Versatile Approaches for the Synthesis
of Fused-Ring y-Lactones Utilizing
Cyclopropane Intermediates
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A highly effective acid-catalyzed cyclopropyl ester to y-lactone skeletal rearrangement has been demonstrated and applied to the synthesis of a
variety of bi- and tricyclic functionalized lactones, rigid and highly compact structures for use as biological probes.

y-Lactones have served as versatile intermediates in
countless syntheses of complex molecules, and as a con-
sequence, many studies have been directed at increasing
synthetic access to this structural subunit. As a result,
there is now a large repetoire of methods for y-lactone
synthesis.> The most generally useful processes are those
which allow stereocontrol by internal delivery or catalytic
entantioselective access to complex chiral structures.
Such processes include the following: (1) intramolecular
Diels—Alder reactions of acrylate esters,” (2) intramolecu-
lar addition of diazo esters to carbon—carbon double
bonds,* (3) addition of acrylate esters to ketonic carbonyls
induced by Sml,,”> (4) intramolecular or intermolecular
cycloaddition of ketenes to carbon—carbon double bonds
followed by Baeyer— Villiger oxidation,® (5) intramolecular
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or intermolecular cycloaddition of S-keto acids to carbon—
carbon double bonds induced by Mn;O(OAc),,” (6) in-
tramolecular halo- and hydroxylactonization,® and (7)
intramolecular addition of radicals to carbon—carbon
double bonds.’

This paper reports new and short routes to a variety of
chiral y-lactones using tactical combinations of a cyclo-
propyl ester to y-lactone skeletal rearrangement'® and a
range of enantioselective processes.

We provide as the first illustration of our approach the
enantioselective synthesis of the tricyclic keto-lactone (1)
shown in Scheme 1. The starting point was the R-ester 3,
which was prepared enantioselectively as previously de-
scribed, using the chiral oxazaborolidinium ion 2 as cata-
lyst."! The B-ketoester 4 was accessed from 3 by Claisen
condensation and then transformed into the correspond-
ing a-diazoketone using tosyl azide and triethylamine.
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Scheme 1. Synthesis of Ketolactone 1¢
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“Reagents and conditions: (a) isoprene (5.0 equiv), cat. 2 (0.20 equiv),
PhMe (1.0 M), =5 °C, 15 h, 96%, 99% ee; (b) EtOAc (2.5 equiv), LDA
(2.5 equiv), THF, —78 to —45 °C, 3.5 h, 94%; (c) TsN3 (1.1 equiv),
Et;N (0.5M), 23 °C, 39 h, 99%; (d) Cu(TBS) (0.06 equiv), PhMe (0.02 M),
111 °C, 6 h, 87%; (¢) TMSOTT (3.0 equiv), H,O (1.5 equiv), i-PrNO,
(20 mM), 23 °C, 17 h, 83%.

Scheme 2. Synthesis of Ketolactone 6
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“Reagents and conditions: (a) and (b) ref 12; (¢) NaH (6.0 equiv),
CO(OMe); (2.1 equiv), 1,4-dioxane (0.5 M), 101 °C, 3 h, 87%:; (d) TsN3
(1.1 equiv), EGN (1.0 M), 23 °C, 2 h, 95%; () Cu(TBS) (0.06 equiv),
PhMe (0.05 M), 111 °C, 15 h, 84%; (f) TMSOTS (3.0 equiv), H,O
(1.5 equiv), i-PrNO, (20 mM), 110 °C, 3 h, 67%.

Internal [2 + 1]-cycloaddition to the C—C double bond of
the diazo substrate was promoted by bis-(N-z-butyl-
salicylaldiminato)copper(IT) (Cu(TBS)) as catalyst to form
the tricyclic B-keto ester 5. Finally, treatment of 5 with
trimethylsilyl triflate and a small amount of water (to
generate some triflic acid) in i~-PrINO, at 23 °C produced

the keto lactone 1 in 83% yield (X-ray structure as shown
in Scheme 1).

A direct and efficient route to the chiral tricyclic keto
lactone 6 is summarized in Scheme 2. The acetoacetate
ester of (+)-2-cyclohexenol was converted into (R)-3-ace-
tonylcyclohexene by the method of Burger and Tunge'? via
the sr-allyl Pd complex with the C>-symmetric Trost—Van
Vranken bisphosphine (TVVP)."* The desired chiral tri-
cyclic keto lactone 6 was readily obtained from 8 via the
sequence a-methoxycarbonylation, Regitz diazo transfer,
Cu(TBS)-catalyzed internal [2 + 1] cycloaddition, and
acid-catalyzed cyclopropane to lactone rearrangement
via the intermediates 9 and 10.

The prochiral tricyclic bis-lactone corresponding to 6
(11) could also be accessed rapidly using the cyclopropyl
ester to y-lactone rearrangement (see Scheme 3). Methyl
2-cyclohexenylmalonate (12) was transformed via the
corresponding diazoester 13 to the cyclopropyl ester lac-
tone 14, rearrangement of which proceeded at 45 °C to
afford bis-lactone 11.

