¹³C NMR Spectra of 5β,14β-Hydroxysteroids*

Gerhard G. Habermehl[†] and Peter E. Hammann

Tíerärztliche Hochschule Hannover, Chemisches Institut, Bischofsholer Damm 15, D-3000 Hannover, FRG

Victor Wray

GBF-Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-3300 Braunschweig, FRG

The ¹³C chemical shifts of 30 substituted 5β ,14 β -hydroxysteroids are described and discussed. Substituent chemical shifts for 12 α - and 12 β -hydroxy groups were evaluated, and interesting γ effects were observed. A correlation is shown to exist between the ¹H shifts of H-17 and the ¹³C shifts of C-17 for various C-12 substituents. A relationship for the distance of the substituent at C-12 from H-17 in the 14 β ,20-lactones was demonstrated, where an increased distance between these atoms is associated with smaller shift differences.

INTRODUCTION

A vast amount of ¹³C NMR data on steroids has been reported and reviewed.^{1,2} However, for the 5β ,14 β hydroxysteroids, substances related to cardioactive compounds such as digitoxigenin (1), digoxigenin (13) and their side-chain degradation products, only a few investigations have been published.^{3–8} Shift assignments in these steroids have been based on the well documented 5β ,14 α -skeleton, in particular the hydroxylated bile-acid derivatives,⁹ and the 5α ,14 β hydroxysteroids such as the antitumour-active conduranogenins.^{10,11} In this paper we report an investigation of the ¹³C NMR spectra of 20 5β ,14 β -hydroxysteroids with different side-chain and ten related 5β ,14 β -hydroxysteroid-20-lactones.

RESULTS AND DISCUSSION

The assignments of the ¹³C signals were made on the basis of single-frequency off-resonance decoupling (SFORD) spectra, 2D experiments (¹H–¹H and ¹³C–¹H shift correlations), selective ¹H decoupled ¹³C spectra, empirical correlations and comparison with earlier literature data.¹⁻¹¹ The chemical shifts in the A ring were only very slightly influenced by the side-chain and by the substituent at C-12. These shift values are in the range found for the A ring of 5β -cholestanes.¹ Results are given in Table 1.

The different side-chains in 1–12 exhibited their main effects on the shifts of the D ring. The restricted rotation of the side-chain in 10 and 11, caused by *cis* fusion of the C–D rings, allowed elucidation of the stereochemistry at C-20. The C-21 methyl group in the 20S-alcohol is closer on average, to the plane of the D ring than the corresponding 20R-alcohol, resulting in an upfield shift for C-16 ($\Delta \delta_{10-11} = -8.4$ ppm) and C-20 ($\Delta \delta_{10-11} = -5$ ppm). Apart from D ring effects,

14 β ,20-lactone formation causes a significant shielding of C-8 (*ca*. -7.2 ppm) and variable effects on C-9 and C-12.

Substituent chemical shifts (SCSs) for the introduction of 12α and 12β groups can be deduced from the present data, and are shown in Table 2. The γ SCSs values for C-14 and C-18 are relatively constant within each series, and those for C-18 are sufficiently different to afford a convenient stereochemical probe for the C-12 substituent geometry. The other γ -SCS values for C-9 and the unambiguously assigned C-17 show remarkable variability, and indicate the operation of additional effects that are system specific.

All the 12-substituted steroids showed large downfield shifts for the proton at C-17 compared with the unsubstituted compounds. Closer examination of the ¹H and ¹³C data (Table 3) for these compounds indicated a linear correlation between the ¹H shift of H-17 and the ¹³C shift of C-17 (Fig. 1; slope = -7.7, correlation coefficient r = -0.977). That the effect is dependent on the distance between the substituent at C-12 and the proton at C-17 was demonstrated by the data for the 14β ,20-lactones (Table 3), where the magnitude of the individual shifts for similar substituents is considerably smaller. Thus, there is a ^{13}C shift difference of 11.5 ppm between 2 and 15, while for the lactones 29 and 31 this is reduced to 3.7 ppm. In the lactones, the hydrogen at C-17 is twisted out of the plane of the D ring by lactone ring formation, which results in an increase in the distance between H-17 and the C-12 substituent. Although the effect is weaker in the lactones, a linear correlation of slope comparable to that of the cardenolides still exists (Fig. 1; slope = -6.4, r = -0.966).

