Physical Chemistry The Journal of

© Copyright, 1983, by the American Chemical Society

VOLUME 87, NUMBER 20 **SEPTEMBER 29, 1983**

LETTERS

Thermal Rate Constant for Addition of Chlorine Atoms to Ethylene

R. Subramonia Iyer, Patricia J. Rogers, and F. S. Rowland*

Department of Chemistry, University of California, Irvine, California 92717 (Received: May 4, 1983; In Final Form: July 14, 1983)

The relative reaction rate constant for removal of Cl atoms by addition to C_2H_4 in the gas phase at 4000-torr pressure has been measured at 298 K by a competitive radiochemical technique to be 2.9 ± 0.1 times faster than the abstraction of H from C_2H_6 by Cl. This removal rate corresponds to an apparent reaction rate constant of $(16.6 \pm 1.8) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, based on the measured value for reaction with C_2H_6 . Correction for back-reaction of $C_2H_4Cl^*$ at 4000 torr leads to an estimated absolute reaction rate constant of $(19 \pm 2) \times 10^{-11}$ cm^3 molecule⁻¹ s⁻¹ for k_1 , $Cl + C_2H_4 \rightarrow C_2H_4Cl^*$ (1). The relative rates of abstraction by Cl of H from HI and PH_3 are 2.21 ± 0.10 and 4.13 ± 0.13 times faster than abstraction from C_2H_6 .

Although their occurrence in the earth's atmosphere has brought interest in the absolute reaction rate for many Cl atom reactions.^{1,2} no measurements have been made since the late 1960s of the rate constant for the addition of Cl to C_2H_4 as in reaction 1.³⁻⁵ Earlier studies from this

$$Cl + C_2 H_4 \rightarrow C_2 H_4 Cl^* \tag{1}$$

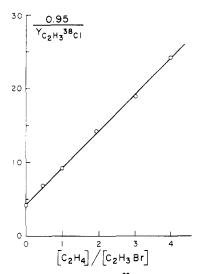
laboratory have provided relative rate constants for the addition of chlorine atoms to various alkenes and alkynes, $^{6-12}$ and a value for k_1 is useful for conversion of these

- (5) Franklin, J. A.; Goldfinger, P.; Huybrechts, G. Ber. Bunsenges.
- (6) Lee, F. S. C.; Rowland, F. S. J. Phys. Chem. 1977, 81, 1235.
 - (7) Lee, F. S. C.; Rowland, F. S. J. Phys. Chem. 1977, 81, 684.

relative rate constants onto an absolute scale. In addition, the measurement of many additional Cl atom reaction rates has disclosed some inconsistencies among the absolute reaction rate constants. $^{1,2,13-15}$ Accordingly, we have carried out a series of intermolecular competitions to determine again the reaction rate constant k_1 . We now report an effective value for Cl removal by C_2H_4 of (16.6 ± 1.8) $\times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 298 K and 4000-torr pressure of CClF₃. The rate constant for permanent removal of Cl by reaction 1 is pressure dependent because of the backreaction 2, which returns thermal Cl atoms into the system

$$C_2H_4Cl^* \to C_2H_4 + Cl \qquad (2)$$

for cycling again through the available competitive path-


⁽¹⁾ De More, W. B., Ed. "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 5"; Jet Propulsion Laboratory: Pasadena, CA, July 15, 1982; JPL 82-57.

<sup>Laboratory: Pasadena, CA, July 15, 192; JPL 82-57.
(2) Baulch, D. L.; Cox, R. A.; Crutzen, R. J.; Hampson, R. F.; Kerr, J. A.; Troe, J.; Watson, R. T. J. Phys. Chem. Ref. Data 1982, 11, 327.
(3) Kerr, J. A.; Parsonage, M. J. "Evaluated Kinetic Data on Gas Phase Addition Reactions"; Butterworths: London, 1972.
(4) Huy, L.-K.; Forst, W.; Franklin, J. A.; Huybrechts, G. Chem. Phys. Lett. 1969, 3, 307.</sup>

