

PII: S0960-894X(97)10166-4

SYNTHESIS OF 1-O-STEAROYL-2-O-ARACHIDONOYL-sn-GLYCER-3-YL-D-myo-INOSITOL 3,4,5-TRISPHOSPHATE AND ITS STEREOISOMERS

Piers R. J. Gaffney and Colin B. Reese

Department of Chemistry, King's College London, Strand, London WC2R 2LS, UK

Abstract: The chemical synthesis of PtdIns(3,4,5)P3 2 and three of its stereoisomers is described. © 1997 Elsevier Science Ltd.

The identification of D-myo-inositol 1,4,5-trisphosphate $[Ins(1,4,5)P_3]$ 1 as a cellular second messenger¹ has had a major impact on modern biology. In recent years, this seminal discovery has stimulated considerable activity in the chemical synthesis of inositol phosphates². As it is now believed to be a second messenger in its own right in phosphoinositide-mediated signal transduction, 1-O-stearoyl-2-O-arachidonoyl-sn-glycer-3-yl-D-myo-inositol 3,4,5-trisphosphate^{3,4} [PtdIns(3,4,5)P_3] 2 is currently also of great interest to biologists in the field. In order to make it more accessible, we have undertaken the chemical synthesis of PtdIns(3,4,5)P_3 2. We have also undertaken the synthesis of three of its stereoisomers.

The synthesis of analogues of PtdIns(3,4,5)P₃ **2** with identical saturated fatty acids in the glyceryl moiety has been reported⁵⁻¹⁰. However, we are unaware of any previous report relating to the synthesis of the naturally-occurring material. Presumably one reason for this is that the unsaturated arachidonoyl residue would not have survived the conditions commonly used² to remove all of the protecting groups from the inositol moiety. The protecting groups that were used in our synthesis¹¹ of $Ins(1,4,5)P_3$ **1** were all removable under either mildly basic or mildly acidic conditions. A similar strategy has proved to be particularly suitable in the synthesis of PtdIns(3,4,5)P₃ **2**.

The procedure used for the preparation of the partially-protected *myo*-inositol building block 18 required for the synthesis of PtdIns(3,4,5)P₃ 2 is indicated in outline in Scheme 1. Reaction between *myo*-inositol 3 and *p*-anisoyl chloride 4 in pyridine solution (Scheme 1a) gave the penta-(*p*-anisoyl) derivative¹² 5 in 72% isolated yield. Compound 5 was allowed to react with 5,6-dihydro-4-methoxy-2*H*-pyran¹³ 6 in the presence of triphenylphosphine hydrobromide¹⁴ in dichloromethane and the products were treated with sodium methoxide in methanol - THF to give 2-*O*-(4-methoxytetrahydropyran-4-yl)-*myo*-inositol 7 which was isolated as a crystalline solid in 81% overall yield¹⁵. When compound 7 was reacted with the Markiewicz reagent¹⁶ 8 in hexamethylphosphoric triamide (HMPA) solution, the 4,5-*O*-(1,1,3,3-tetraisopropyldisiloxan-1,3-diyl) deriv-

Fax : + 44-171-873.2899

Scheme 1 Reagents and conditions : i , AnCl 4 , C_5H_6N , 0°C to room temp., 18 h : ii , 6 , Ph₃P.HBr , CH_2Cl_2 , 40 h , room temp.; iii , NaOMe , MeOH , THF , reflux , 30 min ; iv , 8 , imidazole , Et_3N , HMPA , room temp., 18 h ; v , Dtpx-Cl 10 , C_5H_5N , MeCN : vi , Mac-Cl 12 , 1*H*-tetrazole , 4-dimethylaminopyridine (DMAP) , MeCN , C_5H_6N , room temp., 45 min ; vii , MeNH₂ , EtOH , room temp., 1.5 h ; viii , Et_3NF , MeCN , room temp., 12 h - tor zoom temp., 30 min ; ix , Cpac-Cl 16 , 3-nitro-1,2,4-1*H*-triazole 17 , DMAP , MeCN , C_5H_5N , room temp.

