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A new precursor of a formal 1-hydroxy allyl anion is represented by 3-bromo-1-acetoxy-1-propene, which is synthesized by the ZnCl,-catalyzed
addition of acetyl bromide to propenal. 3-Bromo-1-acetoxy-1-propene reacts with indium powder in THF to give the corresponding 3-acetoxylated
ally indium complex, which regioselectively adds to aldehydes, affording monoprotected 1-en-3,4-diols. Diastereoselectivity mainly depends
on the nature of the aldehyde; saturated aldehydes afford anti adducts, whereas the a,f#-unsaturated aldehydes preferentially lead to the syn
isomers.

Synandanti 1-en-3,4-diolsl are attractive building blocks A selection of further 3-substituted allylic organometallic
in connection with the total synthesis of a variety of polyoxy reagents mimickin@ is reported in Figure 1.

natural products. Double bond epoxidation, dihydroxylation, = Synthetic equivalents o2 are divided into two goups
ozonization, etc. open routes to epoxydiols, tetrols, dihy- depending on the simple diastereoselectivity obtained in the
droxyaldehydes, etc. Much effort has been devoted for the addition to aldehydes. Moreover, we distinguish betwgen
past two decades to the development of synthetic equivalentsorganometallic compoundb,* 2¢,° 2d,% 27 2f,8 2¢,° 2h,1°

of 1-hydroxy allyl anion2, as direct and ideal candidates 2i,'! 2j,*? 2k,'3 and2I* carrying an alkoxy or silyloxy group,
for the synthesis of via regioselective addition to aldehydes and borylated or silylated allyl organometallic reagegnsg!®
(Scheme 1}.
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solution in a neglected reaction, namely, the 1,4-haloacylation
of acrolein?® Use of acetyl bromide allowed us to synthesize

1-acetoxy-3-bromo-1-propen8)(in multigram scale as a 35:
%\>§< 65 mixture ofE/Z isomers. Upon exposure 8fto indium

Syn Selective Agents: TMS (\/ powder in THF, 3-acetoxy allyl indium specidsre readily
o formed and may be successively trapped by aldeh$des
2b give 1-en-3-acetoxy-4-ol5 in high yield (Scheme 2).
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OMOM __7aCl reproducible. Table 1 collects preliminary results in addition
InCl . .
RS SnB 3 Pr,N),Me,Si
e 21 (TR :m [
CO,iPr Table 1. Stepwise Synthesis @& in THF
OCeH \ CO,iP
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MesSi g~ Bag/ COaiPr ¢ entry RCHO (2 (CRr  (CP (Y,%) syn/anti
o MeSi B o COsiPr 1 PhCHO 4 25 25 6a(86) 70/30
20 2 PhCHO 4 0—25 -50 6a(89) 85/15
(');j PhMeSi . 3 PhCHO 4 0—25 -78 6a(91) 85/15
€5i ez 4  PhCHO 12 0—25 0 6a(82) 70/30
Ipc,B B NN
P A~ 2p z 2q 5 PhCHO 0 25 25 6a(74) 60/40
6 PhCHO (Mn/In) 0 25 25 6a(60) 60/40
_ _ ) 7 CeHuCHO 4 0—25 0 6b(8l) 15/85
Figure 1. Examples of 3-heterosubstituted allyl organometallic 8  CgHyCHO 4 -20 —20 6b(96) 15/85
compounds. 9  CgHyCHO 4 0—25 -78 6b(70) 10/90
10  CgHy;CHO 0 0—25 0 6b(70) 25/75
11 n-C1oH»1CHO 4 0 0 6c (75) 35/65
12 (CH3),CHCH,CHO 4 0—25 0 6d(82) 35/65
. 13 PhCH,CH,CHO 4 0—25 0 6e(95) 30/70
2n,1% 20,17 2p,*® and 2g'° where silicon and boron act as 1z (E)_phZCHiCHCHo 4 0—0o5 0 6f ((96)) 70/30
masked forms of a hydroxy group. 15 CHy=(CH3)CHCHO 4 0—25 0 6g(79) 85/15
16  2-furyl-CHO 4 0—25 -78 6h(72) 90/10

The preparation of organometallic derivatiigenerally _ _ _
requires metalation of a precursor with alkyllithium bases, , & f:;‘;%o'ﬁfgf;tzvti't?‘fhae”glgeerﬂsgga};‘rg;ﬁ%grgﬂtf%tme;ﬂr:Tﬁ?é"f
followed by transmetalation to give the desired intermediate. following molar ratios were used: In (0.1 equiv), Mn (2 equig)(1.5
The use of organolithium compounds limits the choice of equiv), TMSCI (1.1 equiv), and PhCHO (1 equiv).
the RO substituent on the allylic moiety to base-tolerant
groups.