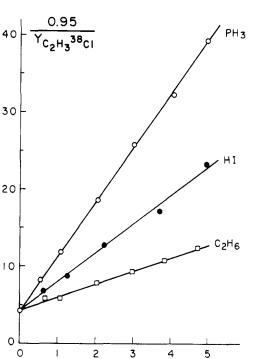
⁽⁸⁾ Lee, F. S. C.; Rowland, F. S. J. Phys. Chem. 1977, 81, 86.
(9) Kikuchi, M.; Lee, F. S. C.; Rowland, F. S. J. Phys. Chem. 1981, 85,

^{84.}

[.] (10) Lee, F. S. C.; Rowland, F. S. J. Phys. Chem. 1977, 81, 1222. (11) Lee, F. S. C.; Rowland, F. S. J. Phys. Chem. 1980, 84, 1876. (12) Lee, F. S. C.; Rowland, F. S. J. Phys. Chem. 1977, 81, 1229. (13) Mei, C. C.; Moore, C. B. J. Chem. Phys. 1977, 67, 3936. (14) Mei, C. C.; Moore, C. B. J. Chem. Phys. 1979, 70, 1759. (15) Wickramaaratchi, M. A.; Setser, D. W. J. Phys. Chem. 1983, 87, 64.

Figure 1. Reciprocal yields of CH_2 — $CH^{38}CI$ from competitive reactions between C_2H_4 and C_2H_3Br for ³⁸CI atoms at 4000-torr total pressure in excess $CCIF_3$.

ways. Our evaluation of the importance of k_2 from the pressure dependence of the effective removal rate leads to an estimated infinite-pressure rate constant of $k_1 = (19 \pm 2) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.


We have utilized thermalized ³⁸Cl atoms from the neutron irradiation of $CClF_3^{6,11}$ for evaluation of relative reaction rate constants for C_2H_4 and C_2H_6 vs. a common competitor, CH_2 =CHBr.⁸ The energetic radioactive chlorine atoms formed in the ³⁷Cl(n, γ)³⁸Cl nuclear reaction are moderated to thermal energies by multiple collisions with $CClF_3$ present in great excess and then react with the competitive substrate molecules.^{6,11} Vinyl bromide was chosen as the competitor standard because the reaction of ³⁸Cl with it by reaction 3 produces a good yield of

$$^{38}\text{Cl} + \text{CH}_2 = \text{CHBr} \rightarrow \text{CH}_2 = \text{CH}^{38}\text{Cl} + \text{Br}$$
 (3)

CH₂==CH³⁸Cl, which can be readily separated and assayed by radio gas chromatography.¹⁶ The ratio of the effective rate constants for removal of ³⁸Cl by a given substrate in competition with CH₂==CHBr is determined experimentally from the diminution in percentage yield of CH₂== CH³⁸Cl as thermal ³⁸Cl atoms are diverted away from CH₂==CHBr through reaction with the other substrate molecule. The reactivity of C₂H₄ vs. C₂H₆ is thus determined indirectly from their relative efficiencies in diminishing the observed yield of CH₂==CH³⁸Cl in separate competitions with vinyl bromide. These rate constant data for C₂H₄ have then been placed on an absolute basis through the value $k_4 = (5.7 \pm 0.6) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 298 K, the consensus value from experiments by four separate research groups.^{1,2}

$$Cl + C_2 H_6 \rightarrow HCl + C_2 H_5 \tag{4}$$

The yield of CH_2 =CH³⁸Cl from reaction 3 has been measured in a series of experiments with varying ratios of C_2H_4 and C_2H_3Br at 4000-torr pressure in CClF₃. The ratio of effective reaction rate constants can be obtained either directly from the ratio of the decrement in CH_2 =CH³⁸Cl yield to the remaining yield for a fixed competitor ratio or from the slope of the straight line in a graph of reciprocal yields, as in Figure 1.¹¹ This line, with allowance for the loss through energetic reactions of 5% of the total ³⁸Cl,^{11,12} has a slope of 4.91 ± 0.09, representing the ratio of reactivities at 4000 torr for C_2H_4 and for CH₂=CHBr

Figure 2. Reciprocal yields of CH_2 — $CH^{38}CI$ from competitive reactions between RH and C_2H_3Br for ³⁸CI atoms at 4000-torr total pressure in excess $CCIF_3$. RH: (O) PH₃; (\bullet) HI; (\Box) C_2H_6 .

