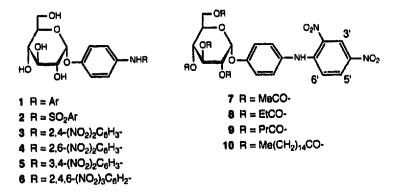


CAPBOHYDRATE RESEARCH

Carbohydrate Research 282 (1996) 293-298

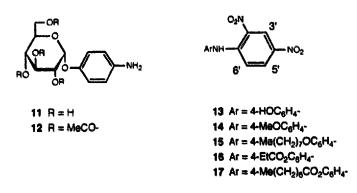
Note

4-(Arylamino)phenyl α -D-glucopyranosides as potential anti-HIV agents


Josie C. Briggs, Alan H. Haines *

School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom

Received 21 August 1995; accepted 30 October 1995


Keywords: Aryl glucopyranosides; Glucosides; Anti-HIV agents

Our recent interest in aryl-substituted phenyl α -D-glucopyranosides as potential anti-HIV agents [1-3] led us to examine 4-(arylamino)phenyl α -D-glucopyranosides (1) in this context, since we regarded these glycosides as a logical modification of 4-(arylsulfonylamino)phenyl α -D-glucopyranosides (2), one of which had been shown [3] to possess weak anti-HIV activity against HIV-1 IIIB in infected cell cultures. Glycosides of the type 2 were found [3] to be remarkably effective competitive inhibitors of yeast α -D-glucosidase, an observation of relevance in regard to anti-HIV activity since nojirimycin, castanospermine, and some of their derivatives which show such antiviral activity also act competitively against certain glycosidases [4]. We now report the synthesis of a series of glycosides 3-6 and some representative examples of lipophilic O-acyl derivatives, compounds 7-10, and results of anti-HIV tests with these compounds.

^{*} Corresponding author.

0008-6215/96/\$15.00 © 1996 Elsevier Science Ltd. All rights reserved SSD/ 0008-6215(95)00379-7 Glycosides 3-6 were prepared by reaction of 4-aminophenyl α -D-glucopyranoside (11), readily prepared by reduction of commercially available 4-nitrophenyl α -D-glucopyranoside with hydrogen over palladium-charcoal, with 2,4-dinitrofluorobenzene, 2,6-dinitrochlorobenzene, 3,4-dinitrochlorobenzene, and 2,4,6-trinitrochlorobenzene, respectively. Compound 7 was prepared by reaction of 4-aminophenyl tetra-O-acetyl- α -D-glucopyranoside (12) with 2,4-dinitrofluorobenzene. Conventional acylation of 3 with propanoyl chloride, butanoyl chloride, and hexadecanoyl chloride afforded esters 8-10 although extensive column chromatography was required to purify these compounds which were obtained, as a result, in only low yields.

Surprisingly, in view of the inhibition shown by glycosides 2 towards yeast α -D-glucosidase [3], compounds 3-6 did not inhibit this enzyme although results of anti-HIV tests (see Table 1) showed a small but significant activity. In order to investigate the role of lipophilicity in influencing antiviral activity in this type of compound we examined a series of tetra-O-acyl derivatives of 3 having increasing chain lengths, compounds 7-10, and found a considerable increase in therapeutic index (TI) values for the acetyl and propanoyl derivatives, compounds 7 and 8, respectively, compared to the parent compound.

Table 1

Anti-HIV activity ^a of 4-(arylamino)phenyl α -D-glucopyranosides (3-6), tetra-O-acyl derivatives (7-10), and N-aryl-2,4-dinitroaniline derivatives (13-17)

Compound	EC ₅₀	TC 50	TI	Compound	EC 50	TC 50	TI
3	5-1	50	12.5-25	10	50	100	2
4	8-10	80	8-10	13	8	100	12.5
5	8-16	100-200	6.25-25	14	8-10	400	40-50
6	1	5-10	5-10	15	40	40	1
7	4	400	100	16	1.6	80	50
8	4	500	125	17	16	200	12.5
9	250	500	2				

⁴ Tests carried out in HIV-1 IIIB-infected cell (C8166) cultures. The parameters EC_{50} and TC_{50} represent, respectively, the concentration of the compound that reduces the antigenic glycoprotein gp120 by 50% in infected cells and the concentration of compound which reduces normal cell growth by 50%. The parameter TI (therapeutic index) = TC_{50} / EC_{50} . Typically, 3'-azidothymidine (AZT) gives a TI value of > 50,000 in such tests.