-ative 9 was obtained as the major product, and was isolated in 62% yield¹⁷. The latter compound 9 reacted regioselectively with 2,7-dibromo-9-chloro-9-[3-(trifluoromethyl)phenyl]xanthene (Dtpx-Cl)¹⁸ 10 to give its 6-O-(Dtpx) derivative¹⁹ 11 which was isolated in 74% yield. Reaction between (-)-menthoxyacetyl chloride 12 and the racemic material 11, followed by fractionation of the products gave the diastereoisomerically-pure menthoxyacetates 13 and 14 in 40.7 and 41.8% isolated yields²⁰, respectively. When compound 13 was treated first with 8M-ethanolic methylamine and then with tetraethylammonium fluoride in acetonitrile, the 1,3,4,5-tetraol 15 was obtained (Scheme 1b) in *ca*. 95% isolated yield²¹. When this compound 15 was allowed to react with (4-chlorophenoxy)acetyl chloride (Cpac-Cl) 16 in the presence of 3-nitro-1,2,4-1H-triazole 17 and 4-(dimethylamino)pyridine (DMAP) in acetonitrile - pyridine, a mixture of the required inositol building block²³ 18 and the corresponding tetra-(4-chlorophenoxy)acetate 19 was obtained. Compounds 18 and 19 were isolated in 59 and 22% yield, respectively. Tetraol 15 was recovered in 76% yield when the tetra-(4-chlorophenoxy)acetate 19 was treated with ethanolic methylamine.

The inositol building block 18 reacted readily (Scheme 2a) with di-(2-cyanoethyl) phosphorochloridite²⁴ 23 in the presence of 3-nitro-1,2,4-1*H*-triazole 17 to give the di-(2-cyanoethyl) ester of its 1-*phosphite* which was immediately treated with *tert*-butyl hydroperoxide²⁵ to give the di-(2-cyanoethyl) *phosphate*. Further

 $\begin{array}{l} \textbf{Scheme 2} \quad \textit{Reagents and conditions: i. (NCCH_2CH_2O)_2PCl 23, 17, C_3H_8N, MeCN, room temp., 1, h; ii, 70\% t-BuO_2H, room temp., 1.5, h; iii, EtsN, MeCN, room temp., 18, h; iv, 26, 27, MeCN, C_3H_8N, room temp.; v, N_2H_4H_2O, MeCN, room temp., 1.5, h; vi, (Me_3N)_2C=NH (TMG), Me_3SiCL, MeCN, room temp., 18, h; vii, a, acetic acid - water (2:1, v/v), room temp., 1.5, h, b, NH_3, MeOH. \\ \end{array}$

treatment with triethylamine in dry acetonitrile gave the triethylaminonium salt of the corresponding mono-(2 - cyanoethyl) phosphate²⁶ 24. The latter phosphodiester 24, 1-O-stearoyl-2-O-arachidonoyl-sn-glycerol²⁷ 25 (2.0 mol equiv.), mesitylene-2-sulfonyl chloride 26 (5.0 mol equiv.) and 4-methoxypyridine-1-oxide²⁸ 27 (10.0 mol equiv.) were allowed to react together in acetonitrile - pyridine to give the fully-protected phosphotriester²⁹ 28 in ca. 61% overall yield for the four steps starting from building block 18. This fully-protected phosphotriester 28 was treated first with a small excess of hydrazine hydrate in acetonitrile and the resulting 3,4,5-triol was phosphorylated [again by phosphitylation with di-(2-cyanoethyl) phosphorochloridite 23, followed by oxidation with *tert*-butyl hydroperoxide] to give the hepta-(2-cyanoethyl) tetrakisphosphate³⁰ 29 in ca. 55% yield for the three steps. All of the protecting groups were then removed under very mild conditions by a two-step procedure. First, the hepta-(2-cyanoethyl) tetrakisphosphate 29 was treated with N^1 , N^1 , N^3 , N^3 -tetramethylguanidine (TMG) and chlorotrimethylsilane³¹ in dry acetonitrile at room temperature

to remove all seven 2-cyanoethyl protecting groups. The remaining 2-O-(4-methoxytetrahydropyran-4-yl) and 6-O-{2,7-dibromo-9-[3-(trifluoromethyl)phenyl]xanthen-9-yl} protecting groups were then easily removed by treatment with acetic acid - water (2:1 v/v) at room temperature. The resulting completely unprotected PtdIns(3,4,5)P₃ 2 was converted into its ammonium salt, and isolated as an off-white hygroscopic powder³² in virtually quantitative yield, based on the fully-protected material 29; its ³¹P NMR spectrum is illustrated in Figure 1.

The enantiomeric inositol building block 21 (Scheme 1c) was converted by the same nine step procedure (Scheme 2b), involving the same enantiomer of 1-O-stearoyl-2-O-arachidonoylglycerol 25, into the ammonium salt of the diastereoisomer 30^{33} of PtdIns(3,4,5)P₃ 2. In order to complete the synthesis of the other two possible *myo*-inositol derived stereoisomers of PtdIns(3,4,5)P₃ 2, the phosphodiester 24 and its enantiomer were coupled in turn with 2-O-arachidonoyl-3-O-stearoyl-sn-glycerol 31.

