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S T E A D Y - S T A T E  V I B R A T I O N S  O F  A T H I N  T W O - L A Y E R  P L A T E  

W I T H  D E L A M I N A T I O N  

V. V. Matus and V. V. Porokhovs'kyi UDC 534.26 

We consider the problem of harmonic vibrations of a thin two-layer plate with horizontal crack. The 
problem is solved with the help of the null-field approach. The influence of the shape of the crack con- 
tour on the amplitude-frequency characteristics of plate vibrations is investigated. 

Balsa et al. [I]  and Duvaut and Lions [4] considered problems of  vibrations of  a two-layer plate with plane 

circular crack located either on the interface between the plates [4] or in the upper plate [1]. The solution was found 
under the assumption that the total half-thickness of  the structure is small as compared with the characteristic di- 
mension of the crack. It was shown that the spectrum of  flexural vibrations has a resonance character. On the basis 

of this property, Balsa et al. [2] proposed a resonance vibroacoustic method of nondestructive testing, in which the 
value of the resonance frequency is the main informative parameter. For a further development of  this method, it is 
necessary to know how the crack shape affects the location of  the resonance line. In this work, we undertake an at- 
tempt to answer this question. 

Consider an infinite two-layer plate with crack in the upper plate (coating) or on the interface between the 
plates. The mechanical properties of the coating are characterized by the Young modulus E l, density Pl, and 
Poisson's ratio v I. The corresponding quantities for the lower plate (base) are E 0, P0, and v 0. The crack con- 

tour F differs from a circle. A concentrated force is applied to the free surface of the coating. The variation in this 

force with time is described by an exponential multiplier exp(-icot) ,  where co is the angular frequency and t is 
the time. We assume that the opposite lips of  the crack do not interact between themselves. 

We conditionally draw a cylindrical surface with directrix coinciding with the crack contour and with genera- 
trix perpendicular to the free surface of the plate. In this case, the entire domain occupied by the two-layer plate is 

divided by this surface and the opposite surfaces of  the crack into three parts: f21 is the domain occupied by a ho- 
mogeneous finite plate over the crack, f22 is the infinite domain occupied by an inhomogeneous plate outside the 
crack, and f23 is the finite domain occupied by an inhomogeneous plate under the crack (Fig. I). Assuming that 

the total half-thickness h / 2  of the plate is small as compared with the characteristic dimension a of  the crack, we 
obtain the classical equations of flexural vibrations for vertical displacements w I in the first plate. For displace- 
ments w 2 and w 3 in the two-layer second and third plates, we deduce equations whose form coincides with the 
classical equations but with averaged values of rigidity and density [5]: 

aiA2wi ( r ) -  RJhJ~ (r) = Pi, " Sj, (1) 

where Pl = - P 0 5 (  r - rs)51s, P2 = - P 0 5 (  r - rs)52s, P3 = 0, 5(x) is the Dirac delta function, A is the Laplacian 

operator, Sj are the midsurfaces of the corresponding plates, r is a two-dimensional radius vector, r s, s = 1, 2, 

is the radius vector of  the point of  application of the force, ~js is the Kronecker symbol, and subscripts j = 1, 3 

correspond to the plate numbers. We also use the following notation in Eqs. (1): 

3(oz  - ) z 

d I = D I, d 2 = 4 ( D  0 + D  2) - D2/. ~ +Doho ~ ' 
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F i g .  1 

3(D3h o - Ooh3) 2 
d 3 = 4 ( D ~ + D o ) -  Qi/~+Doh,_2 , 

E l -= E 2 = E~, Vl = V2 ~ V3' RI = Pl,  

Here, h I is the thickness of  the plate placed over the crack, 

and h 3 = h 2 - h I . 

Dj - 12(I - v j ) '  
j = 0 , 3 ,  

R2h 2 = Plh2 + P0h0, R3h3 = Plh3 + P0ho �9 

h 2 is the coating thickness, h 0 is the base thickness, 

We integrally satisfy the initial three-dimensional condit ions o f  consistency of  solutions in the d o m a i n s  ~'2j. 

