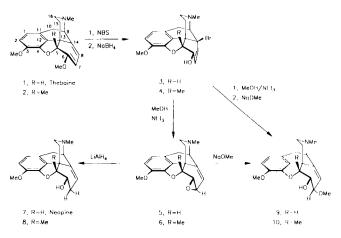
Recl. Trav. Chim. Pays-Bas 112, 573-577 (1993)

Synthesis of neopine and its 5 β - and 7-substituted derivatives (chemistry of opium alkaloids, part XL[#])

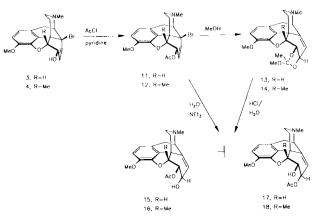
G.J. Meuzelaar, R.H. Woudenberg, A. Sinnema and L. Maat *

Laboratory of Organic Chemistry & Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands (Received April 26, 1993)

Abstract. Heating 14 β -bromocodeine (3) with methanol and triethylamine yielded 6α , 7α -epoxy-6-deoxyncopine (5). The epoxide 5 was reduced to neopine (7) with lithium aluminium hydride, whereas reaction of 5 with sodium methoxide gave 7β -methoxyneopine (9). Similar reactions were performed with 14 β -bromo-5 β -methylcodeine (4), yielding the corresponding 5 β -methyl derivatives 6, 8 and 10. Acetylation of 3 and 4 gave 6α -O-acetyl-14 β -bromocodeine (11) and its 5 β -methyl analogue 12, respectively, from which the ortho esters 13 and 14 were obtained after treatment with methanol. Acid hydrolysis of 13 or, better, solvolysis of 11 in water yielded a mixture of 6α -O-acetyl-7 α -hydroxyneopine (15) and 7α -acetoxyneopine (17). Under the same conditions 12 and 14 gave the 5 β -methyl analogues 16 and 18.


Introduction

There is a great interest in novel classes of morphinans for biological screening with regard to the interaction with different types of opioid receptor¹. An important class of morphinans are the rigid Diels-Alder adducts of thebaine and its analogues^{2.3}. Several of the latter compounds are easily obtained from neopine and derivatives thereof^{4,5}. Natural sources of neopine, which is a minor alkaloid (less than 0.1%) from *Papaver somniferum* L.⁶, are limited. Some syntheses of neopine have been described earlier. Reduction of neopinone yields a mixture of isomers which are difficult to separate⁷. A synthesis starting from 14β -chlorocodeine gives neopine in good yield⁸. We have developed a new synthesis of neopine starting from readily available thebaine, which provides also access to a number of 7-substituted neopine derivatives. Starting from 5β -methylthebaine, 5β -methylneopine and the corresponding 5 β -methyl analogues were prepared. The 7 α substituted compounds in particular are convenient starting materials for the synthesis of 7-substituted morphinan-6,8-dienes⁹.


Results and discussion

For the synthesis of neopine and some of its derivatives we started from thebaine (1) and 5β -methylthebaine (2)⁹, which were readily converted into 14β -bromocodeine (3) and 14β -bromo- 5β -methylcodeine (4), respectively. *Okuda* et al.¹⁰ reported that compound 3 afforded three products when it was stirred in a mixture of methanol and tetrahydrofuran. One of these products, isolated in 40% yield, was identified as 7-methoxyneopine (9). They suggested that the methoxy group was at the 7β -position. However, in our hands four products were obtained. TLC analysis indicated that the three minor compounds were the same

as published earlier¹⁰. The mass spectrum of the main product showed a molecular weight of 297, indicating that it was not methoxy morphinan 9. This was confirmed by the ¹H-NMR spectrum, which demonstrated the absence of the signal of the 7-methoxy group. The spectrum showed one vinylic proton at δ 5.82 (d) and the signal of H-5 at δ 4.95 (d). They form the "head" and "tail" of a linear ABCD system; of the two "inner" protons, the one coupled to the vinylic proton was found at δ 3.71 (dd), and the one next to H-5 at δ 3.41 (dd). From the three coupling constants, the position of H-9 at δ 3.59, and other spectral data, we concluded that the main product was 6α -7 α -epoxy-6-deoxyneopine (5). This epoxide was described earlier¹¹, isolated in 4% yield as an intermediate in the hydrolysis of 3. The ¹H-NMR spectrum was in all aspects identical to that of our compound. This result induced us to investigate the optimization of the yield of 5. When 3 was refluxed in methanol and triethylamine for

Scheme 1. Synthesis of neopine and derivatives 5-10 from thebaine (1) and 5β -methylthebaine (2).

