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The hybrid complex consist of molybdenylacetylacetonate complex covalently linked to a lacunary
Keggin-type polyoxometalate, K8[SiW11O39] (POM), was synthesized and characterized by elemental
analysis, SEM, XRD, diffuse reflectance UV–Vis and FT-IR spectroscopic methods. The hybrid complex,
[MoO2(acac)–POM] (1), was used for alkene epoxidation with tert-BuOOH in 1,2-dichloroethane as sol-
vent. The complex (1) can catalyze epoxidation of various olefins including non-activated terminal ole-
fins. The effect of reaction parameters such as oxidant, solvent, and temperature on the epoxidation of
cyclooctene was also investigated. This heterogeneous catalyst was reused several times in the oxidation
of cyclooctene.

� 2009 Elsevier B.V. All rights reserved.
Applying and using heterogeneous catalysts offers numerous
advantages in contrast to corresponding homogeneous com-
pounds. For instance, better stability, separation, and simple recov-
ery and recycling. Distinct methodologies have been developed for
the immobilization of homogeneous catalysts or the creation of
heterogeneous catalysts [1]. Heterogeneous catalysts have played
a vast role in many reactions such as oxidation. Academic and
industrial interest is drawn to epoxidation of alkenes and reaction
products based on epoxides [2]. Surfactants, detergents, antistatic
agents and corrosion protection agents, lubricating oils, textiles
and cosmetics are technically vital products obtained from the
reaction of epoxides [3]. Above all, valuable organic intermediates
such as cyclooctene and cyclohexene oxides are employed in the
synthesis of pesticides, chiral pharmaceuticals, rubber promoters,
epoxy paints and dyestuff products [4].

Among the various metals used as catalysts, molybdenum is
one of the most important. It is the only second row transition me-
tal essential for life. Many homogeneous and heterogeneous cata-
lysts of molybdenum have been synthesized and used up to date
[5–11], especially in the oxidation of alkenes [12–16], sulfoxidation
and hydrosilylation of carbonyl groups [17], hydrodesulfurization
[18], synthesis of metal containing polymers [19], optical and elec-
trochemical sensors to enhance selectivity and sensitivity [20],
DNA interactions [21], nitrate reduction [22–24], and lots of other
reactions. Several heterogeneous dioxomolybdenum(VI) com-
ll rights reserved.
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plexes have also been synthesized [25–27] and have been good
catalyst precursors for olefin epoxidation [28,29].

Many catalysts show good results when hybridized. Among
some capable hybrid compounds are metal–organic–polyoxometa-
lates [30] and metal Schiff bases hybridized with polyoxometalates
[31]. Several of these metal complexes have been synthesized and
studied towards various reactions [32–36]. A major drawback in
these catalysts is that they are homogeneous and have difficulties
in being separated. Different approaches have been used to turn
homogenous catalysts into heterogeneous counterparts by hybrid-
izing different materials.

In this article, a hybrid compound, by combining the properties
of molybdenylacetylacetonate and a Keggin-type polyoxometalate,
was synthesized and used as a heterogeneous and efficient catalyst
for the epoxidation of olefins with tert-BuOOH. The effect of differ-
ent solvents, oxidants, and temperatures on the activity and selec-
tivity of the catalyst was also studied (Scheme 1).

The MoO2(acac)2 was prepared as reported in the literature
[37]. The lacunary Keggin-type polyoxometalate, K8[SiW11O39]
(POM) was prepared and characterized as reported by Tézé and
Hervé [38], and the tetrahexylammmonium salt of {SiW11O39

[O(SiR)2]}4� in which R is CH2CH2NH2�HCl was synthesized as re-
ported by Neumann and coworkers [31].

The [MoO2(acac)–POM] complex was synthesized using the
Q4{SiW11O39[O(SiR)2]} precursor and a modified procedure
(Scheme 2) [39]. Several attempts to prepare its single crystal were
failed. Therefore, hybrid complex was characterized by elemental
analysis, SEM, diffuse reflectance UV–Vis and FT-IR spectroscopic
methods and powder X-ray diffraction.
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Fig. 1. DR UV–Vis spectrum of [MoO2(acac)–POM].
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Scheme 1.
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Primary evidence of the electronic effect of the polyoxometalate
on the MoO2(acac)2 was observed in the UV–Vis spectra. As seen in
Fig. 1, the hybrid MoO2(acac)–POM, has a different UV–Vis spec-
trum from the un-hybrided MoO2(acac)2. The MoO2(acac)2 has a
kmax at 410 nm which is recognized as the O(pp) ? Mo(dp)
charge-transfer transition [40]. This is shifted to 362 nm in the
MoO2(acac)–POM complex. This shift may be deducted to an intra-
molecular effect of the POM on the MoO2(acac)2 and/or strong sig-
ma donor nature of the amine ligands, when one of the acac ligands
is replaced with two strong sigma donors ligands such as amine, it
is expected that the energy of the LMCT band increases.