Fig. 1 ³¹P NMR Spectrum [161.98 MHz, CD₃OD - D₂O (1 : 1 v/v)] of NH₄+ salt of PtdIns(3,4,5)P₃ 2

The overall yields of all three stereoisomers of PtdIns $(3,4,5)P_3$ were similar to that of PtdIns $(3,4,5)P_3 2$ itself. Finally, the *racemic* phosphodiester 24 was coupled with *racemic*-1,2-di-O-linoleoylglycerol²⁷ 32 leading, after a corresponding series of transformations (Scheme 2a) to the ammonium salt of the dilinoleoyl analogue of PtdIns $(3,4,5)P_3$, obtained as a mixture of diastereoisomers³⁴.

Both synthetic PtdIns(3,4,5)P₃ 2 and the corresponding diastereoisomer derived from 2-Oarachidonoyl-3-O-stearoyl-sn-glycerol 31 (*i.e.* the enantiomer of 30) were substantially more effective than the synthetic dipalmitoyl analogue of PtdIns(3,4,5)P₃ 2 in the activation³ of protein kinase B. However, such biological activity was not shown by the other two stereoisomers (*i.e.* 30 and the enantiomer of 2). Thus biological activity in the system under consideration appears to depend on the absolute stereochemistry of the inositol moiety, and on the nature of the acyl residues rather than on the configuration at C-2 of the glycerol moiety.

Acknowledgement: We thank the Wellcome Trust for generous financial support.

References and Notes

- 1. Streb, H.; Irvine, R. F.; Berridge, M. J.; Schulz, I. Nature 1983, 306, 67-69; Berridge, M. J.; Irvine, R.F. Nature 1984, 312, 315-321.
- 2. Potter, B. V. L.; Lampe, D. Angew. Chem. Int. Ed. Engl. 1995, 34, 1933-1972.
- Alessi, D. R.; James, S. R.; Downes, C. P.; Holmes, A. B.; Gaffney, P. R. J.; Reese, C. B.; Cohen, P. Curr. Biol. 1997, 7, 261-269; Alessi, D. R.; Deak, M.; Casamayor, A.; Caudwell, F. B.; Morrice, N.; Norman, D. G.; Gaffney, P. R. J.; Reese, C. B.; MacDougall, C. N.; Harbison, D.; Ashworth, A.; Bownes, M. ibid. 1997, 7, 776-789.