In view of the probability that the mode of action of these compounds against HIV did not involve glycosidase inhibition ¹, we investigated the biological activity of the aglycon moiety in 3 through a series of simple *N*-aryl derivatives of 2,4-dinitroaniline, compounds 13–17. The highest TI values were observed with the 4-methoxyphenyl derivative 14 and the 4-propanoyloxyphenyl derivative 16, both of which were more effective than the 4-hydroxyphenyl compound 13. However, in both types of derivative, an increase in lipophilicity led to a decrease in TI values (compare data for 14 and 16 with those for the 4-octyloxyphenyl and 4-octanoyloxyphenyl derivatives, compounds 15 and 17, respectively. Wide-ranging further modifications in the basic structure of the aglycon [6] led to no further improvement of anti-HIV activity.

1. Experimental

¹H NMR spectra were recorded for solutions in CDCl₃ or CD₃OD (internal Me₄Si) either at 60 MHz with a JEOL PMX60si spectrometer or at 270 MHz with a JEOL EX270 spectrometer. Optical rotations were measured with a Perkin–Elmer 141 polarimeter and $[\alpha]_D$ values are given in units of 10^{-1} deg cm² g⁻¹. TLC and column chromatography were performed on silica gel (Machery–Nagel, SIL G-25UV₂₅₄) and Silica Gel 60 (Merck, 70–230 mesh), respectively. 4-Nitrophenyl α -D-glucopyranoside was purchased from Lancaster Synthesis and 4-nitrophenyl tetra-*O*-acetyl- α -D-glucopyranoside was prepared [7] by acetylation of this compound with acetic anhydride in pyridine. Enzyme assays were monitored with a Pye–Unicam PU 8800 UV/Visible spectrophotometer fitted with a cell temperature controller. α -D-Glucosidase (type VI from brewer's yeast) was purchased from Sigma Chemical Co. Ltd.

4-Aminophenyl α -D-glucopyranoside (11).—A solution of 4-nitrophenyl α -D-glucopyranoside (3 g, 9.96 mmol) in 95% EtOH (100 mL) was reduced under 1 atmosphere pressure of hydrogen in the presence of 10% Pd–C (0.08 g). The residue obtained on concentration of the filtered reaction mixture was crystallised from EtOH to give 11 (2.27 g, 84%); mp 183–185 °C; $[\alpha]_D$ + 195° (c 1.5, H₂O); lit. [8] mp 185–186 °C, $[\alpha]_D$ + 194.1° (c 1.4, MeOH).

4-Aminophenyl tetra-O-acetyl- α -D-glucopyranoside (12).—A suspension of 4nitrophenyl tetra-O-acetyl- α -D-glucopyranoside (4 g, 8.52 mmol) and 10% Pd-C (0.08 g) in EtOH (130 mL) was stirred rapidly under a slight over-pressure of hydrogen. During the reaction, H₂ was absorbed and the starting material dissolved. The suspension was filtered through a plug of silica gel and the filtrate concentrated to give a syrup which solidified on storage under vacuum to give 12 (3.68 g, 98%); mp 49–50 °C; [α]_D + 141° (c 0.3, EtOH); ¹H NMR data (60 MHz, CDCl₃): δ 2.00–2.20 (complex, 12 H, 4 × MeCO), 2.99 (br s, 2 H, NH₂), 4.02–4.50 (complex, 3 H, H-5,6a,6b), 4.85–4.94 (complex, 2 H, H-2,4), 5.52–5.88 (complex, 2 H, H-1,3), 6.49–7.03 (m, 4 H, AA'BB' system of 4ROC₆ H₄NH₂). Anal. Calcd for C₂₀H₂₅NO₁₀: C, 54.7; H, 5.7; N, 3.2. Found; C, 54.7; H, 5.7; N, 3.1.

¹ The mode of action of these compounds is unknown although it appears that they are not reverse transcriptase inhibitors [5].

