those for the structurally authenticated [TeF₄(OPR₃)], suggesting a similar 1:1 TeF₄: EMe₂ formulation. The instability of the complexes at ambient temperatures precluded outsourced microanalytical measurements. Upon cooling (-18 °C) a yellow-orange CH₂Cl₂ solution of the selenoether product for several days, a few small, colourless crystals formed. X-Ray structural analysis on one of these showed it to be [Me₂SeSeMe][TeF₅] (ESI‡), formed as a minor decomposition product. The [Me₂SeSeMe]⁺ cation has been reported previously as its [BF₄]⁻ salt,³¹ however, in the [TeF₅]⁻ salt reported here there are four intermolecular F···Se contacts.

TeX_4 (X = Cl or Br) selenoether complexes

The addition of SeMe₂ to a suspension of TeX₄ in anhydrous CH₂Cl₂ or thf at 0 °C, produced intensely coloured solutions, which deposited almost black crystals of the 2:1 adducts [TeX₄(SeMe₂)₂]. This contrasts with the SMe₂ reactions,¹¹ which gave only the 1:1 complexes, [X₃(SMe₂)Te(μ -X)₂TeX₃(SMe₂)], even with excess SMe₂. The [TeX₄(SeMe₂)₂] are isomorphous and the structures reveal (Fig. 3a and ESI[‡]) they are centrosymmetric *trans* isomers. The d(Te–Se) are very similar, indicating little difference in Lewis acidity between the two tellurium centres. There are two long intermolecular contacts, Se1···Cl1′ = 3.592(1) and Se1···Cl2″ = 3.485(1) Å, which complete an approximate square pyramid around Se1 (C1 axial), and links the molecules into a 3-D network (Fig. 3b). Similar intermolecular contacts are present in the bromide.

The IR spectrum of the chloro-complex shows the $E_{\rm u}$ Te–Cl stretch at 246 cm⁻¹ and the Raman spectrum has strong bands at 256 and 280 cm⁻¹ (A_{1g} + B_{2g}), consistent with the D_{4h} geometry, but the corresponding bands in the bromo complex are expected to lie near the lower limits (~200 cm⁻¹) of the spectrometers and were not reliably identified. Neither complex exhibits a ⁷⁷Se{¹H} or ¹²⁵Te{¹H} NMR resonance in solution at room temperature due to fast ligand exchange, but at 183 K singlets are observed, consistent with the presence of a single isomer, presumably the *trans* form found in the crystals (Table 1). The complexes decompose quite rapidly in solution at ambient temperatures with fragmentation of the selenoether (see ESI[±]).

Similar reaction of MeSe(CH₂)₃SeMe with TeX₄ produced dark orange (Cl) or red (Br) complexes [TeX₄{MeSe(CH₂)₃-SeMe}], while *o*-C₆H₄(SeMe)₂ gives [TeCl₄{*o*-C₆H₄(SeMe)₂}] as dark-red crystals. The [TeCl₄{MeSe(CH₂)₃SeMe}] decomposed quite rapidly at room temperature and was very poorly soluble in non-coordinating solvents, precluding NMR studies. However, the more soluble bromo-analogue exhibited a ⁷⁷Se{¹H} and a ¹²⁵Te{¹H} NMR resonance in CH₂Cl₂ solution at 183 K, with reasonable chemical shifts (Table 1). Spectroscopic data on [TeCl₄{*o*-C₆H₄(SeMe)₂}] complex also support *cis*-chelation, although in solution the complex is dynamic at room temperature. This assignment is supported by a crystal structure determination (Fig. 4) which shows the molecule has mirror symmetry with *cis*-chelate coordination, Te–Se = 2.969(1) Å.

Fig. 3 (a) Crystal structure of the centrosymmetric $[TeCl_4(SeMe_2)_2]$ molecule showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Symmetry operation: a = -x, -y, -z. Selected bond lengths (Å) and angles (°): Te1–Cl1 = 2.5133(8), Te1–Cl2 = 2.5086(8), Te1–Se1 = 2.8727(6), Cl1–Te1–Cl2 = 89.48(3), Cl1–Te1–Se1 = 89.85(2), Cl2–Te1–Se1 = 89.04(3), C1–Se1–C2 = 97.38(10), C1–Se1–Te1 = 98.10(7), C2–Se1–Te1 = 97.73(7). (b) View of $[TeCl_4(SeMe_2)_2]$ showing the intermolecular Se…Cl contacts (red dotted lines).

The Se–Te–Se of $68.61(4)^{\circ}$ is extremely acute. Long intermolecular Se…Cl contacts of 3.626(2) Å are also evident from the crystal structure.

The *o*-xylyl selenoether, *o*-C₆H₄(CH₂SeMe)₂ fragmented on reaction with TeX₄ to form high yields of the cyclic selenonium hexahalotellurates(IV), $[o-C_6H_4CH_2Se(CH_3)CH_2]_2$ [TeX₆]. The selenonium cation has been observed as a fragmentation product of this ligand on reaction with GaCl₃³² and also forms on reaction with MeI.³³ Further details are given in ESI.[‡]

Reaction of TeX_4 (X = F, Cl or Br) with telluroethers

The addition of TeMe₂ to a suspension of the TeX₄ (X = F, Cl or Br) in anhydrous CH_2Cl_2 resulted in immediate black precipitates, which were identified by powder XRD as elemental tellurium. The supernatant solutions were examined by multinuclear

NMR spectroscopy $({}^{1}H, {}^{125}Te{}^{1}H)$ and for X = F, ${}^{19}F{}^{1}H{}$ which unequivocally identified TeMe₂X₂ as the only significant new product in each system. The comparisons with literature NMR data^{34,35} are detailed in the Experimental section. The reactions of related p-block element halides and alkyls show a range of behaviour. Arsenic(III) halides form crystallographically authenticated complexes with tertiary arsines, including [As₂X₆- $\{o-C_6H_4(AsMe_2)_2\}_2$ (X = Cl, Br or I)³⁶ and $[\{AsCl_3(AsEt_3)\}_2]$. In contrast, with the sole exception of the very unstable $[Sb_2I_6(thf)_2(SbMe_3)_2]^{38}$ the reactions of EX₃ with ER₃ (E = Sb or Bi, R = Me, Ph, etc.) result in substituent scrambling to form $EX_{3-n}R_n$ ³⁹ The reactions of TeX₄ and TeMe₂ described here differ in that they involve redox chemistry as well as substituent scrambling – the dimethyltellurium(II) is converted to dimethyldihalotellurium(IV) and Te(0). The solution from the reaction of TeBr₄ with TeMe₂ deposited colourless crystals on standing for a few days, which proved to be the oxo-bridged Me₂BrTe(µ-O)-TeMe₂Br (Fig. 5), which presumably formed by hydrolysis of TeMe₂Br₂. The molecule has two-fold symmetry and a nonlinear bridge Te1-O1-Te1a = $121.3(3)^{\circ}$. Several structures of related molecules, including "Bu2BrTeOTe"Bu2Br⁴⁰ and Me2I-TeOTeMe₂I,⁴¹ are known and the core dimensions of the current compound are unexceptional. Longer secondary Br...Te interactions (3.4–3.6 Å) link the molecules.