Scheme 2. Synthesis of 7α -substituted neopine derivatives 13–18 starting from 3 and 4.

three minutes, the yield of **5** was 47% after flash column chromatography. In analogy to this reaction, the 5 β -methyl compound **4** gave 6α , 7α -epoxy- 5β -methyl-6-deoxyneopine (**6**) in 35% yield under the same conditions, but after 1 hour reaction time. An internal $S_N 2$ ' reaction explains the formation of the 6α , 7α -epoxy ring and the double bond between the 8- and 14-position¹². The epoxides **5** and **6** are valuable intermediates for the synthesis of neopine and the 7β -substituted derivatives. Reduction of **5** with lithium aluminium hydride gave neopine in quantitative yield, which was fully characterized by ¹H and ¹³C NMR. Obviously, the hydride reagent attacks selectively at the 7β position. 5β -Methylneopine was synthesized in a similar way starting from **6**.

When the epoxide 5 was treated with methanol in the presence of sulfuric acid, 7β -methoxyneopine (9) was obtained in 16% yield. The configuration of the methoxy group at position C-7 was established by analysis of the spin system and the coupling constants of the ¹H NMR spectrum. The reaction of the epoxide with sodium methoxide gave the desired morphinan 9 in good yield. However, the best results (total yield 52%) were obtained when 14β -bromocodeine was converted into 9 via the epoxide 5 in a one-pot reaction. In this way 4 gave 7β -methoxy- 5β -methylneopine (10) in a total yield of 54%. In order to block the epoxide formation and to get into the 7 α -substituted neopine series, we esterified the hydroxyl group at the 6α -position of **3** and **4** with acetyl chloride and pyridine, giving 6α -O-acetyl-14 β -bromocodeine (11) and 6α -O-acetyl-14 β -bromo-5 β -methylcodeine (12), respectively (Scheme 2).

Refluxing 11 or 12 in methanol and triethylamine for 30 min and 1 hour, respectively, gave in both cases one main product (TLC). The molecular weights were in agreement with the replacement of the bromo substituent by a methoxy group. The IR and ¹³C-NMR spectrum showed that no carbonyl group was present. In the ¹H-NMR spectra of the products the signal of a methoxy group was found at δ 3.2, besides those of the aromatic methoxy group and the signal of a methyl group was found at δ 0.9. Furthermore, in both cases only one vinylic proton was observed and the signal of H-9 was found at δ 3.6. We concluded from all these data that the main products of the methanolysis of 11 and 12 were the cyclic ortho esters 6α , 7α -(1-methoxy-ethylidenedioxy)-6-deoxyneopine (13) and its 5 β -methyl analogue 14 (Scheme 2)¹³. Both products contain a new chiral centre, the 'central' carbon atom of the ortho ester, and the diastereomeric ratio in our products was found to be about 9:1 (¹H NMR). Presumably, there is an equilibrium between the acetyl group, methanol, and an unstable hemi ortho ester. Nucleophilic attack of the hydroxyl group of the hemi ortho ester at C-7, followed by an allylic rearrangement and expulsion of a bromide ion, promoted by methanol, results in the found ortho esters.