- 4. Stokoe, D.; Stephens, L. R.; Copeland, T.; Gaffney, P. R. J.; Reese, C. B.; Painter, G. F.; Holmes, A. B.; McCormick, F.; Hawkins, P. T. Science 1997, 277, 567-570.
- Toker, A.; Meyer, M.; Reddy, K. K.; Falck, J. R.; Aneja, S.; Burns, D. J.; Bellas, L. M.; Cantley, L. C. J. Biol. Chem. 1994, 269, 32358-32367; Reddy, K. K.; Saady, M.; Falck, J. R.; Whited, G. J. Org. Chem. 1995, 60, 3385-3390.
- 6. Watanabe, Y.; Hirofuji, H.; Ozaki, S. Tetrahedron Lett. 1994, 35, 123-124.
- 7. Gou, D.-M.; Chen, C.-S. J. Chem. Soc., Chem. Commun. 1994, 2125-2126.
- 8. Bruzik, K. S.; Kubiak, R. J. Tetrahedron Lett. 1995, 36, 2415-2418.
- 9. Aneja, S. G.; Parra, A.; Stoenescu, C.; Xia, W.; Aneja, R. Tetrahedron Lett. 1997, 38, 803-806.
- 10. Grove, S. J. A.; Holmes, A. B.; Painter, G. F.; Hawkins, P. T.; Stevens, L. R. J. Chem. Soc., Chem. Commun. 1997, 1635-1636.
- 11. Reese, C. B.; Ward, J. G. Tetrahedron Lett. 1987, 28, 2309-2312.
- 12. Compound **5** has m.p. 234-236°C [Found : C, 64.74; H, 4.80. $C_{46}H_{42}O_{16}$ requires : C, 64.94; H, 4.98%]; δ_{H} [CDCl₃ CD₂Cl₂] 3.67, 3.68, 3.72 (15 H, 3s), 4.71 (1 H, t, *J* 2.2), 4.45 (2 H, dd, *J* 2.4 and 10.4), 5.80 (1 H, t, *J* 9.9), 6.21 (2 H, t, *J* 10.2), 6.68 (6 H, m), 6.75 (4 H, m), 7.73 (6 H, m), 7.85 (4 H, m).
- 13. Reese, C. B.; Saffhill, R.; Sulston, J. E. J. Am. Chem. Soc. 1967, 89, 3366-3368.
- 14. Bolitt, V.; Mioskowski, C.; Shin, D.-S.; Falck, J. R. Tetrahedron Lett. 1988, 29, 4583-4586.
- 15. Compound 7 has m.p. 187°C [Found : C, 48.85; H, 7.49. $C_{12}H_{22}O_8$ requires : C, 48.97; H, 7.53%]; δ_C [(CD₃)₂SO] 34.63, 48.49, 64.42, 71.05, 73.03, 73.46, 75.49, 98.36.
- 16. Markiewicz, W. T. J. Chem. Res. (S) 1979, 24-25; J. Chem. Res. (M) 1979, 0181-0197.
- Compound 9 has m.p. 131-132°C [Found : C, 52.89; H, 9.12. C₂₄H₄₈O₉Si₂ · 0.5 H₂O requires: C, 52.81; H, 9.05%]; δ_C [CDCl₃] includes the following signals assigned to the resonances of the inositol carbon atoms: 70.95, 71.66, 72.28, 74.60, 76.37, 78.20. The sites of attachment of the 1,1,3,3-tetraisopropyldisiloxan-1,3-diyl protecting group follow from the structure of compound 11¹⁹.
- 18. Gaffney, P. R. J.; Liu Changsheng; Rao, M. V.; Reese, C. B.; Ward, J. G. J. Chem. Soc., Perkin Trans. 1 1991, 1355-1360.
- 19. The ¹H NMR spectrum [CDCl₃] of compound 11 includes the following signals: 2.53 (1 H, m), 2.77 (1 H, d), 3.16 (1 H, m), 3.43 (1 H, m), 4.07 (1 H, t, J 2.6, assigned to H-2). When D₂O is added, the signals at δ 2.53 and 2.77 (assigned to the resonances of the hydroxy protons) disappear, and the signals at δ 3.16 and 3.43 (assigned to the resonances of H-1 and H-3) collapse to double-doublets (J 2.6 and 8.6, and 2.1 and 8.9, respectively). It is clear from the COSY spectrum of compound 11 that H-1 and H-3 are both adjacent to H-2.
- 20. Compound 13 has Rf 0.45 [ether hexane (1 : 1 v/v)], [α]D²⁵ -16.2* (c 2, EtOAc]; δ_C [CDCl₃] includes the following signals assigned to the resonances of methine carbon atoms attached to one oxygen atom: 70.68, 71.70, 72.36(*), 73.58, 78.23, 78.67, 80.25(*). Compound 14 has m.p. 217°C [Found: C, 55.23; H, 6.25. C₅₆H₇₇Br₂F₃O₁₂Si₂ requires: C, 55.35; H, 6.39%]; Rf 0.38 [ether hexane (1 : 1 v/v)]; [α]D²⁵ 25.3* (c 2, EtOAc); δ_C [CDCl₃] includes the following signals assigned to the resonances of the methine carbon atoms attached to one oxygen atom: 70.68, 71.76, 72.08(*), 73.65, 78.15, 78.64, 79.74(*). It is apparent both from ¹H and ¹³C NMR spectroscopic data that 13 and 14 are diastereoisomers and not regioisomers. Thus only two [indicated by (*)] of the above seven methine carbon resonance signals in 13 and 14 differ by more than 0.1 ppm. The position of the methoxyacetyl group in 13 (i.e. whether it is on *O*-3 or *O*-1) is not firmly established but the 1-hydroxy function of 11 is believed to be more hindered than its 3-hydroxy function.