TeX_4 (X = Cl or Br) thioether complexes

In our initial study of TeX₄/thioether systems we observed two types of complex, six-coordinate dinuclear [X₃(SMe₂)Te(µ-X)₂- $TeX_3(SMe_2)$] and mononuclear $[TeX_4{RS(CH_2)_2SR}]$ with fivemembered chelate rings. P-block complexes are often strongly influenced by ligand architecture and hence we explored a wider range of thioethers seeking other structural motifs. The reaction of the cyclic thioether, tetrahydrothiophene (tht) with TeX_4 (X = Cl or Br) in a 2:1 mol. ratio, gave almost black crystals of $[TeX_4(tht)_2]$. The crystal structures show very similar *trans* octahedral geometries (Fig. 6 and ESI[‡]), although the crystals are not isomorphous, with Te-S very slightly longer in the bromide (2.7502(8)^A (X = Cl), 2.7598(7) ^A (X = Br)), and both are markedly shorter than the Te-S observed in [X3(SMe2)Te- $(\mu-X)_2$ TeX₃(SMe₂)] (2.813(2), 2.822(2) Å).¹¹ The differences are readily explained by the nature of the trans ligands in each case. In the tht complexes, symmetrical 3c-4e bonds are present, whereas in the SMe₂ there are asymmetric 3c-4e bonds with a strong Te-X interaction and a correspondingly weaker Te-S. The ¹²⁵Te{¹H} NMR spectrum of [TeCl₄(tht)₂] was a sharp singlet at 295 K (δ = 1500) and showed a considerable low frequency shift on cooling, reaching $\delta = 1475$ at 183 K. However, the ${}^{125}\text{Te}{}^{1}\text{H}$ NMR spectrum of $[\text{TeBr}_4(\text{tht})_2]$ showed no resonances at room temperature, but at 183 K two resonances with integrals $\sim 5:1$ were present at $\delta = 1655$ and 1508. The initial possibility that these were cis and trans isomers was ruled out when red crystals deposited over a few days in the solution used for NMR studies. The structure (Fig. 7) showed these to be the centrosymmetric dimer $[Br_3(tht)Te(\mu-Br)_2TeBr_3(tht)]$ with similar bond lengths and angles to the [Br₃(SMe₂)Te(µ-Br)₂-TeBr₃(SMe₂)] reported previously.¹¹ The 1:1 dimer complex accounts for the 125 Te{ 1 H} NMR resonance at 1655 ppm.

 Table 1
 Selected NMR spectroscopic data^a

Complex	δ^{125} Te{ ¹ H} (ppm)	δ^{77} Se{ ¹ H} (ppm)	Temperature	Reference
[TeF₄(OPPh ₃)]	1148^{b}	_	183 K	This work
$[TeF_4(OPMe_3)]$	1151^{b}		183 K	This work
[TeCl ₄ (SeMe ₂) ₂]	1280	233	183 K	This work
$[TeCl_4 \{o - C_6 H_4 (SeMe)_2\}]$	1437	291	193 K	This work
[TeCl ₄ {MeSe(CH ₂) ₃ SeMe}]	n.o.	n.o.	(poor solubility)	This work
$[{Cl_3(Me_2S)Te}_2(\mu-Cl)_2]$	1484		200 K	11
$[TeCl_4(tht)_2]$	1475		183 K	This work
[TeCl ₄ {MeS(CH ₂) ₂ SMe}]	1504		200 K	11
[TeCl ₄ { ⁱ PrS(CH ₂) ₂ S ⁱ Pr}]	1531	_	200 K	11
[TeCl ₄ {MeS(CH ₂) ₃ SMe}]	1517	_	203 K	This work
$[TeCl_4 \{o - C_6 H_4 (SMe)_2\}]_n$	n.o.			This work
$[TeCl_4 \{o - C_6H_4(CH_2SMe)_2\}]$	1433		193 K	This work
$[TeBr_4(SeMe_2)_2]$	1317	226	183 K	This work
[TeBr ₄ {MeSe(CH ₂) ₃ SeMe}]	1455	169	183 K	This work
$[Br_3(Me_2S)Te_2(\mu - Br)_2]$	1650		200 K	11
$[TeBr_4(tht)_2]$	1507		183 K	This work
$[Br_3(tht)Te]_2(\mu-Br)_2]$	1655		183 K	This work
$[TeBr_4 {MeS(CH_2)_2SMe}]$	1760		200 K	11
[TeBr ₄ { ⁱ PrS(CH ₂) ₂ S ⁱ Pr}]	1702	_	200 K	11
$[\text{TeBr}_4 \{\text{MeS}(\text{CH}_2)_3\text{SMe}\}]$	1705	—	223 K	This work
^{<i>a</i>} Spectra recorded in CH ₂ Cl ₂ solution	on. ^b See text.			

Downloaded by UNIVERSITY OF SOUTH AUSTRALIA on 01 August 2012 Published on 31 July 2012 on http://pubs.rsc.org | doi:10.1039/C2DT30968H

Fig. 4 Crystal structure of $[TeCl_4\{o-C_6H_4(SeMe)_2\}]$ showing the atom numbering scheme. The molecule has mirror symmetry. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Symmetry operation: a = x, 1/2 - y, z. Selected bond lengths (Å) and angles (°): Te1–Cl1 = 2.445(2), Te1–Cl3 = 2.463(1), Te1–Cl2 = 2.579(2), Te1–Se1 = 2.969(1), Cl1–Te1–Cl3 = 91.93(5), Cl3–Te1–Cl3 = 94.62(7), Cl1–Te1–Cl2 = 174.21(6), Cl3–Te1–Cl2 = 91.99(5), Cl3–Te1–Se1 = 166.52(3), Cl1–Te1–Se1 = 83.74(5), Cl3–Te1–Se1 = 98.28(5), Cl2–Te1–Se1 = 91.49(4), Se1–Te1–Se1 = 68.61(4).

We also explored the effects of changing the linking backbone within the dithioether ligands. The RS(CH₂)₂SR ligands gave *cis* chelate complexes [TeX₄{RS(CH₂)₂SR}],¹¹ and replacing the $-(CH_2)_2-$ links by $-(CH_2)_3-$ led only to [TeX₄{RS(CH₂)₃SR}] which are also *cis* chelates (ESI[‡]). However, replacing the $-(CH_2)_2-$ links by $o-C_6H_4-$, as in $o-C_6H_4(SMe)_2$, led to [TeCl₄{ $o-C_6H_4(SMe)_2$ }]_n in which the dithioether does not chelate, but instead bridges to an adjacent Te centre, forming a chain polymer (Fig. 8), with the two S atoms coordinated to Te mutually *cis*. The Te–S bond distances in this complex are 3.0375(8) and 3.0580(9) Å, significantly longer than in the chelate complexes. The S–Te–S angle is also very much more

Fig. 5 Crystal structure of $(BrMe_2Te)_2O \cdot nCH_2Cl_2$ (n = 0.6) showing the atom numbering scheme. The molecule has 2-fold symmetry. Ellipsoids are drawn at the 50% probability level and H atoms and the solvate are omitted for clarity. Symmetry operation: a = 3/4 - z, 3/4 - y, 3/4 - x. Selected bond lengths (Å) and angles (°): Te1–O1 = 1.985(3), Te1–C2 = 2.099(5), Te1–C1 = 2.115(5), Te1–Br1 = 2.8858(7), O1–Te1–C2 = 88.6(2), O1–Te1–C1 = 89.4(2), C2–Te1–C1 = 96.6(2), O1–Te1–Br1 = 171.1(1), C2–Te1–Br1 = 86.4(2), C1–Te1–Br1 = 83.9(1), Te1–O1–Te1a = 121.3(3).

Fig. 6 Crystal structure of the centrosymmetric *trans*-[TeBr₄(tht)₂] showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Symmetry operation: a = -x, 1 - y, -z. Selected bond lengths (Å) and angles (°): Te1–Br1 = 2.6830(7)), Te1–Br2 = 2.26814(5), Te1–S1 = 2.7598(7), Br1–Te1–Br2 = 90.775(11), Br1–Te1–S1 86.01(2), Br2–Te1–S1 = 84.59(2).