Acidic hydrolysis of 13 gave a mixture of two major products (ratio 15/17 3:2), which were separated by column chromatography. The molecular weight of each of the two products was 357, and the IR spectra of the compounds showed the presence of both a carbonyl group and a hydroxyl group. From this, combined with the data from ¹H and ¹³C NMR, we conclude that the products are 6α -O-acetyl-7 α -hydroxyneopine (15) and 7 α -acetoxyneopine (17). The position of the acetyl group was established mainly from the ¹H-NMR spectrum by the analysis of the spin system of H-5 to H-8. In the spectrum of the first fraction, the signals of H-6 and H-7 were found at δ 4.37 and δ 5.52, respectively, while these signals were found at δ 5.58 and δ 4.56, respectively, for the second fraction. Probably, the down-field shifts of H-7 (first fraction) and H-6 (second fraction) are caused by the position of the acetyl group. This discriminates between the two components in which the acetoxy group is either at the 6α position (15, second fraction) or at the 7α position (17, first fraction). Additional evidence for the acetyl group positions was found from their signals at δ 1.50 and at δ 2.10. The 0.6-ppm-upfield position for the 6α -acetyl signal can be explained by the shielding effect of the aromatic nucleus. The formation of 15 and 17 is in agreement with the general mechanism for the hydrolysis of an ortho ester¹⁴. We have indications from the lithium aluminium hydride reduction of both 15 and 17 that a third product is 7α -hydroxyneopine. We made no attempts to isolate this diol. In a similar way 14 yielded a mixture (ratio 16/18 15:1) from which 6α -O-acetyl-7 α -hydroxy-5 β methylneopine (16) and 7α -acetoxy-5 β -methylneopine (18) were isolated.

Reaction of 11 or 12 with methanol results in the formation of the ortho esters 13 or 14, respectively. Replacement of methanol by water may yield the above-mentioned acetyl-neopine derivatives in a one-pot reaction. Thus, 11 or 12 was refluxed in water and triethylamine with THF as cosolvent. The reactions were complete in about 4 hours. In both cases the two main products were the expected neopines 15 and 17 and their 5β -methyl analogues 16 and 18.

In summary, neopine and a number of diverse neopine derivatives are now readily available starting from 14β -bromocodeine and its 5β -methyl analogue.

Experimental

Mass spectra were measured using a VG 70-SE mass spectrometer. ¹H and ¹³C NMR spectra were recorded on a Varian VXR-400S spectrometer with CDCl₃ as solvent and tetramethylsilane as reference. Optical rotations were measured using a Perkin–Elmer P-141 polarimeter with chloroform/ethanol (9:1) as solvent, unless stated otherwise. IR spectra were obtained from KBr discs using a Beckman IR-4210 spectrophotometer. Melting points are uncorrected. Column chromatography was performed over silica with dichloromethane/methanol as eluent.

Reactions were monitored by TLC on deactivated silica (0.25 mm, Merck F_{254} ; eluent dichloromethane/methanol/25% ammonia, 85:15:0.5). The compounds were detected with iodine vapour.

(+)-14 β -Bromocodeine (3)

3 Was prepared from thebaine (1) according to the procedure described in Ref. 9.

(+)-14 β -Bromo-5 β -methylcodeine (4)

4 Was prepared from 5β -methylthebaine (2) according to the procedure described in Ref. 9.

(-)-6 α , 7 α -Epoxy-6-deoxyneopine (5)

A solution of 14B-bromocodeine (3, 4.20 g, 11.1 mmol) in anhydrous methanol (80 ml) and triethylamine (8 ml) was boiled for 3 min. Methanol (50 ml) was removed under reduced pressure, water (25 ml) was added and the aqueous layer was extracted with chloroform $(3 \times 50 \text{ ml})$. The combined organic layers were washed with water (2×150 ml) and a saturated solution of NaCl (150 m). After drying (Na₃SO₄), the solvent was removed under reduced pressure to yield 3.30 g as a foam. The product was purified by flash column chromatography (97:3) yielding 1.57 g (5.3 mmol, 47%) of **5**. M.p. 58–60°C; $[\alpha]_D^{25}$ -75° (c 1.01). MS: 297 (M⁺, 100), 268 (52), 241(51), 212(25), 188 (18), 146 (60). High-resolution mass: m/z 297.1363; calcd. for C₁₈H₁₉NO₃: 297.1365. ¹H NMR: δ 1.79 [ddd, 1H, H-15eq, J(15eq, 15ax) 12.5 Hz, J(15eq, 16ax) 3.5 Hz, J(15eq, 16eq) 1.6 Hz], 2.02 [ddd, 1H, H-15ax, J(15ax, 16ax) 12.5 Hz, J(15ax, 16eq) 5.1 Hz]. 2.43 (s, 3H, N-Me), 2.58 (m, 1H, H-16eq), 2.64 [dd, 1H, H-10 α , $J(10\alpha, 9)$ 6.9 Hz, $J(10\alpha, 10\beta)$ 18.0 Hz], 2.76 [ddd, 1H, H-16ax, J(16ax, 16eq) 12.6 Hz], 3.27 (d, 1H, H-10\beta), 3.42 [dd, 1H, H-7\beta, J(7\beta, 6B) 3.8 Hz, J(7B, 8) 3.5 Hz], 3.59 (d, 1H, H-9), 3.71 [dd, 1H, H-6B, J(6B, 5B) 3.7 Hz], 3.87 (s, 3H, 3-OMe), 4.95 (d, 1H, H-5B), 5.82 (d, 111, 11-8), 6.57 [d, 114, 11-1, J(1, 2) 8.2 Hz], 6.68 (d, 114, H-2). ¹³C NMR: δ 145.14 (C-4), 144.11, 142.39 (C-3, C-14), 133.16 (C-12), 127.00 (C-11), 119.18 (C-1), 113.46, 111.84 (C-2, C-8), 88.75 (C-5), 61.38 (C-9), 56.53 (3-OMe), 52.65, 50.37 (C-6, C-7), 45.95 (C-13), 42.65 (C-16), 42.31 (N-Me), 36.30 (C-15), 28.66 (C-10).