The SEM images show different morphological surfaces for pure
POM and the referring MoO2(acac)–POM (Fig. 2). The amount of
Mo loading in the supported catalyst was determined by ICP,
which showed a value of 0.198 mmol per gram of catalyst. The
FT-IR spectra shows two distinct bands at 918 and 973 cm�1 which
are attributed to Mo@O vibrations (Fig. 3).

The XRD pattern of POM and [MoO2(acac)–POM] are shown in
Fig. 4. As can be seen, it is clear that MoO2(acac)2 has been success-
fully supported on POM.

The catalytic activity of the prepared catalyst was tested using
cyclooctene as reference alkene. Oxidation was carried out with
tert-BuOOH as an oxidant and in the presence of catalytic amounts
of [MoO2(acac)–POM]. The optimum conditions used for the oxida-
tion of cyclooctene by this catalytic system was catalyst, oxidant,
and substrate in a molar ratio of 1:150:63, respectively. To further
optimize the conditions, different solvents were also used in the
oxidation of cyclooctene with tert-BuOOH. The results showed that
the highest yield obtained in 1,2-dichloroethane and even though
dichloromethane and chloroform also had high yields (Table 1).

The effect of different oxidants such as H2O2, NaIO4, tert-BuOOH
and H2O2/Urea (UHP) was also investigated in the oxidation of
cyclooctene. The results showed that tert-BuOOH is the best oxy-
gen source (Table 2).

The reaction temperature was also optimized by repeating the
reaction in various temperatures. At room temperature (25 �C),
the product yields were low and with increasing the reaction tem-
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Fig. 2. SEM image of: (a) Keggin-type polyoxometalate, K8[SiW11O39] (POM), and
(b) [MoO2(acac)–POM].
perature to 75 �C (refluxing 1,2-DCE), both the conversion and
selectivity increased (Table 3).



Fig. 3. FT-IR spectrum of [MoO2(acac)–POM].

Fig. 4. XRD pattern of: (A) Keggin-type polyoxometalate, K8[SiW11O39] (POM), and (B) [MoO2(acac)–POM].
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Table 1
Effect of solvent on the oxidation of cyclooctene catalyzed by [MoO2(acac)–POM]
under reflux conditions.a

Row Solvent Conversion (%)b after 8 h

1 1,2-Dichloroethane 100
2 CH2Cl2 90
3 CH3COCH3 44
4 CCl4 59
5 CH3CN 50
6 CHCl3 95

a Reaction conditions: cyclooctene (0.5 mmol), tert-BuOOH (1.5 mmol), catalyst
(0.008 mmol), solvent (2 ml).

b GC yield.

Table 2
Effect of different oxidants on the oxidation of cyclooctene catalyzed by [MoO2(a-
cac)2–POM] under reflux conditions.a

Row Oxidant Solvent Conversion (%)b after 8 h

1 H2O2 1,2-DCE 8
2 NaIO4 H2O/CH3CN 36
3 H2O2/Urea (UHP) 1,2-DCE 30
4 tert-BuOOH 1,2-DCE 100
5 No oxidant 1,2-DCE trace

a Reaction conditions: cyclooctene (0.5 mmol), oxidant (1.5 mmol), catalyst
(0.008 mmol).

b GC yield.