Analogous effects were not observed for the shifts of H-18 and C-18, presumably owing to the free rotation of the methyl group.¹² A distinction between steric and electronic interactions to interpret the cause of the effects at C-17 is not possible. The ¹³C shift differences were all in the range expected for γ_{gauche} effects. It is remarkable that **2**, as well as **15** and **18**, where the conformation of the rings is changed and the main interaction should result from anisotropic effects, should correlate with the 12-hydroxy and

[†] Author to whom correspondence should be addressed.

^{*} Presented at the 4th North German NMR Meeting, Braünschweig, 10 May 1985.

Scheme 1

12-ester compounds. For the α,β -unsaturated-12-oxo-14 $\beta,20$ lactone **31** an increased effect was observed compared with the 12-oxo steroid **26**, as expected if electronic interactions were responsible for the shifts. In contrast, however, the highest shift difference in the cardenolides was observed for **15** and not **18**. Further, no significant solvent effects on H-17 and

C-17 could be determined, which were expected if only polar interactions were responsible for the observed correlation.

Further studies in progress are necessary for 5β , 14β -hydroxysteroids and 5β , 14α -steroids with new side-chains in order to find a satisfactory explanation of these effects.

Table 1.	¹³ C NMR	chemia	cal shift	s for 1	-19 and 21	-31*									
Carbon	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	29.6	30.5	37.1	29.8	30.6	37.1	30.1	30.6	37.2	30.6	30.6	30.2	30.7	29.4	36.9
2	27.8	25.0	36.6	27.9	25.1	36.8	27.0	25.2	36.9	25.1	25.1	28.0	27.9	27.9	36.4
3	66.7	70.5	212.9	66.9	70.5	212.7	67.0	70.6	212.5	70.6	70.6	67.0	66.6	66.5	211.5
4	33.1	30.5	42.1	33.3	30.6	43.2	33.6	30.6	42.3	30.6	30.6	33.7	33.5	33.7	41.8
5	35.9	36.8	43.6	36.2	37.0	43.8	36.6	37.0	43.9	37.0	37.0	36.6	36.8	36.1	43.6
6	26.4	26.4	26.5	26.6	26.4	26.6	27.9	26.5	26.7	26.4	26.3	27.2	26.6	26.2	26.2
7	21.2	21.2	21.0	20.9	20.9	20.9	21.3	21.0	21.1	21.0	20.6	20.8	21.9	21.9	21.4
8	41.6	41.7	41.6	39.9	40.1	40.0	40.9	40.8	40.9	40.7	40.7	40.2	41.3	41.4	41.1
9	35.3	35.6	36.6	39.2	35.2	35.4	35.8	35.7	37.7	35.6	35.6	35.7	32.6	33.3	34.2
10	35.3	35.6	35.2	35.2	35.2	35.0	35.7	35.2	35.3	35.2	35.2	35.8	35.5	35.7	35.4
11	21.2	21.2	21.2	21.1	21.5	21.6	21.7	21.3	21.2	21.3	21.4	21.8	30.0	37.4	37.3
12	39.9	39.9	39.8	39.1	39.3	39.4	40.1	39.8	39.8	40.1	41.6	42.2	74.8	211.4	211.1
13	49.6	49.6	49.6	49.2	49.3	49.3	47.8	47.4	47.5	47.6	47.7	49.2	56.4	64.0	64.1
14	85.4	85.3	85.3	84.7	84.9	85.0	84.8	84.5	84.2	84.8	85.4	85.6	85.8	86.5	86.2
15	32.9	33.1	33.1	34.0	34.0	34.0	32.7	32.7	32.8	32.6	32.2	30.5	33.0	33.1	33.0
16	26.9	26.9	26.9	24.9	24.9	24.9	22.3	21.9	21.9	18.1	26.5	23.9	27.9	26.9	27.0