Fig. 7 Crystal structure of the centrosymmetric $[Br_3(tht)]$ Te- $(\mu$ -Br)₂TeBr₃(tht)] showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Symmetry operation: a = 2 - x, 1 - y, -z. Selected bond lengths (Å) and angles (°): Te1–Br1 = 2.5367(7), Te1–Br2 = 2.5757(7), Te1–Br3 = 2.5364(9), Te1–Br4 = 2.921(1), Te1–Br4a = 2.9350(8), Te1–S1 = 2.876(1), Br1–Te1–Br2 = 94.08(2), Br1–Te1–Br3 = 92.32(1), Br1–Te1–Br4 = 89.32(1), Br1–Te1–Br4a = 174.81(1), Br1–Te1–S1 = 84.92(3), Br2–Te1–Br3 = 93.92(1), Br2–Te1–Br4 = 91.94(1), Br2–Te1–Br4a = 90.64(2), Br2–Te1–S1 = 175.33(2), Br3–Te1–Br4 = 173.79(1), Br3–Te1–Br4a = 89.49(1), Br3–Te1–S1 = 90.69(2), S1–Te1–Br4 = 83.49(2), S1–Te1–Br4a = 90.21(3), Br4–Te1–Br4a = 88.37(1), Te1–Br4–Te1a = 91.63(1).

obtuse at $105.11(2)^{\circ}$. It seems likely that the small bite angle of the $o-C_6H_4(SMe)_2$ ligand is insufficient to favour chelation to the large Te(IV) atom, and hence leads to the observed bridging coordination mode, which is very unusual for the orthophenylene dichalcogenoether ligand family, the only precedent being the polymeric $[Ag_n \{\mu - o - C_6 H_4 (SeMe)_2\}_n \{o - C_6 H_4 (SeMe)_2\}_n]^{n+.42}$ Attempts to isolate a TeBr₄ complex with this ligand were unsuccessful. Replacing the rigid small bite o-C₆H₄- linkage with the more flexible, wider bite angle o-C₆H₄(CH₂)₂- linkage resulted in a return to chelation in the complexes [TeX₄{o-C₆H₄- $(CH_2SMe)_2$ as shown crystallographically for $[TeCl_4 \{o-C_6H_4 (CH_2SMe)_2$]. This complex is a molecular monomer with crystallographic mirror symmetry and with the thioether bidentate, forming a seven-membered chelate ring (Fig. 9). The bond angles at Te are severely distorted from a regular octahedron, with $\langle S-Te-S = 108.78(2)^\circ$, and in this case the Te-S = 2.8675(6) Å, in line with the Te-S distances in the other chelate monomers.

Attempts to prepare TeX₄ complexes with the macrocyclic thioether [14]aneS₄, gave yellow insoluble powders which were not single species. However, from one preparation some small yellow crystals grew amongst colourless crystals (of the macrocycle itself) by cooling the CH₂Cl₂ filtrate. The former proved to be [TeCl₄([14]aneS₄)]_n, the structure showing a zig-zag polymer with *exo*-coordinated [14]aneS₄ units linked *via* alternate S atoms to a *cis*-TeCl₄ unit (Fig. 10). The macrocyclic rings are centrosymmetric. The Te–S distances in this complex are in a similar range to those in the thioether examples described above. While *exocyclic* coordination in tetrathia-crown complexes is very rare in transition metal chemistry⁴³ a notable structurally authenticated exception being [(NbCl₅)₂([14]aneS₄)],⁴⁴ it has been observed more frequently in p-block coordination

Fig. 8 (a) Crystal structure of $[\text{TeCl}_4\{o-\text{C}_6\text{H}_4(\text{SMe})_2\}]_n$ showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. The structure forms a chain of which part is shown. The long bonds from Te1 to S atoms are shown with open bonds. Symmetry operation: a = 2 - x, 1 - y, 1/2 + z. Selected bond lengths (Å) and angles (°): Te1-Cl1 = 2.4389(7), Te1-Cl2 = 2.3521(9), Te1-Cl3 = 2.5212(8), Te1-Cl4 = 2.3435(9), Te1-S1 = 3.0580(9), Te1-S2a = 3.0375(8), Cl1-Te1-Cl2 = 91.10(3), Cl1-Te1-Cl3 = 177.32(4), Cl1-Te1-Cl4 = 89.64(3), Cl2-Te1-Cl3 = 90.16(3), Cl2-Te1-Cl4 = 90.57(3), Cl3-Te1-Cl4 = 87.99(3), Cl1-Te1-S1 = 93.56(3), Cl2-Te1-S1 = 81.98(3), Cl3-Te1-S1 = 88.96(2), Cl4-Te1-S1 = 171.93(3), Cl1-Te1-S2a = 87.20(3), Cl2-Te1-S2a = 172.79(3), Cl3-Te1-S2a = 91.25(3), Cl4-Te1-S2a = 82.42(3), S1-Te1-S2a = 105.11(2). (b) View of part of the polymeric structure of $[\text{TeCl}_4\{o-C_6H_4-(SMe)_2]_n$.

complexes, possibly a result of the relatively low affinity of the soft, modest σ -donor thioether functions for the harder p-block Lewis acids, and their tendency not to displace halide co-ligands.^{6,45}

Multinuclear NMR trends

Table 1 lists selected ¹²⁵Te{¹H} and ⁷⁷Se{¹H} NMR parameters for the TeX₄ chalcogenoether complexes. The complexes are extensively dissociated at ambient temperatures and even at the

Fig. 9 Crystal structure of $[\text{TeCl}_4\{o-\text{C}_6\text{H}_4(\text{CH}_2\text{SMe})_2\}]$ showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Symmetry operation: a = x, 1/2 - y, z. Selected bond lengths (Å) and angles (°): Te1–Cl1 = 2.5052(8), Te1–Cl2 = 2.5049(8), Te1–Cl3 = 2.4213(6), Te1–S1 = 2.8675(6), Cl1–Te1–Cl2 = 168.57(3), Cl1–Te1–Cl3 = 93.83(2), Cl2–Te1–Cl3 = 94.41(2), Cl3–Te1–Cl3 = 87.62(3), Cl3–Te1–S1a = 169.29(2), Cl1–Te1–S1a = 85.44(2), Cl2–Te1–S1 = 87.92(2), Cl3–Te1–S1a = 108.78(2).

lowest temperatures it is likely that some dynamic processes are still significant. For example, resonances for individual invertomers are not observed in the *cis*-chelates. However, some trends are very clear from the low temperature data reported. Firstly, the 77 Se 1 H 1 NMR shifts in the selenoether complexes are substantially to high frequency of the parent selenoether.

For a common chalcogenoether, from the ¹²⁵Te{¹H} NMR spectra we observe that the bromo complexes all have resonances to high frequency of those of the chlorides, although the geometric isomer has a significant effect, *i.e.* where X is *trans* to X the differences in δ (¹²⁵Te) for X = Cl vs. X = Br is much less than for the *cis* chelates, where X is *trans* to chalcogen. Finally, we note that the ¹²⁵Te NMR resonances for the selenoether complexes are typically at a frequency than their thioether analogues. Therefore, the ¹²⁵Te NMR shifts provide a useful guide to the coordination geometry and donor set present in these complexes.

Conclusions

We have prepared and fully characterised the first examples of selenoether complexes of TeX₄ Lewis acids, as well as demonstrating that Se–C bond cleavage occurs in some cases. In contrast, there are no telluroether complexes formed with TeX₄; dimethyltelluride is halogenated to X_2 TeMe₂ (X = F, Cl or Br).

Fig. 10 (a) Crystal structure of a portion of the $[TeCl_4([14]aneS_4)]_n$ polymer showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Symmetry operations: a = -x + 1, -y - 1, -z; b = -x + 1, -y, -z. Selected bond lengths (Å) and angles (°): Te1–Cl1 = 2.3799(9), Te1–Cl2 = 2.3859(9), Te1–Cl4 = 2.492(1), Te1–Cl3 = 2.499(1), Te1–S1 = 2.885(1), Te1–S3 = 3.014(1), Cl1–Te1–Cl2 = 90.58(4), Cl1–Te1–Cl4 = 89.19(3), Cl2–Te1–Cl4 = 92.93(3), Cl1–Te1–Cl3 = 92.76(3), Cl2–Te1–Cl3 = 91.28(3), Cl4–Te1–Cl3 = 175.34(3), Cl1–Te1–S1 = 81.77(3), Cl2–Te1–S1 = 170.40(3), Cl4–Te1–S1 = 92.75(3), Cl3–Te1–S1 = 83.35(3), Cl1–Te1–S3 = 179.03(3), Cl2–Te1–S3 = 90.33(3), Cl4–Te1–S3 = 97.55(3), S1–Te1–S3 = 97.36(3). (b) View of the polymeric structure of $[TeCl_4([14]aneS_4)]_n$.

A range of new structure types has been identified for thioether complexes of Te(IV) halides, which are subtly dependent on the ligand architecture, and include a rare example of bridging by an *o*-phenylene dithioether in $[TeCl_4 \{o-C_6H_4(SMe)_2\}]_n$.