- Compound 15 has R_f [CH₂Cl₂ EtOH (9 : 1 v/v)] 0.42; δ_H [(CD₃)₂SO] includes the following signals assigned to exchangeable protons : 4.19 (1 H, d, J 4.7), 4.27 (1 H, d, J 5.7), 4.52 (1 H, d, J 4.1), 4.70 (1 H, m). The absolute stereochemistry of compound 15 was determined by converting its precursor 13 in several steps into the known 1,4,5,6-tetra-O-benzyl-D-myo-inositol, m.p. 145°C [lit.²², m.p. 142.5°C], [α]_D²² +22.7° (c 1.18, CHCl₃) [lit.²², [α]_D +23.4° (c 4.5, CHCl₃)]. In the same way, compound 14 was converted into 3,4,5,6-tetra-O-benzyl-D-myo-inositol, m.p. 144-145°C [lit.²², m.p. 143°C], [α]_D²⁰ -21.7° (c 1.05, CHCl₃)] [lit.²², [α]_D -25.1° (c 5.2, CHCl₃)]. The circular dichroism spectra of enantiomers 15 and 20 were virtually mirror images of each other.
- 22. Aneja, R.; Parra, A. Tetrahedron Lett. 1994, 35, 525-526.
- 23. Compound **18** has $R_f 0.34$ [ether hexane (4 : 1 v/v)]; δ_H [CDCl₃] includes the following signals: 2.53 (1 H, d, J 7.5, assigned to 1-OH), 3.78 (1 H, t, J 8.1, assigned to H-6), 4.99 (1 H, dd, J 2.6 and 9.3, assigned to H-3), 5.29 (1 H, t, J 8.3, assigned to H-5), 5.39 (1 H, t, J 8.9, assigned to H-4); δ_C [CDCl₃] includes the following signals assigned to the resonances of the inositol ring carbon atoms: 69.10, 72.95, 74.85, 76.73, 77.08, 77.44. It is clear from the COSY spectrum of compound **18** that H-4 is coupled with both H-3 and H-5, and thus that the (4-chlorophenoxy)acetyl residues are attached to three adjacent hydroxy functions. The tetra-(4-chlorophenoxy)acetyl derivative **19** has $R_f 0.48$ [ether hexane (4 : 1 v/v)].
- 24. Di-(2-cyanoethyl) phosphorochloridite 23 was prepared by stirring a solution of 1-cyano-2-(trimethyl-silyloxy)ethane (8.63 g, 60 mmol) and phosphorus trichloride (2.39 ml, 27.4 mmol) in dry acetonitrile (30 ml) at room temperature for 48 h. The products were concentrated under reduced pressure (oil-pump, room temperature) to give a colourless oil which was estimated by ³¹P NMR spectroscopy [CDCl₃] to contain di-(2-cyanoethyl) phosphorochloridite 23 (75%; δp 165.7), 2-cyanoethyl phosphorodichloridite (5%; δp 179.5) and tri-(2-cyanoethyl) phosphite (20%; δp 139.1).
- 25. Jäger, A.; Engels, J. Tetrahedron Lett. 1984, 25, 1437-1440.
- 26. Phosphodiester derivative 24 has δp [CDCl₃] -1.17.
- 27. Gaffney, P. R. J.; Reese, C. B. Tetrahedron Lett. 1997, 38, 2539-2542.
- 28. Efimov, V. A.; Chakmakhcheva, O. G.; Ovchinnikov, Y. A. Nucleic Acids Res. 1985, 13, 3651-3666.
- 29. Fully-protected phosphotriester intermediate **28** has $R_f 0.44$ [CH₂Cl₂ EtOH (95 : 5 v/v)]; $[\alpha]_D^{22}$ +3.3° (c 3.84, EtOAc); δ_P [CDCl₃] -0.89, -0.73.
- 30. The hepta-(2-cyanoethyl) tetrakisphosphate **29** has $R_f 0.26$ [CH₂Cl₂ EtOH (95 : 5 v/v)]; [α]_D²⁰ +25.9° (*c* 5.12, EtOAc); δ_P [CDCl₃] -3.68, -3.37, -2.01, -1.81, -1.78, -1.75, -1.72, -1.68.
- 31. Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Org. Chem. 1992, 57, 1964-1966.
- The ammonium salt of PtdIns(3,4,5)P₃ has δ_P [CD₃OD D₂O (1:1 v/v)] 0.02, 1.30, 1.91, 2.22 (see Fig. 1); found : M-1 (negative ion FAB) 1125. Calc. for ¹²C₄₇¹H₈₅¹⁶O₂₂³¹P₄ : 1125.5.
- 33. The ammonium salt of **30** has $\delta p [CD_3OD D_2O (1 : 1 v/v)] 1.60, 2.51, 3.05, 3.33.$
- 34. The ammonium salt of the dilinoleoyl analogue of PtdIns(3,4,5)P₃ has δp [CD₃OD D₂O (1 : 1 v/v)] 1.62, 2.50, 3.00, 3.34.

(Received in Belgium 15 October 1997; accepted 10 November 1997)