Table 3
Effect of temperatures on the oxidation of cyclooctene catalyzed by [MoO2(acac)–
POM].a

Row Temperature (�C) Conversion (%)b after 8 h

1 25 6
2 40 40
3 60 43
4 75 (reflux) 100

a Reaction conditions: cyclooctene (0.5 mmol), tert-BuOOH (1.5 mmol), catalyst
(0.008 mmol), 1,2- DCE (2 ml).

b GC yield.
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Under the optimized conditions which obtained for oxidation of
cyclooctene, different alkenes such as cyclohexene, styrene, a-
methylstyrene, 1-heptene, 1-octene and 1-dodecene were oxi-
dized. The results are shown in Table 4 [41]. Clearly, electron rich
olefins are more reactive than electron poor ones. In the case of
cyclooctene, the cyclooctene oxide was the selective product with
Table 4
Oxidation of alkenes with TBHP catalyzed by [MoO2(acac)–POM].a

Entry Alkene Producta

1
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a Reaction conditions: alkene (0.5 mmol), tert-BuOOH (1.5 mmol), catalyst (0.008 mm
b GLC yield based on starting alkene.
100% yield. Oxidation of cyclohexene gave an allylic oxidation
product, 2-cyclohexene-1-one, which was also the major product,
with 92% yield. In this case the alcohol and enone can arise via
allylic oxidation or via Lewis acid catalyzed rearrangement of the
epoxide, and subsequent elimination and secondary oxidation. To
check this, a base such as pyridine was added to the reaction mix-
ture. The results showed that the distribution of products were as
observed in the absence of pyridine. These observations indicated
that the products were aroused via allylic oxidation. With styrene
and a-methylstyrene the major products were benzaldehyde and
acetophenone, respectively. These products are resulted from the
attack of t-BuOOH to epoxide and cleavage of the respected inter-
mediated as shown in the proposed mechanism (Scheme 3). These
results show that the conjugation of aromatic ring with carbonyl
group stabilizes the products. The great feature of the catalytic
epoxidation with MoO2(acac)–POM is that non-activated terminal
olefins such as 1-heptene and 1-octene, could be proficiently trans-
formed to the corresponding epoxides in high yields.

It was found that the alkenes were not oxidized in the absence
of catalyst or oxidant. Mizuno and coworkers have already exam-
ined the epoxidation of olefins with H2O2 catalyzed by mono-
and tri-vacant lacunary compounds such as [a-SiW11O39]8� and
Conversion (%)b Selectivity (%)b Time (h) TOF (h�1)
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ol), 1,2-dichloroethane (2 ml), T = 75 �C.
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Table 5
Investigation of [MoO2(acac)–POM] reusability in the epoxidation of cyclooctene.a

Run Conversion (%)b after 8 h Amount of Mo leached (%)c

1 100 2.5
2 88 0
3 88 0
4 88 0

a Reaction conditions: cyclooctene (0.5 mmol), tert-BuOOH (1.5 mmol), catalyst
(0.008 mmol), 1,2-DCE (2 ml), T = 75 �C.

b GC yield.
c Determined by ICP.
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[a-SiW9O34]10� and showed that these compounds were inactive
[42]. Here, we used tert-BuOOH towards oxidation of cyclooctene
in the presence of only polyoxometalate and the results were the
same, indicating that the polyoxometalate was almost inactive.

The most advantage of MoO2(acac)–POM catalyst is its hetero-
geneous nature in the oxidation reactions. Therefore, this hetero-
geneous catalyst can be easily recovered and reused.

In order to show the reusability of the catalyst, cyclooctene was
used as model substrate. The reactions were performed as de-
scribed above. At the end of the reaction, the catalyst was filtered
and reused in the next run. The results showed that after the first
run, the amount of epoxides was 88%. This is due to the leaching
phenomenon, in which about 2.5% of initial Mo is leached in the
first run. In the next runs, no Mo was detected in the reaction mix-
ture (Table 5). To check that whether released Mo is being ab-
sorbed on the POM surface or bonded to POM, the catalyst has
been washed thoroughly with water, methanol and diethyl ether,
and used for epoxidation of cyclooctene with tert-BuOOH. The re-
sults showed that the same amount of leaching was observed. This
may due to the trapped Mo which is not been washed with solvent.

In conclusion, we observed that the catalytic activity of MoO2(a-
cac)2 can be modified by a Keggin-type polyoxometalate through
covalent bonding. A strong electronic effect was observed upon
attachment of polyoxometalate, leading to an intramolecular
charge separation and description of (1) as a charge-transfer com-
plex [31,43,44]. The complex (1) exhibits a good catalytic activity
in the oxidation of various olefins including non-reactive terminal
olefins. The MoO2(acac)–POM catalyst is a heterogeneous catalyst
and can be easily separated and reused.
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