TeF₄ forms stable five-coordinate complexes with hard O-donor phosphine oxides, but much less stable adducts form with thio- or selenoethers. It appears that the TeF₄ is a considerably harder Lewis acid than the heavier halides, and while there is little evidence for a stereochemically active Te-based lone pair in the chloro or bromo complexes, there is a vacant vertex obvious in the [TeF₄(L)] species, which is assumed to be occupied by the lone pair. Systematic shifts in the ¹²⁵Te NMR spectra of the complexes with halide, chalcogen and geometric isomer are observed, and are consistent with the Te–X bonding dominating the electronic environment at Te(IV).

Experimental

Infrared spectra were recorded as Nujol mulls between CsI plates using a Perkin-Elmer Spectrum 100 spectrometer over the range 4000-200 cm⁻¹. Raman spectra were obtained using a Perkin-Elmer FT2000R with a Nd:YAG laser. ¹H NMR spectra were recorded in CDCl3 or CD2Cl2 unless otherwise stated, using a Bruker AV300 spectrometer. ${}^{19}F{}^{1}H$, ${}^{31}P{}^{1}H$, ${}^{77}Se{}^{1}H$ and ¹²⁵Te{¹H} NMR spectra were recorded using a Bruker DPX400 spectrometer and are referenced to CFCl₃, 85% H₃PO₄, external, neat SeMe₂ and TeMe₂ respectively. Electrospray (ES) MS data were obtained from solutions in MeCN using a VG Biotech Platform. Microanalyses were undertaken by Medac Ltd. Solvents were dried by distillation prior to use, CH₂Cl₂ from CaH₂, hexane from sodium benzophenone ketyl. TeF₄ was prepared by heating TeO₂ with SF₄ in a Monel autoclave (120 °C) according to the method of Seppelt and co-workers.⁴⁶ Tht, SMe₂, [14]aneS₄, TeCl₄ and TeBr₄ (Aldrich) were used as received. Ligands OPPh₃ and OAsPh₃ (Aldrich) were dried in vacuo and OPMe₃ was freshly sublimed prior to use. SeMe₂, TeMe₂, MeSe-(CH₂)₃SeMe, *o*-C₆H₄(SMe)₂, *o*-C₆H₄(SeMe)₂, *o*-C₆H₄(CH₂SMe)₂ and $o-C_6H_4(CH_2SeMe)_2$ were prepared via the literature methods.^{47,48} All preparations were performed under an atmosphere of dry N2 using Schlenk techniques, with samples stored and spectroscopic samples prepared in a dry N2-purged glove box.

Preparations

[TeF4(OPPh3)]

A Schlenk tube was loaded with TeF₄ (0.101 g, 4.96×10^{-4} mol) and OPPh₃ (0.140 g, 5.03×10^{-4} mol). CH₂Cl₂ (20 mL) was added at room temperature, giving a colourless solution with some undissolved TeF₄. After stirring for approximately 30 min, the mixture had become almost clear. It was then filtered, concentrated *in vacuo* to *ca*. 5 mL, layered with hexane (15 mL) and refrigerated. Colourless crystals suitable for X-ray diffraction formed rapidly. These were collected by filtration, washed with a small amount of hexane and dried *in vacuo*. Yield: 0.132 g, 55%. Required for C₁₈H₁₅F₄OPTe: C, 44.9; H, 3.1. Found: C, 45.3; H, 3.3%. ¹H NMR (CDCl₃, 295 K): 7.4–7.7(m). ¹⁹F{¹H} NMR (CD₂Cl₂, 295 K): –38.4 (s, [4F]); (178 K): –25.9 (s, [1F],

 ${}^{1}J_{\text{FTe}} = 2850 \text{ Hz}$, -36.5 (s, [2F], ${}^{1}J_{\text{FTe}} = 1290 \text{ Hz}$), -59.8 (s, [1F], ${}^{1}J_{\text{FTe}} = 1830 \text{ Hz}$). ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂/CH₂Cl₂, 178 K): 44.8 (s). ${}^{125}\text{Te}{}^{1}H$ NMR (CD₂Cl₂/CH₂Cl₂, 178 K): see text. IR (Nujol/cm⁻¹): 501s, 576s, 647s Te–F, 1048s P=O. Raman (cm⁻¹): 571, 620, 647 Te–F.

[TeF₄(OPMe₃)]

Analogous procedure, using TeF₄ (0.100 g, 4.91×10^{-4} mol) and OPMe₃ (0.048 g, 5.21×10^{-4} mol). Colourless crystals. Yield: 0.088 g, 61%. Required for C₃H₉F₄OPTe: C, 12.2; H, 3.1. Found: C, 12.2; H, 3.1. ¹H NMR (CDCl₃, 298 K): 1.78 (d, [9H], ²J_{HP} = 13 Hz). ¹⁹F{¹H} NMR (CD₂Cl₂, 295 K): -39.8 (s, [4F]); (183 K): -23.8 (s, [1F], ¹J_{FTe} = 2325 Hz), -40.3 (s, [2F], ¹J_{FTe} = 1313 Hz), -58.6 (s, [1F], ¹J_{FTe} = 1721 Hz). ³¹P{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 293 K): 64.5 (s); (243 K): 66.1 (s); (183 K): 68.3 (s). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 183 K): ~1151 see text. IR (Nujol/cm⁻¹): 480s, 514s, 543s, 624s Te-F, 1032s, P=O. Raman (cm⁻¹): 482, 518, 535, 620 Te-F, 1032 P=O.

[TeF₄(SMe₂)]

SMe₂ (*ca.* 2 mL) was condensed directly onto solid TeF₄ (0.05 g, 2.46×10^{-4} mol). Upon warming to room temperature, a colourless solution was obtained. This was stirred for 15 min, and then the excess SMe₂ was removed *in vacuo*. The sticky yellow solid that remained darkened considerably over 24 h at room temperature in the glove box. A freshly prepared sample was dissolved in CD₂Cl₂ for NMR studies. ¹H NMR (CD₂Cl₂, 295 K): 2.38 (s); 188 K: 2.38(s). ¹⁹F{¹H} NMR (CD₂Cl₂, 295 K): -45.9 (br, s); 188 K: -46.6 (br, s, $w_{1/2}$ = 1500 Hz). No ¹²⁵Te{¹H} NMR resonance observed at any temperature down to 185 K. IR (Nujol/cm⁻¹): 450 sh, 468 br s, 622 m Te–F.

[TeF4(SeMe2)]

TeF₄ (0.05 g, 2.46×10^{-4} mol) was suspended in CH₂Cl₂ (10 mL) and stirred at room temperature with SeMe₂ (0.02 mL, 0.028 g, 2.58×10^{-4} mol), forming a cloudy yellow solution. After 15 min the volatiles were removed *in vacuo* to leave a sticky yellow solid which darkened over a few hours at room temperature. A freshly prepared sample was used for spectroscopic studies. ¹H NMR (CD₂Cl₂, 295 K): 2.43 (s); 188 K: 2.45 (s). ¹⁹F{¹H} NMR (CD₂Cl₂, 295 K): -43.4 (br, s); 188 K: -41.7 (br, s, $w_{1/2} = 1600$ Hz). No ⁷⁷Se{¹H} or ¹²⁵Te{¹H} NMR resonance observed at any temperature down to 185 K. IR (Nujol/cm⁻¹): 447 s, 470 br s, 623 m Te–F.

trans-[TeCl₄(SeMe₂)₂]

TeCl₄ (0.268 g, 9.95×10^{-4} mol) was suspended in THF (20 mL) and cooled to 0 °C with the aid of an external ice-bath. With stirring, SeMe₂ (0.09 mL, 0.127 g, 1.16×10^{-3} mol) was added, causing a rapid colour change to very dark orange-black. After stirring for 30 min, the mixture was concentrated *in vacuo* to *ca*. 5 mL, filtered to remove any solids and the filtrate was placed in the freezer. Small almost black crystals suitable for

X-ray diffraction appeared over a few days. Yield: 0.262 g, 54%. Required for $C_4H_{12}Cl_4Se_2Te$: C, 9.9; H, 2.5. Found: C, 9.9; H, 2.3%. ¹H NMR (CDCl₃, 298 K): 2.59 (s). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 183 K): 1280 (s). ⁷⁷Se{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 183 K): 233 (s). IR (Nujol/cm⁻¹): 246 br Te–Cl. Raman (cm⁻¹): 280 s, 254 m Te–Cl.

trans-[TeBr4(SeMe2)2]

Analogous procedure, using TeBr₄ (0.440 g, 9.84×10^{-4} mol) and SeMe₂ (0.08 mL, 0.113 g, 1.04×10^{-3} mol). Small, almost black crystals of X-ray quality formed over a few days in the freezer. Yield: 0.181 g, 54%. Required for C₄H₁₂Br₄Se₂Te: C, 7.2; H, 1.8. Found: C, 7.1; H, 1.9%. ¹H NMR (CDCl₃, 298 K): 2.66 (s). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 183 K): 1317 (s). ⁷⁷Se{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 183 K): 226 (s).