AS a result, we obtain [5] the usual conditions for continuity o f  displacements, angles o f  rotation, bending moments,  

and generalized shearing forces at the contour F: 

Wl = w2 = w3 ,  71 = 72  = ~/3, 

M 2 = M I + M 3, F 2 = F 1 + F 3, r E F ,  (2) 

where 

( ) YJ = nl ~r + n2 -r wj(r,O), 

Mj = n2Mr,j + 2nln2Mro,j + n2Mo, j, 

Fj = Qj - - n  2 + n l r  MT'J' QJ = -djAyj (r 'O)"  

Mx, j = (n 2 - n?)Mro, j + nln2(Mr, j - Mo, j). (3) 

Here, r and 0 are the polar coordinates of  the radius vector r, and n I and n 2 are the direction cosines o f  the 

external normal to the crack contour  in the polar coordinate system. The relations between the moments  Mr, j , 
Mro, j, and Mo, j and displacements have the form 

Mr, j = - d j  V j A + ( l - ~ J ) ~ r  2 wj(r,O), 
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Mo, j = - d j  A - ( 1 - V J ) ~ r  2 wj(r,O), 

- -  / ) )  - ~ 1 + wj(r, 0), j 1 3 (4) Mro, j = - d j ( 1 - v j ) ~  r ~rr ' ' 

where 

~1 = vl, ~j  = ~ j  2 + 3  vjOj  + 2 - 3  v0O 0 , j = 2 ,3 ,  

- - E0( - v ,  

z2 2(vd, t ~ +/72 ) , Z3 2(v'k0 + h3 ) , ~c - El(1 _ v~ ) . 

? 

In order that a solution of the problem be unambiguous, it is necessary also to set a condition at infinity, 
w 3 ~ 0, r--~ oo, supplemented with the radiation condition [5]. The latter consists of the fact that we preserve 
only those components in solutions which represent waves propagating from the source of generation of  these waves 
to infinity. 

We construct a solution of problem (1), (2) with the help of  the null-field approach [8] (in some works, this ap- 

proach is identified with the T-matrix method) which, certainly, was first proposed by Barantsev [3] for problems of  
scattering in media described by  the Helmholtz scalar equation. Waterman [9] studied the possibilities of this 
approach in more detail, having applied it for elastic and electromagnetic media as well. In the present work, we 
extend the approach to problems of scattering of flexural waves. 

As ~he initial point tbr the null-field approach, we take the integral representations of displacements in the do- 
main under consideration in terms of displacements and their derivatives at the boundary of this domain. These in- 
tegral representations are a corollary of the reciprocity theorem [4] and, in our case, have the form 

-- PoGj(ro, rs)Sjs + (-1) j f [MjyG(ro, r ) -  FjGi(ro, r)]dF r 
F 

F 
I wfir0), r0 e Sj, 

t 0, ro (5) 

Here, 

____!_1 
Gj(ro, r) = 8~ik~ [inH~o~)(kjlr- roi) 2Ko(kjlr-rol) ] 

is the fundamental solution of the equation of flexural vibrations [6], HtnO(X) are the Hankel functions of the first 

kind of order n, Kn(x) are modified Bessel functions of order n, and kj = 4~Rjhflo2/dj. The quantities with 

subscript G in relations (5) can be obtained from (3), where one should take Gj instead of wj. 
By using the addition theorems for Hankel and Bessel functions [6], we can expand the fundamental solution of  

the equation of  flexural vibrations in a complete system of functions ~l , j ( r )  and r j(r) orthogonal on a circle: 

~ - o  o ] 
Gj(r, ro) = 8 ~ j k  2 = tXaPll,j(r<)f~lt,j(r>) -- 2aP2t, j(r<)aP2t.j(r>) , (6) 
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where r)  = r ,  r( = r 0 if Irl  > [r0l and vice versa, 

o (cos,0 / _ o  . o . . 0 .  (o_-,) 
~l/')(r) = ~lH~l)(kjr)[,sinlO}' ~lt'j(r) = ~ l J t ( k j r ) [ s in lO) '  ~ = 2 )  

o 
~P2t,j(r) = ~ i  Kt(kj r) ~sin/0)  