[RH] / [С2H3Br]

leading to reaction 3. The reciprocal yields of CH₂== CH³⁸Cl from reaction 3 in competition with hydrogen abstraction reactions for C₂H₆, PH₃, and HI are all graphed in Figure 2 vs. the respective concentration ratios. The values for the slopes in Figure 2 are 1.69 ± 0.05 for C₂H₆, 3.74 ± 0.13 for HI, and 6.98 ± 0.07 for PH₃.

The ratio of the effective rate constants for ³⁸Cl removal by C_2H_4 and C_2H_6 can be obtained from the ratios of the respective slopes, i.e., 2.91 ± 0.10 from the data given above. The corresponding absolute rate constant for removal of Cl by C_2H_4 based on the known value for k_4 is (16.6 ± 1.8) × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at 298 K and 4000-torr pressure of CCIF₃. This rate constant is more than twice as large as the existing literature value for k_1^{3-5} and is only a lower limit for k_1 because the 4000-torr removal rate is somewhat less than k_1 as a consequence of the back-reaction 2.

The corresponding rate constant ratios vs. C_2H_6 are 4.13 \pm 0.13 for PH₃ and 2.21 \pm 0.10 for HI, and absolute reaction rate constants of (23.5 \pm 2.5) \times 10⁻¹¹ and (12.6 \pm 1.4) \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹, respectively. This rate constant for reaction with HI is in fair agreement with the value of (15.5 \pm 0.8) \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ measured by Mei and Moore at 298 K.^{13,14} The latter's experiments indicated a non-Arrhenius type of rate constant behavior vs. temperature, with a maximum in the rate constant in the temperature range from 300 to 400 K.

The ratio of total reaction rates for Cl with PH₃ vs. HI has been estimated as 1.7 ± 0.6 through observations of the summed relative intensities of infrared emission from vibrationally excited HCl (v > 0) product.¹⁵ A substantial contribution to the uncertainty in the infrared measurements arises from correction from the observed 1.6 ± 0.3 ratio for the unmeasured HCl (v = 0) product. This rate constant ratio can also be obtained as 1.87 ± 0.10 directly from the slopes of the respective lines in Figure 2.

The rate constant for reaction 3 against the C_2H_6 standard is considerably smaller than the recently measured¹⁷ value of $k_3 = (14 \pm 3) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.

⁽¹⁶⁾ Lee, J. K.; Lee, E. K. C.; Musgrave, B.; Tang, Y.-N.; Root, J. W.; Rowland, F. S. Anal. Chem. 1962, 34, 741.

molecule	measured slope vs. C ₂ H ₃ Br	rel reaction rate constant	ref	absolute reaction rate constant, 10 ⁻¹¹ cm ³ molecule ⁻¹ s ⁻
		$Cl + RH \rightarrow HCl + R$		
C_2H_6	1.69 ± 0.05	(1.0)	this work	(5.7 ± 0.6)
нí	3.74 ± 0.13	2.21 ± 0.10	this work	12.6 ± 1.4
PH_3	6.98 ± 0.07	4.13 ± 0.13	this work	23.5 ± 2.5
(CH ₃)₄Pb		$(4.3/2.5)$ vs. k_1	9	33 ± 4
		$Cl + C_x H_y \rightarrow C_x H_y Cl^*$		
C_2H_4	4.91 ± 0.09	3.3 ± 0.3°	this work	19 ± 2
2 4		1.7 ± 0.1 vs. $k_{\rm HI}$	6	21 ± 3
C_2H_2		0.8 ± 0.1 vs. k_1^{11}	9	15 ± 2
- 2 2		1.2 ± 0.1 vs. $k_{\rm HI}$	7	15 ± 2
$CH_3CH = CH_2$		$1.6 \pm 0.1 \text{ vs. } k_{\text{HI}}$	10	20 ± 3
CH₃C≡CH		1.9 ± 0.2 vs. $k_{\rm HI}$	11	24 ± 4
		$Cl + R_{A}M \rightarrow RCl + R_{3}M$		
$(CH_3)_4Pb$		$(2.5 \pm 0.2)^{-1}$ vs. \dot{k}_1	9	8 ± 1