[TeCl₄{MeSe(CH₂)₃SeMe}]

TeCl₄ (0.271 g, 1.01×10^{-3} mol) was suspended in CH₂Cl₂ (20 mL), and the mixture was cooled to 0 °C with the aid of an external ice-bath. With stirring, MeSe(CH₂)₃SeMe (0.269 g, 1.17×10^{-3} mol) was added, which caused a rapid colour change to orange-brown, concomitant with the formation of an orange precipitate. After stirring for approximately 1 h, the amount of solid had increased, and this was collected by filtration and dried *in vacuo*. Yield: 0.373 g, 75%. This compound has very low solubility in all common non- or weakly-coordinating solvents, and darkens rapidly at room temperature. Required for C₅H₁₂Cl₄Se₂Te: C, 12.0; H, 2.4. Found: C, 12.0; H, 2.4%.

[TeBr₄{MeSe(CH₂)₃SeMe}]

TeBr₄ (0.225 g, 5.03×10^{-4} mol) was dissolved in THF (20 mL), and the solution was cooled to 0 °C with the aid of an external ice-bath. With stirring, MeSe(CH₂)₃SeMe (0.151 g, 6.56×10^{-4} mol) was added, giving an opaque red-black solution. After stirring for 15 min, the mixture was concentrated *in vacuo* to *ca*. 10 mL, which caused the precipitation of a deepred solid. This was collected by filtration and dried *in vacuo*. Yield: 0.160 g, 47%. Required for C₅H₁₂Br₄Se₂Te: C, 8.9; H, 1.8. Found: C, 8.9; H, 1.8%. ¹H NMR (CD₂Cl₂, 298 K): 2.10 (br m, [2H], CH₂CH₂CH₂), 2.21 (br s, [6H], SeCH₃), 2.83 (m, [4H], CH₂CH₂CH₂). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 183 K): 1455 (s). ⁷⁷Se{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 183 K): 169 (s).

[TeCl₄{o-C₆H₄(SeMe)₂}]

TeCl₄ (0.271 g, 1.01×10^{-3} mol) was suspended in CH₂Cl₂ (20 mL), and the mixture was cooled to 0 °C. With stirring, $o-C_6H_4(SeMe)_2$ (0.263 g, 9.97×10^{-4} mol) was added giving a very deep red solution. After stirring for approximately 30 min, the solution had become almost clear, and was then concentrated *in vacuo* to *ca.* 10 mL. The resulting dark red precipitate, was collected by filtration, washed with a small amount of CH₂Cl₂ and dried *in vacuo*. Storage of the filtrate at *ca.* –18 °C yielded single crystals suitable for X-ray diffraction. Yield: 0.388 g, 73%. Required for C₈H₁₀Cl₄Se₂Te: C, 18.0; H, 1.9. Found: C,

17.3; H, 2.3%. ¹H NMR (CD₂Cl₂, 298 K): 2.74 (s, [6H], Me), 7.39 (m, [2H], aromatic H), 7.49 (m, [2H], aromatic H). ⁷⁷Se{¹H} NMR (CH₂Cl₂/CD₂Cl₂, 298 K): 272; (193 K): 291. IR (Nujol/cm⁻¹): 235, 287 Te–Cl. Raman (cm⁻¹): 226, 244, 272, 296 Te–Cl.

Reaction of TeX_4 (X = F, Cl or Br) with $TeMe_2$

¹H/¹⁹F NMR experiments

A 5 mm diameter NMR tube was loaded with *ca*. 0.01 g of the appropriate tellurium halide. Against a flow of N_2 , CD_2Cl_2 was added followed by *ca*. 0.01 mL of TeMe₂.

¹²⁵Te{¹H} NMR experiments

A 10 mm diameter NMR tube was loaded *ca*. 0.03 g of the appropriate tellurium halide. Against a flow of N₂, a mixture of CD_2Cl_2 and CH_2Cl_2 was added, followed by *ca*. 0.02 mL of TeMe₂.

In all cases an immediate black precipitate formed, identified as elemental Te by powder XRD. The supernatants were examined by multinuclear NMR spectroscopy at 295 K, each showing only one significant new resonance in addition to residual TeMe₂ [¹H NMR (CD₂Cl₂): 1.91 (s, ¹J_{TeH} = 22 Hz); ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 295 K): -16.9 (s); note the substantial solvent shift for the ¹²⁵Te resonance compared to neat TeMe₂, $\delta = 0^{49}$). The small variations between the ¹²⁵Te chemical shifts reported in the present work and the literature data are due to similar sensitivities to solvent and concentration, but set against the very wide chemical shift range of tellurium are unequivocal confirmation of the products.]

X = F: ¹H NMR (CD₂Cl₂ 295 K): 2.57 (t, ¹ J_{TeH} = 7 Hz). ¹⁹F{¹H} (CD₂Cl₂ 295K): -123.5(s, ¹ J_{125TeF} = 860 Hz). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 295 K): +1207 (t, ¹ J_{125TeF} = 860 Hz). [Lit:^{35 1}H NMR (CDCl₃ 298 K): 2.57 (t, ¹ J_{TeH} = 7 Hz). ¹⁹F{¹H} (CDCl₃ 298 K): -124.9 (s, ¹ J_{125TeF} = 871 Hz). Proton coupled ¹²⁵Te NMR (CDCl₃, 298 K): +1232 (t of sept)].

 \dot{X} = Cl: ¹H NMR (CD₂Cl₂ 295 K): 3.12 (s, ¹J_{TeH} = 25 Hz). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 295 K): +739 (s). [Lit.³⁴ (neat liquid): ¹H NMR (295 K): 3.13 (s, ¹J_{TeH} = 26 Hz). ¹²⁵Te NMR (neat liquid by INDOR₂, 295 K): +749 (s)].

X = Br: ¹H NMR (CD₂Cl₂ 295 K): 3.20 (s, ¹ J_{TeH} = 25 Hz). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 295 K): +653 (s). [Lit.³⁴ (neat liquid): ¹H NMR (295 K): 3.19 (s, ¹ J_{TeH} = 26 Hz). ¹²⁵Te NMR (neat liquid by INDOR₂, 295 K): +669 (s)].

The reaction mixture from the TeBr₄ reaction deposited colourless crystals over a few days which were identified as the hydrolysis product $Me_2BrTe(\mu-O)TeMe_2Br$ by an X-ray crystal structure.

trans-[TeCl₄(tht)₂]

TeCl₄ (0.269 g, 9.98 × 10^{-4} mol) was suspended in CH₂Cl₂ (20 mL) at room temperature, and tht (0.175 mL, 0.175 g, 1.98×10^{-3} mol) was added, causing a rapid colour change to orange-brown. After heating briefly, the mixture was stirred at room temperature for approximately 1 h, and then filtered.