.o,,0, (;:;)  
~2/,j(r) = ~ l t ( k j r ) [ s i n l O  ~, (7) 

e t = 2 - 8to, Jl(x) are the Bessel functions of the first kind, and It(x) are the modified Bessel functions. 
The null-field approach received this name because one uses the integral representations (5) to find the un- 

known quantities at the domain boundary in the case where r 0 is located either inside F for exterior domains or 

outside F for interior domains (i.e., the left-hand side in (5) is equal to zero). We choose the origin of  the 
coordinate system inside the domain S I. Considering Eqs. (5) for the first and third plates, we assume that r 0 is 

located outside the circle circumscribed around the contour F, and, for the second plate, it lies inside the circle 

inscribed into F. By substituting expansion (6) into relations (5) and using the orthogonality of the functions 
O" --(Y dPil,j(rO) and dPil,j(ro) , we obtain the momental equations for determining the unknown displacements, angles of 

rotation, shearing forces, and moments at the crack contour: 

f ( M j v ~  - . ~  - . ~  F ~  wj) - : p ~ , il .j  Fj il, j il, j ~tj + i l . j  OPil, j 
F 

(8) 

- - f f  (Y G r G - -  where Pil~l = ~il.l(rs)51s, Pil,2 =-@it.2( .~)~52.~, and Pil,3 =0 ,  j = 1, 3, i, cy = 1, "~.. We obtain the values of 
ff r G - - f f  "Ill,j, Mil.j' and Fn. j from the corresponding quantities in relations (3) and (4), setting in them ~il.j for j = 1, 3 

and @ita y for j = 2 instead of wj. For j = l, 3, it is necessary to replace the functions (YDil~j in relations (8) by 
- - (y  

the functions ~J)il.j" 
We write down the unknown quantities at the crack contour in the form of expansions in a system of trigono- 

metric functions: 

,o 

{w,,yt,  M,,FI, M2, F2} = 2~ (x~mcosmO+x~.,,,sinmO), k = l ,  6. (9) 
I/'l = 0 

Here, w I is referred to a2po/Dl, 'YI to aPo/D 1, M 1 and M2 to P0, and F 1 and F 2 to po/a.  Bysubstitut- 
ing expansions (9) into the momental equations (8) and taking the boundary conditions (2) into account, we obtain 
the following system of linear algebraic equations of the first kind of infinite order for determination of the coeffi- 
cients of series (9): 

f 6 2 

Z Z C'-~cc" Xkm~lm, iLj = Pil, j '  
m=O k=l ~'=I 

(lo) 

0"(3' where j,  i, c = I, 2, l = O, ~,, and the quantities Ql,n,i~j are integrals of the type 

lm, iU ! *~'t,j ~,sinmO} c '  
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We find the displacement at an arbitrary point of  the plate by formulas (5). In particular, if  the observation 

point lies inside the circle inscribed into F, then we can expand the fundamental solution in the system of  functions 

(7). In this case, the dimensionless displacements w t are 

f dl 
wl(r, O) = ~ -G2(r, 0; r s, Os)51s 

(k2a)2d~_ t 

�9 - - G  G t - - G ~  t 

Z Z Z[tX*'l . l(r 'O)x~m -a~" - 2 ~ / . , ( r ,  , - alm.lkl 0)  Xkm Qhn.2kl 
k=l  1=0 m=0  a = l  o"=I 

(ll)  

-~c~' ac" ~it.j by the f u n c t i o n s  ~il, j" But if the where ~lm.ikl can be obtained from alm.ikl if one replaces the integrands - - a  

observation point is located outside the circle circumscribed around 1", then the displacements w 2 have the form 

O) - dl I -G2(r, 0; r s, esi  w2(?', 
(k2a)2d2 t 

} + Z Z Z [ ix~t ,2  ( r ' ^"  a ' ~ '  ~ a p a c e '  15 8 U)Xkm ~lm.lk2 -- 2 ~ 2 1 . 2 ( r ,  O)Xkm t~/tn.2k2] k3 k4 �9 
k=l 1=0 m=O a = l  ~ '=1 

We carried out a numericai analysis of  the problem under consideration in the case where the crack contour F 
is set in the parametric form: 

r(~) = a~/ l  + E2 + 2 E c o s ( N  + 1)~,  0([3) = arctan sin~ - esin NIl 
cosl~ + EcosNI3' 

where ]3 ~ [0, 2x], E < 1, and N is an integer. Specifying a certain value of N and varying e, we obtain some 
families of curves. For example, they are ellipses if N = 1, triangles for N = 2, and squares with rounded corners 
for N = 3 .  