TABLE I: Rate Constants for Various Reactions of Atomic Chlorine

^a Relative reaction rate constant of 2.91 ± 0.10 at 4000 torr used as comparison standard.

However, those experiments were carried out at pressures of 2 torr and less, while the yield from reaction 3 represents only about one-fourth of the available ³⁸Cl in reactions with CH_2 =CHBr at 4000 torr.¹⁸

The removal rates of Cl by both C_2H_4 and C_2H_3Br are pressure dependent, but the latter is not of concern here because it is used throughout only as a comparison standard. An earlier study by Lee and Rowland has established the slopes of reciprocal yield curves in HI/C_2H_4 competitions at pressures of 640, 1050, and 4100 torr in CClF_{3} .⁶ The average energy loss in collisions of C_{2}H_{4} ³⁸Cl* with CClF₃ has not been established, and relatively weak collisions were observed in similar experiments for $C_2H_4^{18}F^*$ with $CF_4^{.19}$ We have fitted the earlier $C_2H_4^{38}Cl^*$ data with several assumed energy-loss models ranging from strong, single deexcitation collisions to as little as 3 kcal/mol average energy loss and have found that the infinite-pressure removal rate of Cl by C_2H_4 is 1.15 ± 0.05 times the value found for 4000 torr over this range of assumed energy losses. Accordingly, our estimated value for k_1 is $(1.15 \pm 0.05)(16.6 \pm 1.8) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, which we summarize as $k_1 = (19 \pm 2) \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹.

All of these relative data are summarized in Table I and then converted to an absolute basis through comparison with k_4 . Other chlorine atom reaction rate constants which have been placed previously on an absolute basis by us⁹ through normalization to the value for k_1 are reevaluated here and included in Table I. Experiments with alkenes and alkynes¹¹ have provided a set of rate constants relative to one another which can also be placed on an absolute scale with knowledge of k_1 , as given in Table I.

Finally, although there is a major revision in the best estimate of the reaction rate constant for Cl atom addition to C_2H_4 , the experimental disagreement between our results and the previous work with ethylene is substantially smaller than the change in the absolute reaction rate constant for k_1 . The actual measurements of Franklin et al. were carried out in a complicated system but eventually involved a competition between C_2H_6 and C_2H_4 , with an observation of $k_4/k_1 = 0.38$.⁴ Our measured experimental ratio for k_4/k_1 at 4000 torr is 0.34, and our ratio corrected to infinite pressure for full stabilization of all $C_2H_4Cl^*$ radicals is 0.30. The earlier ratio already contained a correction for complete radical stabilization, so the discrepancy between the two competitive experiments is only of the order of 30%. There has, however, been a substantial revision during the past decade in the preferred value for k_4 .^{1,2}

Acknowledgment. This research has been supported by Department of Energy Contract DE-AT03-76ER-70126.

⁽¹⁷⁾ Park, Y.-Y.; Slagle, I. R.; Gutman, D. J. Phys. Chem. 1983, 87, 1812.

⁽¹⁸⁾ Iyer, R. S.; Rowland, F. S., unpublished experiments.
(19) Rowland, F. S.; Rust, F.; Frank, J. P. In "Fluorine-Containing Radicals"; American Chemical Society: Washington, DC, 1978; ACS Symp. Ser. No. 66, p 26.