17	50.9	51.3	50.8	62.3	62.5	62.5	51.7	51.5	51.5	56.3	56.6	60.3	46.1	39.9	39.8
18	15./	15.8	15.8	15.3	15.4	15.4	15.0	14.8	14.8	14.9	16.4	18.1	9.4	16.5	16.5
19	23./	23./	175 4	22.6	23.8	23.8	24.0	23.8	22.7	23.8	23.3	24.0	23.8	23.3	22.2
20	170.3	1/0.1	1/5.4	217.0	217.5	217.6	62.5	62.6	62.7	65.6	70.6	73.1	177.1	174.5	174.7
21	117 2	117 5	117 9	33.3	33.5	33.3	-	_		22.1	23.8	31.5	/4.6	/3./	/3.9
22	174 9	174.4	174.5	_		_	_		_	_		31.9	176.0	172.5	170.6
$CH_{-}(Ac)$		21.2	1/4.5	_	21 4	_		21 4		21 4	21 4	_	170.3	173.5	170.6
COO(Ac)	_	170.8			170.6	_	_	170.6		21.4	170.7	—		—	_
000(/10/					170.0			170.0		170.7	170.7	_			—
Carbon	16	17	18	19	21	22	23	24	25	26	27	28	29	30	31
1	30.5	30.5	33.5	36.9	30.5	30.7	29.8	30.7	36.8	30.6	30.6	30.6	30.5	36.8	31.2
2	25.0	25.1	25.0	36.6	25.0	24.9	27.8	25.0	36.6	24.8	24.9	24.8	24.8	36.5	24.9
3	70.2	70.5	70.6	211.5	70.2	70.4	66.6	70.4	211.8	69.7	74.3	70.6	70.1	211.1	70.1
4	30.5	30.5	31.3	41.9	30.5	30.6	33.6	30.6	42.0	30.5	30.4	30.6	30.5	42.0	32.8
5	36.9	37.0	37.6	43.4	36.9	37.2	36.1	37.1	43.5	36.8	36.7	37.0	37.0	43.4	37.6
6	26.3	26.3	25.9	27.4	26.3	25.7	25.9	25.6	25.9	25.9	25.6	25.5	25.7	25.8	26.3
7	21.5	21.1	21.3	21.2	21.5	21.6	21.8	21.7	21.4	21.9	21.7	21.6	21.7	21.2	22.1
8	41.4	42.0	41.3	41.1	41.3	34.8	33.6	33.7	34.3	35.4	33.4	34.4	34.3	34.3	36.2
9	32.6	29.5	165.7	33.6	32.4	30.4	33.2	33.6	33.5	33.8	33.6	27.8	35.0	33.5	164.5
10	35.0	35.0	41.0	35.2	35.2	35.0	35.6	35.4	35.3	35.8	35.3	34.9	35.3	35.4	41.7
11	30.2	29.7	120.6	28.1	26.5	30.3	29.2	29.0	29.0	36.4	29.0	30.4	19.3	27.0	122.1
12	75.0	76.6	202.2	85.1	77.4	76.7	67.4	67.6	66.9	207.8	76.2	80.2	35.0	75.8	198.1
13	55.6	52.0	61.0	54.7	54.2	51.9	54.9	54.9	54.9	62.5	54.9	51.3	49.6	53.9	60.3
14	85.5	85.5	83.7	85.7	85.6	94.9	94.3	94.2	93.9	93.0	94.2	93.5	94.7	92.9	91.7
10	33.3	34.8	32.3	33.1	33.2	30.2	28.1	28.1	28.2	27.6	28.1	29.7	27.8	27.9	29.1
10	27.4	20.9 45.6	20.7	27.4	27.3	23.5	19.1	19.1	19.0	18.9	19.1	21.6	19.2	18.9	19.8
19	40.7	40.0	15.0	40.0	40.1	04.0 10.0	52.2	52.2	52.1	50.4	52.2	53.9	53.9	52.5	50.2
10	23.6	23.6	30.0	22 /	10.4	10.0	10.2	10.1	10.2	10.0	10.2	18.7	10.1	10.9	14.5
20	175.6	175.7	175.1	174.4	17 <i>A A</i>	179.6	23.4	23.4	179.6	176.6	23.2	23.3	23.3	177.2	30.9
21	73.3	73.8	73.9	73.6	73 4				170.0	170.0	170.0	177.7	179.2	177.5	170.7
22	117.6	117.7	118.2	118.2	117 9		_	_	_	_	_	_	_	_	_
23	174.4	174.6	174.5	173.1	173.8						_	_			
CH ₂ (Ac)	21.4	21.4	21.4	_	2 x 21 2 ^b	21 4		21 4	_	21 4		21 4	21 /	_	21 4
COO(Ac)	170.4	170.4	170.6	—	2 × 170.4 ^b	170.4	—	170.4	_	170.4	_	170 4	170 4		170 4
CH ₃ OCO											54.5	1,0.4			., 0.4
CH3OCO											155.3				
CH ₃ SO₂				38.6								38.7		38.6	
^a The ¹³ C o	chemical s	hifts of	20 hav	e not h	een comnie	telv as	bannia	hereuse	a of ove	rlan of	eignale	from t	ha eube	tituante	

^b The chemical shifts for both acetoxy groups at C-3 and C-12 are identical.