4-(2,4-Dinitrophenylamino)phenyl α -D-glucopyranoside (3).—To a solution of glucoside 11 (0.3 g, 1.11 mmol) in aq 50% EtOH (18 mL) was added a solution of 2,4-dinitrofluorobenzene (0.3 g, 1.6 mmol) in EtOH (9 mL) followed by NaHCO₃ (0.99 g, 11.8 mmol). The mixture was rapidly stirred for 1 h then filtered, the filtrate was concentrated, and the residue was purified by column chromatography (19:1 EtOAc-MeOH) to give 3 (0.26 g, 53%); mp 225–226 °C; $[\alpha]_{546}$ +51.9° (*c* 1, Me₂SO); ¹H NMR data (270 MHz, CD₃OD): δ 3.45 (t, 1 H, $J_{3,4} = J_{4,5} = 8.9$ Hz, H-4), 3.61 (dd, $J_{1,2}$ 3.6, $J_{2,3}$ 9.9 Hz, H-2), 3.64–3.76 (complex, 3 H, H-5,6a,6b), 3.88 (dd, 1 H, H-3), 5.34 (d, 1 H, H-1), 7.08 (d, 1 H, J_n 9 56 Hz, H-6') ², 7.31 (s, 4 H, 4-ROC₆ H₄NH-), 8.18 (dd, 1 H, J_m 2.64 Hz, H-5'), 9.03 (d, 1 H, H-3'). Anal. Calcd for C₁₈H₁₉N₃O₁₀: C, 49.4; H, 4.4; N, 9.6. Found: C, 49.4; H, 4.3; N, 9.4.

4-(2,6-Dinitrophenylamino)phenyl α -D-glucopyranoside (4), 4-(3,4-dinitrophenylamino)phenyl α -D-glucopyranoside (5), and 4-(2,4,6-trinitrophenylamino)phenyl α -Dglucopyranoside (6).—These compounds were prepared similarly to glycoside 3, using 2,6-dinitrochlorobenzene, 3,4-dinitrochlorobenzene, and 2,4,6-trinitrochlorobenzene, respectively, in place of 2,4-dinitrofluorobenzene.

4 (63%); mp 156–159 °C; $[\alpha]_{546}$ +60.4° (c 1, Me₂SO). Anal. Calcd for $C_{18}H_{19}N_3O_{10}$: C, 49.4; H, 4.4; N, 9.6. Found: C, 49.7; H, 4.5; N, 9.2.

5 (63%); mp 111–113 °C; $[\alpha]_D$ + 158° (*c* 0.1, EtOH). Anal. Calcd for $C_{18}H_{19}N_3O_{10}$: C, 49.4; H, 4.4; N, 9.6. Found: C, 49.4; H, 4.4; N, 9.4.

6 (13%); mp 220-222 °C; $[\alpha]_{546}$ + 36.4° (*c* 0.1, Me₂SO). Anal. Calcd for $C_{18}H_{18}N_4O_{12}$: C, 44.8; H, 3.8; N, 11.6. Found: C, 44.9; H, 3.6; N, 11.3.

4-(2,4-Dinitrophenylamino)phenyl tetra-O-acetyl- α -D-glucopyranoside (7).—A solution of 2,4-dinitrofluorobenzene (0.12 g, 0.64 mmol) in EtOH (4 mL) was added to a solution of 12 (0.2 g, 0.455 mmol) in aq 50% EtOH (7 mL) and to the rapidly stirred solution NaHCO₃ (0.41 g, 4.92 mmol) was added. After 1 h the solvent was decanted from the orange gum which had separated, the latter was triturated with water and dissolved in CH₂Cl₂, and the organic solution was then dried and concentrated. Column chromatography (6:4 light petroleum–EtOAc) gave a gum which solidified on storage, to give 7 (0.27 g, 96%); mp 87–89 °C; [α]₅₄₆ + 151° (c 2.4, CH₂Cl₂); ¹H NMR data (270 MHz, CDCl₃): δ 2.06 (s, 3 H, MeCO), 2.07 (s, 6 H, 2 × MeCO), 2.10 (s, 3 H, MeCO), 4.07–4.17 (complex, 2 H, H-5,6a), 4.27 (dd, 1 H, J_{5,6b} 4.29, J_{6a,6b} 12.54 Hz, H-6b), 5.06 (dd, 1 H, J_{1,2} 3.63, J_{2,3} 10.23 Hz, H-2), 5.19 (t, 1 H, J_{3,4} = J_{4,5} = 9.90 Hz, H-4), 5.72 (br t, 1 H, H-3), 5.79 (d, 1 H, H-1), 7.06 (d, 1 H, J₀ 9.57 Hz, H-6'), 7.20–7.28 (m, 4 H, AA'BB' system of 4-ROC₆ H₄NH-), 8.17 (rd, i_m 2.64 Hz, H-5'), 9.18 (d, 1 H, H-3'), 9.88 (br s, 1 H, NH). Anal. Calcd for C₂₆ H₂₇N₃O₁₄: C, 51.6; H, 4.5; N, 6.9. Found: C, 52.0; H, 4.4; N, 6.9.