While searching for a new synthetic equivalenafasily
accessible from simple starting materials, we perceived a

reactions of4 to prochiral aldehydes in THF using indium
powder??

Barbier-type protocols were also tested, consisting of the
contemporary addition 08 and the aldehyde to indium in
THF with stirring at room temperature (entries 5, 6, and 10).
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OH/H;0O to 1-en-3,4-diol$ and then transformed into the
corresponding 1,3-dioxolan@9Scheme 3)Syn/antiassign-
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ments were attributed on the basis of the following observa-
tions: (i) The chemical shift of the homoallylic proton (H-
4) in syn6is always 0.+0.3 ppm upfield from that oénti-

6, as previously reported in the literatufdii) The difference

of chemical shifts of the two methyl groups in position 2 is
always greater igis-7 (0.12-0.14 ppm), coming fronanti-

6, than intrans7 (0.01-0.04 ppm). (iii) Invariably, GC
retention times ofrans dioxolanes7 are shorter than those
of cis-7 (30-m column packed with HP-5 cross-linked 5%
Me Ph Silicone; temperature ramping from 50 to 280 at
10 °C/min).

In regards to simple diastereoselectivity, we observed that
stereopreference in the addition to prochiral aldehydes mainly
depends on the nature of the aldehyde. While conjugated

aldehydes preferentially lead 8yn adducts (entries -16,
14-16), saturated aldehydes favor the formationaoti
adducts (entries #13). The y-oxygenated allyl indium
species most contiguous #) namely, methoxylatedZj-

2d,% was reported to react with benzaldehyde, cinnamalde- 4.5

hyde and octanal, always favorisgnadducts, with theyn/

antiratios 87:13, 56:44, and 82:18, respectively. These results

indicate that the-acetoxy group exerts different effects with
respect to the’-methoxy group.

Our standard protocol involves the preliminary formation
of 4 before the addition of the aldehyde; during the time
interval t; 1,3-metallotropic shift of indium is supposed to
take place, in our opinion favorin@)-4, thermodynamically
stabilized by an indiumoxygen interaction, as occurs2al.®
Increasing; (entry 4) does not improve diastereoselectivity,
and better results are obtained by lowering the reaction
temperature (entries 2, 4, 9, and 16).

On the other hand, if a classical Barbier procedure is
adopted, that mearts = 0 h, diastereoselectivity is quite

lower (entries 5 and 10). In these cases it is possible to

assume that th&/Z isomeric mixture of4 reflects that of
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starting3 (E/Z = 35:65) and trapping by the aldehyde occurs
before any enrichment takes place by 1,3-metallotropic shift.

A rationale for our observation is possible considering
transition states (TSA—D, where the more stabl&)-4 is
assumed to react with ite face (Figure 2). Zimmermann-
type chairlike TSsC and D are generally considered to
account for thesyn selectivity of Z-crotyl specieg! By
extending the same reasoning #-4, synadducts should
always prevail because of the lack D of 1,3 diaxial
destabilizing interactions. In our opinion bo&f)(and twist-
boat B) shaped TSs are more stable tharand D since
they preserve the attractive indidroxygen interaction
present in Z)-4. In TS A leading toanti-5, the saturated
aldehyde offers thei face in order to accommodate the R
chain in the less encumbered position. In B'$he unsatur-
ated aldehyde offers thre face, so enjoying— stabilizing
interaction between the acetyl group and the unsaturated
substituent. Aromatic aldehydes and cinnamaldehyde exhibit
the best stereopreference thanks to a more effeetiver
interaction.

syn-5

Figure 2. Possible TSs for the addition of)-4 to aldehydes.

In conclusion, summarizing the advantages of this route
to 1-en-3,4-diols, we observed that (i) starting mateiad
easily accessible in multigram scale in a single reaction; (ii)
reaction of3 with indium in THF is fast, almost complete
without using any excess of indium; and (iii) the addition to
aldehydes is complete in a few hours at room temperature
or lower, with a selectivity that mainly depends on the nature
of the aldehyde, namely, conjugated or saturated.

Studies on further applications 8fare in process.
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