The filtrate was concentrated *in vacuo* to *ca.* 7 mL, over-layered with hexane (20 mL) and stored at *ca.* –18 °C. A large mass of nearly black X-ray quality crystals appeared over a period of a few days. These were collected by filtration, washed with hexane and dried *in vacuo*. Yield: 0.180 g, 40%. Required for $C_8H_{16}Cl_4S_2Te:$ C, 21.5; H, 3.6. Found: C, 20.9; H, 3.3%. ¹H NMR (CD₂Cl₂, 298 K): 2.10 (m, [8H], CH₂), 3.25 (m, [8H], CH₂). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂): 1500 (295 K); 1475 (183 K). IR (Nujol/cm⁻¹): 248 br Te–Cl. Raman (cm⁻¹): 255, 283 Te–Cl.

trans-[TeBr₄(tht)₂]

Analogous procedure, using TeBr₄ (0.224 g, 5.01×10^{-4} mol) and tht (0.09 mL, 0.09 g, 1.02×10^{-3} mol). Black crystals. Yield: 0.182 g, 58%. Required for C₈H₁₆Br₄S₂Te: C, 15.4; H, 2.6. Found: C, 15.5; H, 2.5%. ¹H NMR (CD₂Cl₂, 298 K): 2.10 (m, [8H], CH₂), 3.28 (m, [8H], CH₂). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 193 K): 1507.

[TeCl₄{MeS(CH₂)₃SMe}]

TeCl₄ (0.265 g, 9.84 \times 10⁻⁴ mol) was suspended in CH₂Cl₂ (20 mL) and stirred at room temperature. MeS(CH₂)₃SMe $(0.14 \text{ mL}, 0.14 \text{ g}, 1.04 \times 10^{-3} \text{ mol})$ was added, causing a rapid change from colourless to bright orange. After stirring for 1 h, the mixture was filtered to remove excess TeCl₄. The orange filtrate was concentrated in vacuo to ca. 5 mL, which caused the precipitation of an orange solid. Addition of hexane (20 mL) caused further precipitation, and the product was collected by filtration, washed with hexane and dried in vacuo. Yield: 0.235 g, 59%. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a CH₂Cl₂ solution. Required for C₅H₁₂Cl₄S₂Te: C, 14.8; H, 3.0. Found: C, 14.1; H, 2.6%. ¹H NMR (CDCl₃, 298 K): 2.28 (quintet, [2H], CH₂), 2.51 (s, 6H, Me), 3.06 (t, [4H], SCH₂); (400 MHz, CD₂Cl₂, 183 K): 2.32 (br, [2H], CH₂), 2.56 (br s, [6H], Me), 3.13 (br, [4H], SCH₂). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 203 K): 1517 (s). IR (Nujol/cm⁻¹): 248, 261, 278, 290 Te–Cl.

[TeBr₄{MeS(CH₂)₃SMe}]

Analogous procedure, using TeBr₄ (0.446 g, 9.97×10^{-4} mol) and MeS(CH₂)₃SMe (0.14 mL, 0.14 g, 1.04×10^{-3} mol). Bright red solid. Yield: 0.171 g, 30%. ¹H NMR (CDCl₃, 298 K): 2.28 (quintet, [2H], CH₂), 2.58 (s, [6H], Me), 3.05 (t, [4H], SCH₂); (400 MHz, CD₂Cl₂, 183 K): 2.34 (br, [2H], CH₂), 2.69 (br s, [6H], Me), 3.12 (br s, [4H], SCH₂). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 223 K): 1705 (s).

$[TeCl_4{o-C_6H_4(SMe)_2}]_n$

TeCl₄ (0.265 g, 9.84 × 10⁻⁴ mol) was suspended in CH₂Cl₂ (20 mL), and the mixture was cooled to 0 °C with the aid of an external ice-bath. With stirring, *o*-C₆H₄(SMe)₂ (0.15 mL, 0.17 g, 9.98 × 10⁻⁴ mol) was added, which caused a rapid change from colourless to intense orange-yellow. The mixture was allowed to stir at 0 °C for a further 2 h, warmed to room temperature for a

period of approximately 30 min and then filtered to remove any unreacted TeCl₄. The clear orange filtrate was concentrated *in vacuo* to *ca*. 5 mL, layered with hexane (15 mL) and refrigerated. Large bright-red crystals formed over a few days, which were collected by filtration, washed with hexane and dried *in vacuo*. Yield: 0.254 g, 59%. Required for $C_8H_{10}Cl_4S_2Te: C$, 21.8; H, 2.3. Found: C, 21.3; H, 2.6%. ¹H NMR (300 MHz, CDCl₃, 298 K): 2.69 (s, [6H], Me), 7.32 (m, [4H], aromatic H); (400 MHz, CD_2Cl_2, 183 K): 2.72 (s, [6H], Me), 7.33 (br, [2H], aromatic H), 7.37 (br, [2H], aromatic H). IR (Nujol/cm⁻¹): 250, 282, 323, 337 Te–Cl.

$[TeCl_4 \{ o\text{-}C_6H_4(CH_2SMe)_2 \}]$

A Schlenk tube was loaded with TeCl₄ (0.266 g, 9.87×10^{-4} mol) and $o-C_6H_4(CH_2SMe)_2$ (0.201 g, 1.01×10^{-3} mol). CH₂Cl₂ (20 mL) was added at room temperature, causing the rapid formation of an orange suspension. This was stirred for a further 2 h, then filtered. Owing to the low solubility of this compound, it was washed several times with CH₂Cl₂ to separate it from any unreacted TeCl₄. The orange extracts were combined and concentrated in vacuo, causing the precipitation of an orange solid. After addition of hexane (20 mL), the product was collected by filtration, washed with hexane and dried in vacuo. Yield: 0.217 g, 47%. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a CH₂Cl₂ solution. Required for C10H14Cl4S2Te: C, 25.7; H, 3.0. Found: C, 26.2; H, 3.4%. ¹H NMR (CD₃CN, 298 K): 2.40 (s, [6H], Me), 4.04 (s, [4H], CH₂), 7.32 (m, [2H], aromatic H), 7.39 (m, [2H], aromatic H); (400 MHz, CD₂Cl₂, 183 K): 2.65 (br s, [6H], Me), 4.07 (br s, [4H], CH₂), 7.40 (br, [2H], aromatic H), 7.46 (br, [2H], aromatic H). ¹²⁵Te{¹H} NMR (CD₂Cl₂/CH₂Cl₂, 193 K): 1433 (s). IR (Nujol/cm⁻¹): 256, 265, 284, 303 Te–Cl.

[TeBr₄{o-C₆H₄(CH₂SMe)₂}]

A Schlenk tube was loaded with TeBr₄ (0.445 g, 9.95×10^{-4} mol) and o-C₆H₄(CH₂SMe)₂ (0.203 g, 1.02×10^{-3} mol). THF (20 mL) was added, and with stirring the mixture was heated to reflux. The resulting clear red solution was filtered while hot. Upon cooling, the filtrate began to deposit a deep-red solid. Concentration *in vacuo* to *ca*. 5 mL caused further precipitation, leaving the supernatant almost colourless. The product was collected by filtration, washed with hexane (10 mL) and dried *in vacuo*. Yield: 0.400 g, 62%. Required for C₁₀H₁₄Br₄S₂Te: C, 18.6; H, 2.2. Found: C, 19.0; H, 2.1%. ¹H NMR (CD₃CN, 298 K): 2.07 (s, [6H], Me), 3.88 (s, [4H], CH₂), 7.24 (m, [2H], aromatic H), 7.28 (m, [2H], aromatic H).

$[\text{TeCl}_4([14]] \text{aneS}_4)]_n$

TeCl₄ (0.077 g, 2.86×10^{-4} mol) and [14]aneS₄ (0.078 g, 2.90×10^{-4} mol) were loaded into a Schlenk tube, and THF (20 mL) was added forming a clear, colourless solution. After stirring at room temperature for one hour, the THF was removed *in vacuo* leaving a yellow solid residue. Addition of CH₂Cl₂ (20 mL) gave a yellow suspension, and the solid yellow product was removed by filtration and washed with CH₂Cl₂.

Concentration of the filtrate and storage at *ca.* -18 °C furnished a few small yellow crystals suitable for X-ray diffraction. IR (Nujol/cm⁻¹): 240 br, 265, 278, 314 Te–Cl. Raman (cm⁻¹): 262, 280, 343 Te–Cl.