4-(2.4-Dinitrophenylamino)phenyl tetra-O-propanoyl- α -D-glucopyranoside (8), 4-(2.4-dinitrophenylamino)phenyl tetra-O-butanoyl- α -D-glucopyranoside (9), and 4-(2,4dinitrophenylamino)phenyl tetra-O-hexadecanoyl- α -D-glucopyranoside (10).—Acylation of 3 (0.20 g, 0.457 mmol) with propanoyl chloride, butanoyl chloride, or hexadecanoyl chloride (23 mmol) in pyridine (10 mL) in the usual manner gave, after column

² Primed numbers here and elsewhere refer to the 2,4-dinitrophenyl group.

chromatography (9:1 light petroleum-EtOAc), compounds 8, 9, and 10, respectively, each having a ¹H NMR spectrum similar to that of 7 in the region δ 4.00–10.00.

8 (7%); syrup; mass spectrum (El): m/z 661.2150 (M).

9 (25%); syrup; $[\alpha]_{546}$ + 59.3 (c 0.3, CH₂Cl₂). Anal. Calcd for C₃₄H₄₃N₃O₁₄: C, 56.9; H, 6.0; N, 5.9. Found: C, 57.3; H, 5.8; N, 5.8.

10 (11%); syrup; mass spectrum (FAB): m/z 1413.0246 (M + Na).

N-(4-Hydroxyphenyl)-2,4-dinitroaniline (13).—A solution of 2,4-dinitrofluorobenzene (2.56 g, 13.7 mmol) in EtOH (50 mL) was added to a solution of 4-aminophenol (1 g, 9.17 mmol) in aq 50% EtOH (100 mL) followed by NaHCO₃ (8 g, 95 mmol). The mixture was stirred rapidly for 1 h, then filtered, and the filtrate concentrated to afford a solid which on column chromatography (7:3 light petroleum–EtOAc) gave, as a crystalline solid, 13 (0.46 g, 18%); mp 193–195 °C; ¹H NMR data (60 MHz, CD₃OD): δ 6.80–7.40 (complex, 5 H, AA'BB' system of HOC₆ H₄NH- and H-6'), 8.16 (dd, 1 H, J_m 3, J_o 9.6 Hz, H-5'), 9.02 (d, 1 H, H-3'). Anal. Calcd for C₁₂H₉N₃O₅: C, 52.4; H, 3.3; N, 15.3. Found: C, 52.2; H, 3.2; N, 15.0.

N-(4-Methoxyphenyl)-2,4-dinitroaniline (14).—A solution of 2,4-dinitrofluorobenzene (10 g, 54 mmol) in EtOH (100 mL) was added to a solution of 4-methoxyaniline (3.98 g, 32.3 mmol) in aq 50% EtOH (200 mL) followed by NaHCO₃ (30 g, 435 mmol). The mixture was stirred rapidly for 1 h during which time an orange solid precipitated which was collected, washed with water, dried under vacuum, and crystallised from EtOAc-hexane to give 14 (7.4 g, 79%); mp 143–144 °C; lit. [9] mp 141 °C; ¹H NMR data (60 MHz, CDCl₃): δ 3.87 (s, 3 H, MeO). δ .86–7.42 (complex, 5 H, AA'BB' system of MeOC₆ H₄NH- and H-6'), 8.14 (dd, 1 H, J_m 2.8, J_o 9.6 Hz, H-5'), 9.15 (d, 1 H, H-3'), 9.88 (br s, 1 H, NH). Anal. Calcd for C₁₃H₁₁N₃O₅: C, 54.0; H, 3.8; N, 14.5. Found: C, 54.4; H, 3.7; N, 14.4.

