Letters to the Editor

Synthesis of primary phosphines from phosphine and arylethylenes

N. K. Gusarova, S. N. Arbusova, S. F. Malysheva, M. Ya. Khil'ko, A. A. Tatarinova, V. G. Gorokhov, and B. A. Trofimov*

Irkutsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences,
1 ul. Favorskogo, 664033 Irkutsk, Russian Federation.
Fax: +7 (395 2) 466 434

Phosphine is known to add to styrene in hexane in the presence of radical initiators under elevated (28–30 atm) pressure at 70 °C giving (2-phenylethyl)phosphine, bis(2-phenylethyl)phosphine, and tris(2-phenylethyl)phosphine in 36, 29, and 6 % yields respectively.¹

We have found that (2-phenylethyl)phosphine (1) and (2-methyl-2-phenylethyl)phosphine (2) can be obtained under normal pressure from styrene or α -methylstyrene and phosphine generated, along with hydrogen, from red phosphorus and saturated aqueous solution of alkali metal hydroxide. Phosphorylation takes place by the action of a superstrong base when phosphine—hydrogen mixture is vigorously passed through a suspension of KOH/DMSO heated up to 50–55 °C and simultaneously 1-phenylalkene is slowly added to the reaction vessel. The yield of primary phosphines (1, 2) is 20-30 % (not optimized).

$$Ph(R)C=CH_2 + PH_3(H_2) \xrightarrow{KOH/DMSO} Ph(R)CHCH_2PH_2$$

$$R = H (1), Me (2)$$
1,2

In the absence of KOH no reaction occurs, which is evidence of its nucleophilic character.

(2-Phenylethyl)phosphine (1). To a suspension of 10 g of KOH, 40 mL of DMSO, and 6.45 mL of water saturated with phosphine-hydrogen mixture (obtained in accordance with a known procedure²), a solution of 2.96 g of styrene in 10 mL of DMSO was added dropwise over 4 h at 55–57 °C with continuous bubbling of phosphine-hydrogen mixture at a rate of 20–25 mL min⁻¹. The reaction mixture was stirred for 2 h

at 50—55 °C with a flow of phosphine, then cooled, flushed with nitrogen, diluted with water, and extracted with ether. Ethereal extracts were washed with water and dried over K_2CO_3 . Ether was evaporated, and the residue was fractionated in vacuo to give 1.05 g (20 %) of phosphine 1, b.p. 46—48 °C (1 Torr), n_D^{20} 1.5532 (see Ref. 1: b.p. 75 °C (8 Torr), n_D^{20} 1.5494; see Ref. 3: b.p. 73 °C (3 Torr), n_D^{20} 1.5565). ³¹P NMR (CDCl₃, δ): -139.7 (J_{H-P-H} = 198 Hz). IR, v/cm^{-1} : 2280 (P-H). Found (%): C, 69.05; H, 7.88; P, 21.98. C_8H_{11} P. Calculated (%): C, 69.55; H, 8.03; P, 22.42.

(2-Methyl-2-phenylethyl)phosphine (2) was prepared as described above from α-methylstyrene and phosphine in 30 % yield, b.p. 65–67 °C (2 Torr), $n_{\rm D}^{20}$ 1.5482. ³¹P NMR (CDCl₃, δ): -148.6 ($J_{\rm H-P-H}$ = 198 Hz). IR, v/cm⁻¹: 2280 (P—H). Found (%): C, 71.45; H, 8.28; P, 19.95. C₉H₁₃P. Calculated (%): C, 71.04; H, 8.61; P, 20.35.

The work was performed under financial support of the Russian Foundation for Basic Research (Grant No. 93-03-18389).

References

- M. M. Rauhut, H. A. Currier, A. M. Semsel, and V. P. Wystrach, J. Org. Chem., 1961, 26, 5138.
- B. A. Trofimov, L. Brandsma, S. N. Arbuzova, S. F. Malysheva, and N. K. Gusarova, *Tetrahedron Lett.*, 1994, 35, 7647.
- G. M. Bogolyubov and A. A. Petrov, Zh. Org. Khim., 1963,
 33, 3774 [J. Org. Chem. USSR, 1963, 33 (Engl.Transl.)].

Received February 3, 1995; in revised form April 11, 1995