X-ray crystallography

Summary details of the crystallographic data collection and refinement are given in Table 2. Crystals were obtained as described above. Data collection used a Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn724+ detector mounted at the window of an FR-E+ SuperBright molybdenum rotating anode generator with VHF Varimax optics (100 μ m focus) with the crystal held at 100 K (N₂ cryostream) or a Bruker-Nonius FR591 rotating anode diffractometer fitted with confocal mirrors and with the crystal held at 120 K (N₂ cryostream)([TeCl₄{MeS(CH₂)₃SMe}], [TeCl₄{*o*-C₆H₄(SMe)₂]_{*n*}). Structure solution and refinement were straightforward,^{50,51} except as detailed below, with H atoms being placed in calculated positions using the default C–H distance. For [TeCl₄{MeS-(CH₂)₃SMe}] the systematic absences suggested space group *I*₄/*a* (Laue group 4/*m*), but there was a query over the *hhl* reflections which suggested space group *I*₄/*amd* (Laue group 4/*mmm*). In practice, attempts to refine the structure in *I*₄/*amd*

 Table 2
 Crystal data and structure refinement details^a

Compound	[TeF ₄ (OPMe ₃)]	[TeF ₄ (OPPh ₃)]	[TeCl ₄ (SeMe ₂) ₂]	[TeBr ₄ (SeMe ₂) ₂]	$[\text{TeCl}_4 \{o - C_6 H_4 (\text{SeMe})_2\}]$	$(BrMe_2Te)_2O \cdot 0.6CH_2Cl_2$	$[\text{TeCl}_4\{o\text{-} \\ C_6H_4(\text{SMe})_2\}],$
Formula	C ₃ H ₉ F ₄ OPTe	C ₁₈ H ₁₅ F ₄ OPTe	$\mathrm{C_4H_{12}Cl_4Se_2Te}$	$C_4H_{12}Br_4Se_2Te$	$\mathrm{C_8H_{10}Cl_4Se_2Te}$	C ₄ H ₁₂ Br ₂ OTe ₂ · 0.6CH ₂ Cl ₂	$C_8H_{10}S_2Cl_4Te$
М	295.67	481.87	487.46	665.30	533.48	542.11	439.68
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Cubic	Orthorhombic
Space group (no.)	$P2_{1}2_{1}2_{1}$ (19)	$P2_1/n$ (14)	$P2_1/n$ (14)	$P2_1/n$ (14)	$P2_1/m$ (11)	Ia3̄d (230)	$Pna2_{1}(33)$
a(Å)	6.500(4)	9.933(3)	6.487(2)	6.720(2)	6.804(3)	25.509(3)	10.038(2)
$b(\mathbf{A})$	10.790(5)	18.151(5)	12.872(4)	13.138(4)	10.725(5)	25.509(3)	14.622(2)
$c(\mathbf{A})$	12.442(8)	10.604(7)	8.215(3)	8.486(3)	9.969(5)	25.509(3)	9.5760(10)
α (°)	90	90	90	90	90	90	90
$\beta(\circ)$	90	113.90(4)	108.245(8)	107.967(5)	99.156(7)	90	90
γ (°)	90	90	90	90	90	90	90
$U(Å^3)$	872.6(9)	1747.9(14)	651.4(4)	712.7(4)	718.3(6)	16 599(4)	1405.5(4)
Z	4	4	2	2	2	48	4
μ (Mo-K _{α}) (mm ⁻¹)	3.598	1.836	8.641	18.361	7.850	10.187	3.140
F(000)	552	936	448	592	492	11 674	840
Total number reflns	2336	7751	3103	2502	3583	34 117	16 155
R _{int}	0.019	0.018	0.019	0.020	0.028	0.026	0.032
Unique reflns	1815	3965	1475	1387	1717	1585	3181
No. of params,	94, 0	226, 0	54,0	54, 0	74, 0	54,0	138, 1
restraints	, ,		·	, ,	, ,	,	
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.014, 0.033	0.018, 0.043	0.016, 0.034	0.020, 0.035	0.034, 0.080	0.029, 0.077	0.020, 0.038
R_1 , w R_2 (all data)	0.014, 0.034	0.020, 0.044	0.019, 0.034	0.023, 0.036	0.045, 0.084	0.031, 0.078	0.022, 0.039

^{*a*} Common items: temperature = 100 K; wavelength (Mo-K_a) = 0.71073 Å; $\theta(\max) = 27.5^{\circ}$. ^{*b*} $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$; $wR_2 = [\Sigma w(F_0^2 - F_c^2)^2/\Sigma wF_0^4]^{1/2}$.

Compound	[TeCl ₄ {MeS- (CH ₂) ₃ SMe}]	$[\text{TeCl}_4 \{o\text{-}\text{C}_6\text{H}_4\text{-} (\text{CH}_2\text{SMe})_2\}]$	[TeCl ₄ (tht) ₂]	[TeBr ₄ (tht) ₂]	$\begin{array}{l} [Br_3(tht)Te(\mu\text{-}Br)_2\text{-}\\ TeBr_3(tht)] \end{array}$	$[\text{TeCl}_4\text{-} ([14]\text{aneS}_4)]_n$
Formula M Crystal system Space group (no.) a (Å) b (Å) c (Å) α (°) β (°) γ (°) U (Å ³) Z	$\begin{array}{c} C_5H_{12}Cl_4S_2Te\\ 405.67\\ Tetragonal\\ I4_1/a\ (88)\\ 9.881(3)\\ 9.881(3)\\ 26.388(8)\\ 90\\ 90\\ 90\\ 90\\ 2576.4(14)\\ 8\end{array}$	$\begin{array}{c} C_{10}H_{14}Cl_4S_2Te\\ 467.73\\ Orthorhombic\\ Pnma~(62)\\ 19.451(3)\\ 11.603(2)\\ 7.1757(10)\\ 90\\ 90\\ 90\\ 90\\ 1619.5(4)\\ 4\end{array}$	$\begin{array}{c} C_8 H_{16} Cl_4 S_2 Te \\ 445.73 \\ Monoclinic \\ P2_1/n (14) \\ 7.882(3) \\ 9.450(3) \\ 10.280(5) \\ 90 \\ 97.08(2) \\ 90 \\ 759.8(5) \\ 2 \end{array}$	$\begin{array}{c} C_8H_{16}Br_4S_2Te\\ 623.57\\ Monoclinic\\ P2_1/n\ (14)\\ 8.624(2)\\ 7.5542(12)\\ 12.754(2)\\ 90\\ 109.630(5)\\ 90\\ 782.6(3)\\ 2\end{array}$	$\begin{array}{c} C_8 H_{16} Br_8 S_2 Te_2 \\ 1070.81 \\ Triclinic \\ P\overline{1} (2) \\ 8.502(3) \\ 8.623(3) \\ 8.734(3) \\ 71.099(5) \\ 87.043(6) \\ 72.783(5) \\ 577.9(3) \\ 1 \end{array}$	$\begin{array}{c} C_{10}H_{20}Cl_4S_4Te\\ 537.90\\ Monoclinic\\ P2_1/n\ (14)\\ 9.080(2)\\ 20.950(5)\\ 9.990(4)\\ 90\\ 96.068(7)\\ 90\\ 1889.8(9)\\ 4\end{array}$
$Z = \mu(\text{Mo-K}_{\alpha}) \text{ (mm}^{-1})$ $F(000) = \text{Total number refins}$ $R_{\text{int}} = \text{Unique refins}$ No. of params, restraints $R_1, wR_2 [I > 2\sigma(I)]^b$ $R_1, wR_2 (all data) = \text{Total}$	8 3.416 1552 12 362 0.054 1596 58, 0 0.041, 0.067 0.042, 0.067	4 2.732 904 12 485 0.029 1937 83, 0 0.020, 0.042 0.021, 0.043	2 2.905 432 4432 0.019 1721 70, 0 0.013, 0.031 0.014, 0.032	2 12.350 576 5336 0.024 1774 70, 0 0.018, 0.041 0.020, 0.042	1 16.523 480 5419 0.023 2630 91, 0 0.019, 0.037 0.022, 0.038	4 2.567 1056 13 343 0.044 4293 172, 0 0.032, 0.060 0.047, 0.065

failed, while refinement in space group $I4_1/a$ using a TWIN/ BASF command led to successful refinement. The structure of (BrMe₂Te)₂O was found to contain a partially occupied (0.6) disordered CH₂Cl₂ solvent molecule which was evident as three Q peaks close together which were modelled as fractional Cl atoms. There were two recognisable CH₂Cl₂ residues (from Cl···Cl distances). Cl1···Cl1' (atom C3 was located) and Cl2···Cl3 as overlapping solvate molecules (no C atom was located for this).