Scheme 3. Synthesis of Bislactone 11¢
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“Reagents and conditions: (a) CICOCH,CO,Me, Et;N, CH,Cl,,
0—-23 °C, 93%; (b) TsNj; (1.2 equiv), Et3N (1.0 M), 23 °C, 0.5 h, 96%;
(c) Cu(TBS) (0.06 equiv), PhMe (0.02 M), 111 °C, 15 h, 89%; (d)
TMSOT( (3.0 equiv), H,O (1.5 equiv), i-PrNO, (20 mM), 45°C, 5h, 61%.

In a similar fashion, the bicyclic bis-lactone 15 (Scheme 4)
was synthesized from methyl cinnamyl malonate (16) and
diazoester 17.'* Cyclopropyl to y-lactone rearrangement
converted 17 to 15 and a minor diastereomer (ratio 5:1) in
83% yield. The structure of 15 was demonstrated by single-
crystal X-ray diffraction analysis.

A final example of the application of our methodol-
ogy to a short synthesis of a bicyclic keto lactone (19) is
outlined in Scheme 5. 6-Methyl-5-hepten-2-one (20) was
transformed first into the a-diazo-$-keto ester 21, which

(12) Burger, E. C.; Tunge, J. A. Org. Lett. 2004, 6, 4113-4115.
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422. (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921-2944.
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L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292-15295. The
conversion of the methyl ester 17 to 18 proceeds in 95% yield and
92% ee (personal communication with Xue Xu and X. Peter Zhang).
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Scheme 4. Synthesis of Bislactone 15¢

b. TsNy, EtsN )H(
KL Me Me 3 s
fi. TMSCHN2 82% | P 7%

c. Cu(TBS)
86%

o
w QN d. TMSOTY, °z"'e
] % _ (o] Hzo
ﬁ -0 ~ e
H 'Ph
15 (X-ray) 15

CO,Me

“Reagents and conditions: (a) (i) cinnamyl alcohol (1.0 equiv),
Meldrum’s acid (1.0 equiv), PhMe (3 M), 90 °C, 12 h, (ii) TMSCHN,
(1.5equiv), CsHg/MeOH (4:1), 23 °C, 10 min, 82%; (b) TsN3 (1.1 equiv),
Et;N (1.0 M), 23 °C, 2 h, 87%; (c) Cu(TBS) (0.06 equiv), PhMe (0.05 M),
111 °C, 15 h, 86%; (d) TMSOTT (3.0 equiv), H,O (1.5 equiv), i-PrNO,
(20 mM), 40 °C, 24 h, 83% (5:1 dr).

by internal [2 4 1]-cycloaddition provided the bicyclic keto
ester 22. Acid catalyzed rearrangement of 22 produced
(+)-19 in good overall yield from 20. Although our experi-
ments employed racemic 22 to generate (£)-19, a catalytic
enantioselective preparation of chiral 22 from 21 has been
reported,'® the use of which would lead to chiral ketolac-
tone 19.

(15) Cho, D.-J.;Jeon, S.-J.; Kim, H.-S.; Cho, C.-S.; Shim, S.-C.; Kim,
T.-J. Tetrahedron: Asymmetry 1999, 10, 3833-3848.

(16) General procedure for the cyclopropyl ester to y-lactone rear-
rangement: To a solution of TMSOTT (54 uL, 0.30 mmol, 3.0 equiv) in
i-PrNO, (4 mL) was added H,O (2.7 uL, 0.15 mmol, 1.5 equiv) by
dropwise addition. After stirring at ambient temperature for 10 min, the
cyclopropane (0.1 mmol, 1.0 equiv) as a solution in i-PrNO; (1 mL) was
added. After being stirred for the appropriate time and temperature, the
reaction mixture was treated with aq phosphate buffer (pH = 7,25 mL)
and the organic phase was separated. The aqueous phase was extracted
with EtOAc (5 x 25 mL). The combined organic layers were dried over
anhydrous Na,SOy, filtered, and concentrated under reduced pressure.
Purification by flash column chromatography provided the product.
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Scheme 5. Synthesis of Ketolactone 19¢
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“Reagents and conditions: (a) CO(OMe), (2.1 equiv), NaH (6.0 equiv),
1,4-dioxane (0.5 M), 101 °C, 3 h; (b) TsN3 (1.2 equiv), Et;N (1.0 M), 23 °C,
0.5 h; (c) Cu(TBS) (0.06 equiv), PhMe (0.02 M), 111 °C, 13 h, 85%: (d)
TMSOTf (3.0 equiv), H,O (1.5 equiv), i-PrNO, (20 mM), 23 °C, 3 h, 86%.

In conclusion, the five sequences reported above and
summarized in Schemes 1—5 demonstrate a useful meth-
odology for the construction of a range of bi- to polycyclic
lactones with control of stereochemistry and a minimum of
synthetic steps.'® These rigid and compact structues could
be of value as small, ligand-efficient probes for screening
purposes in medicinal research.
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