We found the solution of system (10) numerically, by the reduction method. In this case, we calculated the in- 
13~3 p 

tegrals ahn.ikj analytically, using the availability of  the small parameter E, by means of the expansion of inte- 

grands in series in E. 
The dependence of the amplitude of transverse displacements w I at the point r = 0 on the dimensionless 

wave number kla which are caused by the action of a concentrated force at the point r s = 0 are presented in 

Figs. 2 - 4 .  Elastic parameters were taken such that EI/E o = 0.5, 91/90 = 1, v I = 0.25, and v 0 = 0.33, and the 
thicknesses were h2/h o = 1.5 and h 3 = 0. 

In the upper right corner of each figure, we schematically depicted the crack contour to which it corresponds. 

We see that the spectral dependences have a resonance character. The sharp change in the vibration phase by x 
near the frequencies for which the displacement amplitudes reach their maximal values demonstrates that these 
frequencies are resonance ones (Fig. 5). 

4 " In Fig. 6, the dependence of the dimensionless wave number k r = a~plhltOr/D l on the parameter  E for vari- 

ous N is shown (here, co r is the resonance frequency). In this case, we set E l /E o = 0.8, and the other param- 
eters are the same as in Fig. 2. Taking the resonance frequency o r from experiments and knowing the thickness 

and elastic characteristics of the coating, we can easily calculate the characteristic dimension a of  the crack with 
the help of  the presented plots. To determine the shape of the crack contour, it is necessary to investigate the depen- 

dence of  displacements on the angle 0 at fixed frequencies. Such dependences for r/a = 0.1 are presented in 
Fig. 7. We chose these frequencies in such a way that the amplitudes for different contours should be approximately 
equal, and the other parameters should be the same as in Fig. 6. 



STEADY-STATE VIBRATIONS OF A THIN Two-LAYER PLATE WITH DELAMINATION 162 ! 

Fig. 2 

Fig. 3 

Fig. 4 
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Fig. 5 

Fig. 6 

Fig. 7 
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Fig. 8 

Fig. 9 

In Fig. 8, the spectral character of  the amplitude w 2 of displacements is shown in the case where the force is 
applied at the point r s = 0 and the elastic and geometric parameters are the same as in Fig. 2. Note that Fig. 8 
includes the coordinates of the observation point. In this case, the resonance character of  the vibrations is observed 
as well, but the amplitudes are much smaller than those in Fig. 2. 

Equations (1) in this work are valid only in the cases where the moduli of  elasticity and densities of the coating 
and base insignificantly differ from each other [5]. However, despite this circumstance, we calculated the vibration 

spectrum for E t / E  o = 10 -4, pi/9o = 0.03, v~ = 0.45, v 0 = 0.33, h2/h 0 = 1.5, and h 3 = 0 according to 
relations (11). The results of these calculations for an elliptic crack and r = r s = 0 are depicted in Fig. 9 (curve 1). 
It is known [1] that, for such ratios between the characteristics of the coating and base, flexural vibrations of  the 
plate placed over the crack must correspond to vibrations of a rigidly restrained plate, the contour of which coincides 
with the crack contour. For this reason, we presented the displacement amplitude of an elliptic rigidly restrained 
plate (curve 2), calculated according to the results in [7], in the same figure. In this case, to avoid the appearance of 
infinite values near the natural frequency of  vibrations, we assumed that the energy absorption takes place in the 
material of  the plate. The comparison of these curves shows that the relations obtained in this work give a correct 
value of the resonance frequency even for such materials. 
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