2,4-Dinitro-N-(4-octyloxyphenyl)aniline (15).—A stirred solution of 13 (0.1 g, 0.363 mmol) in 1,2-dimethoxyethane (4 mL) was treated with sodium hydride (0.02 g, 0.83 mmol); after 15 min, octyl iodide was added and the mixture was stirred for a further 48 h. EtOH (1 mL) was added and the mixture was then filtered through kieselguhr and the filtrate concentrated. Isolation of the product by column chromatography (19:1 fight petroleum–EtOAc) gave 15 (0.05 g, 34%); mp 64 °C; ¹H NMR data (60 MHz, CDC1₃); δ 0.70–1.60 (complex, 15 H, Me(CH₂)₆-), 4.04 (t, 2 H, J 6 Hz, -CH₂O-), 6.92–7.44 (complex, 5 H, AA'BB' system of ROC₆ H₄NH- and H-6'), 8.22 (dd, 1 H, J_m 2.4, J_o 9.6 Hz, H-5'), 9.04 (d, 1 H, H-3'), 9.96 (br s, 1 H, NH). Anal. Calcd for C₂₀ H₂₅N₃O₅: C, 62.0; H, 6.5; N, 10.9. Found: C, 62.3; H, 6.4; N, 10.7.

2,4-Dinitro-N-(4-propanoyloxyphenyl)aniline (16) and 2,4-dinitro-N-(4-octanoyloxyphenyl)aniline (17).—Acylation of 13 with propanoyl or octanoyl chloride in pyridine in the usual manner and isolation of the product by column chromatography gave esters 16 and 17, respectively.

16 (25%); mp 132–134 °C. Anal. Calcd for $C_{15}H_{13}N_3O_6$: C, 54.4; H, 3.95; N, 12.7. Found: C, 54.1; H, 3.8; N, 12.4.

17 (72%); mp 94–96 °C. Anal. Calcd for $C_{20}H_{23}N_3O_6$: C, 59.8; H, 5.8; N, 10.5. Found: C, 59.8; H, 5.7; N, 10.4.

Enzyme assays.—Assays with yeast α -D-glucosidase were performed at 30 °C and pH 6.5 [buffer: 10 mM disodium piperazine-*N*,*N*'-bis(ethane-2-sulfonate) (PIPES di-

sodium salt), 20 mM NaOAc. 0.1 mM EDTA; pH adjusted with a Rapide Intruments AGB-M1 meter with 5 mM HCl] using 4-nitrophenyl α -D-glucopyranoside as a substrate (K_m 0.20 mM). Assays were performed using substrate concentrations of 0, 0.01, 0.02, and 0.05 mM by monitoring the initial rate of release of 4-nitrophenol from the substrate at 400 nm. Compounds **3-6** did not inhibit this enzyme.

Acknowledgements

This work was supported under the MRC AIDS Directed Programme. We thank Dr. N. Mahmood of the MRC Collaborative Centre for conducting the anti-HIV experiments, and the SERC Mass Spectrometry Service Centre, Swansea for determination of the high-resolution mass spectra.

References

- [1] J.C. Briggs, A.H. Haines, and R.J.K. Taylor, J. Chem. Soc., Chem. Commun., (1992) 1039-1041.
- [2] J.C. Briggs, A.H. Haines, and R.J.K. Taylor, J. Chem. Soc., Chem. Commun., (1993) 1410-1411.
- [3] J.C. Briggs, A.H. Haines, and R.J.K. Taylor, J. Chem. Soc., Perkin Trans. 1, (1995) 27-32.
- [4] A.S. Tyms, D.L. Taylor, P.S. Sunkara, and M.S. Kang, in E. De Clercq (Ed.), Design of Anti-Aids Drugs, Elsevier, Amsterdam, 1990, pp 257-318.
- [5] N. Mahmood, unpublished results.
- [6] J.C. Briggs and A.H. Haines, unpublished results.
- [7] E.M. Montgomery, N.K. Richtmyer, and C.S. Hudson, J. Am, Chem. Soc., 64 (1942) 690-6)4.
- [8] W.F. Goebel, F.H. Babers, and O.T. Avery, J. Exp. Med., 55 (1932) 761-767.
- [9] G. Gallas and A. Alfonso, An. Soc. Esp. Fis. Quim., 28 (1930) 645-690; Chem. Abstr., 24 (1930) 4275,