$(-)-6\alpha, 7\alpha$ -Epoxy-5 β -methyl-6-deoxyneopine (6)

4 (0.744 g, 1.899 mmol) was added to a mixture of anhydrous methanol (14 ml) and triethylamine (1.4 ml) and refluxed for 1 h. Water (25 ml) was added to the reaction mixture and the aqueous layer was extracted with chloroform (1 \times 40 ml, 2 \times 20 ml). The combined chloroform layers were washed with water (2×80 ml) and a saturated solution of NaCl (80 ml). Drying (Na₂SO₄) and removal of the solvent under reduced pressure gave a crude product as a foam. Purification by flash column chromatography (98:2) yielded 0.206 g (0.662 mmol, 35%) of pure 6. M.p. 48–50°C; $[\alpha]_D^{25}$ -66° (c 0.99). MS: 311 (M⁺, 76), 296 (22), 282 (31), 268 (40), 255 (73), 160 (100). High-resolution mass: m/z 311.1522; calcd. for C₁₉H₂₁NO₃: 311.1521.¹H NMR: 8 1.64 [ddd, 1H, H-15eq, J(15eq, 15ax) 12.5 Hz, J(15eq, 16ax) 3.4 Hz, J(15eq, 16eq) 1.8 Hz] 1.68 (s, 3H, 5*β*-Me), 1.98 [ddd, 1H, H-15ax, J(15ax, 16ax) 12.4 Hz, J(15ax, 16eq) 5.4 Hz], 2.42 (s, 3H, *N*-Me), 2.60 (m, 2H, H-16eq, H-10 α), 2.71 [ddd, 1H, H-16ax. J(16ax, 16eq) 12.5 Hz], 3.27 [d, 1H, H-10 β , $J(10\beta, 10\alpha)$ 18.0 Hz], 3.33 [dd, 1H, H-7β, J(7β, 8) 3.5 Hz], 3.48 [d, 1H, H-6β, J(6β, 7β) 4.0 Hz], 3.57 [d, 1H, H-9, J(9, 10α) 6.8 Hz] 3.85 (s, 3H, 3-OMe), 5.79 (d, 1H, H-8), 6.55 [d, 1H, H-1, J(1, 2) 8.2 Hz], 6.65 (d, 1H, H-2). ¹³C NMR: 8 144.40, 144.00 (C-4, C-14), 142.08 (C-3), 135.30 (C-12), 126.64 (C-11), 118.64 (C-1), 112.60, 112.32 (C-2, C-8). 91.52 (C-5), 61.86 (C-9), 59.45, 50.23 (C-6, C-7), 56.26 (3-OMe), 45.96 (C-16), 44.02 (C-13), 42.27 (N-Me), 32.14 (C-15), 28.91 (C-10), 20.56 (5B-Me).