EXPERIMENTAL

¹³C NMR spectra were recorded on a Bruker AM 300 NMR spectrometer at 75.5 MHz (sweep width 18 518 Hz, temperature 24 °C, pulse width 32°, pulse repetition 2.2 s, number of scans 400–1000, number of data points 32K, internal lock, 5 mm tube). ¹H NMR spectra were recorded on the same instrument at 300.1 MHz (sweep width 3311 Hz, pulse width 30°, number of scans 48, pulse repetition 0.3 s, number of data points 32K, internal lock, 5 mm tube). The solutions were $0.2-0.4 \text{ mmol ml}^{-1}$ in CDCl₃. Chemical shifts are relative to TMS.

Table 2. SCS values for 12 α - and 12 β -hydroxy groups in 5 β ,14 β -hydroxy-steroidsCompounds12 α SCS17 - 1 α : 36.7. β : 8.5(11), 2.4(13). γ : -5.8(9), 0.1(14), -5.3(17), 1.4(18)22 - 29 α : 41.7. β : 11.0(11), 2.3(13). γ : -4.6(9), 0.2(14), 0.6(17), 2.7(18)12 β SCS13 - 1 α : 34.9. β : 8.8(11), 6.8(13). γ : -2.7(9), 0.1(14), -4.8(17), -6.3(18)16 - 2 α : 35.1. β : 9.0(11), 6.0(13). γ : -3.0(9), 0.2(14), -5.2(17), -6.8(18)

Table 3. ¹H chemical shifts of H-17 and H-18 and ¹³C
chemical shifts of C-17 and C-18 for the
12-substituted 5β,14β-hydroxysteroids and their
lactone derivatives

		Ch	Chemical shift (ppm)				
Туре	Compound No.	H-17	C-17	H-18	C-18		
5β , 14β -Hydroxysteroids	2	2.8	51.3	0.94	15.8		
	21	2.9	46.1	0.90	10.4		
	20	3.2	45.7	0.80	11.4		
	19	3.4	45.6	0.9	10.2		
	16	3.4	45.7	0.80	9.0		
	17	3.4	45.6	0.85	17.1		
	18	4.0	41.2	0.92	15.0		
	15	4.2	39.8	1.10	16.5		
Lactone derivatives	29	2.45	53.9	1.1	16.1		
	25	2.8	52.1	1.0	10.2		
	30	2.9	52.6	1.1	10.9		
	22	2.8	54.5	1.1	18.8		
	28	2.9	53.9	1.15	18.7		
	26	3.0	50.4	1.3	16.0		
	31	3.1	50.2	1.3	14.5		

Digitoxigenin (1) and digoxigenin (13) were commercially available and were converted to their acetates 2 and 21 in the usual manner with acetic anhydride-pyridine. Compounds 4-6,¹³ 10, 11,¹³ 14-17,¹⁴ 19¹⁵ and the 14 β ,20-lactones 22-29¹⁶ were synthesized as described in the literature. Alcohol 7 was obtained by reduction of the corresponding 17 β -carboxylic acid¹⁷ with LiAlH₄; *N*-bromosuccinimide oxidation¹⁵ of 7 gave 9 and CrO₃ oxidation of 1 resulted in 3. Compound 12 was obtained by reaction of 5 with methyllithium.¹³ Reaction of 13 with SEMCl¹⁸ gave 20 after 24 h.

3β-Acetoxy-14β-hydroxy-12-oxo-5βcar-9(11),20(22)-dienolide (18)

 3β -Acetoxy-12-oxo- 5β -card-20(22)-enolide (10.22 mol, 4.4 g) and pyridinium hydrobromide-perbromide (3 g) were stirred in CH₂Cl₂ (300 ml) for 1 h at 25 °C. After extraction with NaHCO₃ solution and water, the solvent was evaporated *in vacuo*. The residue was dissolved in DMF (200 ml) and refluxed with LiBr (750 mg) and Li₂CO₃ for 5 h. Dilution with water and extraction with diethyl ether, after drying with NaSO₄ and evaporation *in vacuo* resulted in a syrup. Crystallization from acetone-water gave 3.1 g (70%) of **18**, m.p. 211-212 °C.