Acknowledgements

We thank EPSRC for support (EP/I010890/1) and Dr M. Webster for assistance with the X-ray crystallographic analyses.

References

- 1 Comprehensive Coordination Chemistry II, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Oxford, 2004.
- 2 P. O'Brien and N. L. Pickett, in *Comprehensive Coordination Chemistry II*, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Oxford, 2004, vol. 9, p. 1005.
- 3 M. A. Malik, M. Afzaal and P. O'Brien, Chem. Rev., 2010, 110, 4417.
- 4 D. E. Reichert, J. S. Lewis and C. J. Anderson, *Coord. Chem. Rev.*, 1999, 184, 3.
- 5 C. J. Anderson and M. J. Webb, Chem. Rev., 1999, 99, 2219.
- 6 W. Levason, G. Reid and W. Zhang, Dalton Trans., 2011, 40, 8491.
- 7 W. Levason and G. Reid, J. Chem. Soc., Dalton Trans., 2001, 2953.
- 8 F. J. Berry, in *Comprehensive Coordination Chemistry I*, ed. J. A. McCleverty, R. D. Gillard and G. Wilkinson, Pergamon, Oxford, 1987, vol. 3, p. 299.
- 9 S. A. Shlykov, N. I. Giricheva, A. V. Titov, M. Szwak, D. Lenz and G. V. Girichev, *Dalton Trans.*, 2010, **39**, 3245.
- 10 D. Lenz and M. Szwak, Angew. Chem., Int. Ed., 2005, 44, 5079.
- 11 C. Gurnani, M. Jura, W. Levason, R. Ratnani, G. Reid and M. Webster, Dalton Trans., 2009, 4122.
- 12 I. Haiduc, R. B. King and M. G. Newton, Chem. Rev., 1994, 94, 301.
- 13 W. Levason, G. Reid, M. Victor and W. Zhang, *Polyhedron*, 2009, 28, 4010.
- 14 C. J. Carmalt, N. C. Norman and L. J. Farrugia, *Polyhedron*, 1995, 14, 1495.
- 15 S. M. Narhi, R. Oilunkaniemi, R. S. Laitinen and M. Ahlgren, *Inorg. Chem.*, 2004, 43, 3742.
- 16 J. S. Dutton, R. Tabeshi, M. C. Jennings, A. L. Lough and P. J. Ragogna, *Inorg. Chem.*, 2007, 46, 8594.
- 17 A. J. Edwards and F. E. Hewaidy, J. Chem. Soc. A, 1968, 8, 2977.
- R. Kniep, L. Korte and R. Kryschi, *Angew. Chem., Int. Ed. Engl.*, 1984, 23, 388.
- 19 K. O. Christe, E. C. Curtis, C. J. Schack and D. Philipovich, *Inorg. Chem.*, 1972, 11, 1679, and ref. therein.
- 20 A. R. Mahjoub, D. Leopold and K. Seppelt, Z. Anorg. Allg. Chem., 1992, 618, 83.
- 21 A. R. Mahjoub, X. Zhang and K. Seppelt, Chem.-Eur. J., 1995, 1, 261.
- 22 See web-site www.ccdc.cam.ac.uk/products/csd/radii for values used; literature reference isB. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan and S. Alvarez, *Dalton Trans.*, 2008, 2832.

- 23 M. F. Davis, M. Clarke, W. Levason, G. Reid and M. Webster, *Eur. J. Inorg. Chem.*, 2006, 2773.
- 24 N. W. Mitzel, U. Losehand and K. Vojinovic, *Inorg. Chem.*, 2001, 40, 5302.
- 25 J. P. Guertin and M. Onyszchuk, Can. J. Chem., 1968, 46, 988.
- 26 W. Levason, M. E. Light, S. Maheshwari, G. Reid and W. Zhang, *Dalton Trans.*, 2011, 40, 5291.
- 27 K. George, A. L. Hector, W. Levason, G. Reid, G. Sanderson, M. Webster and W. Zhang, *Dalton Trans.*, 2011, 40, 1584.
- 28 F. Cheng, M. F. Davis, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, *Eur. J. Inorg. Chem.*, 2007, 2488.
- 29 M. F. Davis, W. Levason, G. Reid and M. Webster, *Polyhedron*, 2006, 25, 930.
- 30 A. Augustine, G. Ferguson and F. C. Marsh, Can. J. Chem., 1975, 53, 1647.
- 31 H. Poleschner and K. Seppelt, Angew. Chem., Int. Ed., 2008, 47, 6461.
- 32 C. Gurnani, W. Levason, R. Ratnani, G. Reid and M. Webster, *Dalton Trans.*, 2008, 6274.
- 33 W. Levason, L. P. Ollivere, G. Reid and M. Webster, J. Organomet. Chem., 2010, 695, 1346.
- 34 H. C. E. McFarlane and W. McFarlane, J. Chem. Soc., Dalton Trans., 1973, 2416.
- 35 T. Klapötke, B. Krumm, P. Mayer, H. Piotrowski, O. P. Ruscitti and A. Schiller, *Inorg. Chem.*, 2002, 41, 1184.
- 36 N. J. Hill, W. Levason and G. Reid, J. Chem. Soc., Dalton Trans., 2002, 1188.
- 37 G. Baum, A. Greiling, W. Massa, B. C. Hiu and J. Lorberth, Z. Naturforsch. B: Chem. Sci., 1989, 44, 560.
- 38 H. J. Breunig, M. Denker, R. E. Schulz and E. Lork, Z. Anorg. Allg. Chem., 1998, 624, 81.
- 39 K.-Y. Akiba and Y. Yamamoto, in *The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds*, ed. S. Patai and Z. Rappoport, Wiley, New York, 1994, p. 761.
- 40 Z.-Z. Huang, S. Ye, W. Xia, Y.-H. Yu and Y. Tang, J. Org. Chem., 2002, 67, 3096.
- 41 J. Beckmann, J. Bolsinger and J. Spandl, J. Organomet. Chem., 2008, 693, 957.
- 42 J. R. Black, N. R. Champness, W. Levason and G. Reid, *Inorg. Chem.*, 1996, 35, 1820.
- 43 G. Reid and W. Levason, in *Supramolecular Chemistry: from Molecules to Nanomaterials*, ed. J. W. Steed and P. A. Gale, John Wiley & Sons Ltd, Chichester, UK, 2012, p. 785.
- 44 R. E. DeSimone and M. D. Glick, J. Am. Chem. Soc., 1975, 97, 942.
- 45 A. J. Barton, N. J. Hill, W. Levason and G. Reid, J. Chem. Soc., Dalton Trans., 2001, 1621; N. J. Hill, W. Levason and G. Reid, Inorg. Chem., 2002, 41, 2070; W. Levason, M. L. Matthews, R. Patel, G. Reid and M. Webster, New J. Chem., 2003, 27, 1784; F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, Chem. Commun., 2008, 5508; A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, Dalton Trans., 2011, 40, 694.
- 46 D. Lenz, H. Pritzkow and K. Seppelt, Inorg. Chem., 1978, 17, 1926.
- 47 W. Levason and G. Reid, in *Comprehensive Coordination Chemistry II*, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Oxford, 2004, vol. 1, p. 391.
- 48 W. Levason, M. Nirwan, R. Ratnani, G. Reid, N. Tsoureas and M. Webster, *Dalton Trans.*, 2007, 439.
- 49 N. P. Luthra and J. D. Odom, in *The Chemistry of Organic Selenium and Tellurium Compounds*, ed. S. Patai and Z. Rappoport, Wiley, New York, 1986, vol. 1, p. 189.
- 50 G. M. Sheldrick, SHELXS-97, Program for crystal structure solution, University of Göttingen, Germany, 1997.
- 51 G. M. Sheldrick, SHELXL-97, Program for crystal structure refinement, University of Göttingen, Germany, 1997.