3β-Acetoxy-12-oxo-5β-androst-9(11)-en-17β-carboxylic acid 14β-lactone (31)

Lactone 26 (200 mg) and selenium dioxide (120 mg) were refluxed for 18 h in acetic acid (15 ml). After

Figure 1. Plot of the chemical shifts of ¹H for H-17 against ¹³C for C-17. \bullet , Cardenolides; \blacksquare , 14 β ,20-lactones.

neutralization with NaOH, extraction with CHCl₃ and evaporation to dryness, the residue was chromatographed on a short column of SiO₂ with ethyl acetate-hexane (2:1) as eluant. Evaporation and recrystallization from ethyl acetate-cyclohexane gave 120 mg (60%) of **31**, m.p. $212-214 \,^{\circ}\text{C}$.

3β-Acetoxy-14β,20-dihydroxy-21-nor-5β-pregnane (8)

 3β -Acetoxy-14 β -hydroxy- 5β -androstane-17 β -carboxylic acid (10 mmol, 3.2 g) and carbonyldiimidazole (2.2 g) were stirred in THF (180 ml) for 30 min. Stirring was continued for a further 1 h after addition of NaBH₄ (1 g). The reaction was terminated with acetic acid and the solution was concentrated *in vacuo*. The residue was diluted with water and extracted with CHCl₃. The extracts were evaporated to dryness to give a white residue, which on crystallization from acetone-water gave 2.8 g (85%) of **8**, m.p. 194–196 °C.

All the synthesized compounds were analysed for C and H and the results were within $\pm 0.4\%$ of the theoretical values.

REFERENCES

- 1. J. W. Blunt and J. B. Stothers, Org. Magn. Reson. 9, 437 (1977).
- W. B. Smith, Annu. Rep. NMR Spectrosc., edited by G. A. Webb, Academic Press, New York, 8, 199 (1978).
- K. Tori, H. Ishi, Z. W. Wolkowsky, C. Chachaty, M. Sangare, F. Piriou and G. Lukacs, *Tetrahedron Lett*. 1077 (1973).
- J. F. Templeton, H. T. Andrew Cheung, R. Sham, T. R. Watson and K. Jie, J. Chem. Soc., Perkin Trans. 1 259 (1983).
- 5. H. T. Andrew Cheung, L. Brown, J. Boutagy and R. Thomas, J. Chem. Soc., Perkin Trans. 1 1773 (1981)
- T. Yamagishi, K. Hayashi, H. Mitsuhashi, M. Imanari and K. Matsushita, *Tetrahedron Lett.* 3527 (1973).
- T. Yamagishi, K. Hayashi, H. Mitsuhashi, M. Imanari and K. Mitsuhashi, *Tetrahedron Lett.* 3531 (1973).
- L. Brown, H. T. Andrew Cheung, R. Thomas, T. R. Watson and J. L. E. Nemorin, J. Chem. Soc., Perkin Trans. 1 1779 (1981).
- T. Iida, T. Tamura, T. Matsumoto and F. C. Chang, Org. Magn. Reson. 21, 305 (1983).

- 10. M. Kimura, K. Hayashi, H. Narita and H. Mitsuhashi, *Chem. Pharm. Bull.* **30**, 3932 (1982).
- K. Hayashi, K. Wada, H. Mitsuhashi, H. Bando, M. Takase, S. Terada, Y. Kide, T. Aiba, T. Narita and D. I. Mizuno, *Chem. Pharm. Bull.* 29, 2725 (1981).
- 12. J. B. Lambert and A. R. Vagenas, Org. Magn. Reson. 17, 270 (1981).
- 13. C. Lindig, J. Prakt. Chem. 4, 587 (1983).
- 14. L. Sawlewicz and K. Meyer, *Pharm. Acta Helv.* 45, 261 (1970).
- G. G. Habermehl and P. E. Hammann, Z. Naturforsch., Teil B 40b, 656 (1985).
- G. G. Habermehl and P. E. Hammann, *Tetrahedron Lett*. in press (1985).
- 17. F. Hunziker and T. Reichstein, *Helv. Chim. Acta* 28, 1472 (1945).
- 18. B. H. Lipshutz and J. J. Pegram, Tetrahedron Lett. 3343 (1980).

Received 7 May 1985; accepted 2 June 1985