(+)-*Neopine* (7)

Lithium aluminium hydride (50 mg, 1.3 mmol) was added to a solution of 6α , 7α -epoxy-6-deoxyneopine (5, 0.214 g, 0.722 mmol) in 5 ml of anhydrous ether and 3 ml of anhydrous THF. After 15 min a 15% solution of NaOH (30 ml) was added to the reaction mixture and the aqueous layer was extracted with chloroform (1×50 ml, 2×20 ml). The combined organic layers were washed with water (2×100 ml) and a saturated solution of NaCl (100 ml). After drying (Na₂SO₄), chloroform was removed under reduced pressure and 0.216 g (0.720 mmol, 100%) of product was obtained as a foam. Compound **9** was crystallized from ethanol as the hydrobromide salt (**9** HBr, 0.206 g, 0.540 mmol, 75%).

(0 + h0t, 0.284°C (9 + HBr) (Ref. 15: 284–286°C); $[\alpha]_{15}^{25} + 7^{\circ}$ (9 · HBr, c 1.01, H₂O, Ref. 15: $[\alpha]_{15}^{25} + 17^{\circ}$, c 3.696). MS 299 (M⁺, 67), 284 (14), 254 (14), 254 (53), 149 (33), 62 (100). High-resolution mass: m/z299.1511; calcd, for C₁₈H₂₁NO₃: 299.1521. ¹H NMR: δ 1.82 (m, 1H, H-15eq), 1.98 [ddd, 1H, H-15ax, J(15ax, 15eq) 12.4 Hz, J(15ax, 16ax) 12.4 Hz, J(15ax, 16eq) 4.9 Hz], 2.29 [dt, 1H, H-7β, J(7β, 6β) 2.6 Hz], J(7β, 7α) 17.4 Hz, J(7β, 8) 2.6 Hz], 2.36 [ddd, 1H, H-7α, J(7α, 6β) 3.4 Hz, J(7α, 8) 5.8 Hz], 2.47 (s, 3H, N-Me), 2.63 [m, 1H, H-16eq, J(16eq, 16ax) 13.1 Hz], 2.72 (m, 1H, H-10α), 2.74 (m, 1H, H-16ax), 3.26 [d, 1H, H-10β, J(10β, 10α) 18.3 Hz], 3.64 [d, 1H, H-9, J(9, 10α) 6.4 Hz], 3.87 (s, 3H, 3-OMe), 4.24 (m, 1H, H-6β), 4.66 [d, 1H, H-5β, J(5β, 6β) 4.3 Hz], 5.54 (dd, 1H, H-8), 6.61 [d, 1H, H-1, J(1, 2) 8.2 Hz], 6.70 (d, 1H, H-2). ¹³C NMR: 145.26 (C-4), 141.77 (C-3), 137.80 (C-14), 132.08 (C-12), 126.47 (C-10), 119.62 (C-1), 113.36, 112.66 (C-2, C-8), 90.48 (C-5), 66.70 (C-6), 61.44 (C-9), 56.45 (3-OMe), 45.88 (C-13), 41.99 (N-Me), 41.97 (C-16) 36.32 (C-15), 28.27 (C-10), 27.20 (C-7). IR: $\nu_{\text{max}}^{\text{KBr}}$ 3420 (OH) cm⁻¹.

(-)-5 β -Methylneopine (8)

Lithium aluminium hydride (50 mg, 1.316 mmol) was added to a solution of 6 (0.206 g, 0.662 mmol) in 15 ml of THF. After 15 min a solution of 15% NaOH (30 ml) was added and the aqueous layer was extracted with chloroform (1 \times 50 ml, 2 \times 25 ml). The combined organic layers were washed with water $(2 \times 100 \text{ ml})$ and a saturated solution of NaCl (100 ml). After drying (Na2SO4) and removal of the chloroform, 0.196 g (0.626 mmol, 95%) of product was obtained. Crystallization from anhydrous diethyl ether yielded pure 8 (0.167 g. 0.534 mmol, 81%). M.p. 127–128.5°C; [α]²⁵-2° (c 0.99) MS: 313 (M⁺, 100), 298 (40), 268 (48), 199 (12), 149 (16). High-resolution mass: m/z 313.1669; calcd. for C₁₉H₂₃NO₃: 313.1678. ¹H NMR: δ 1.56 (s, 1H, 5β-Me), 1.71 (m, 1H, H-15eq), 1.95 [ddd, 1H, H-15ax, J(15ax, 15eq) 12.0 Hz J(15ax, 16ax) 12.0 Hz, J(15ax, 16eq) 5.9 Hz], 2.27 [ddd, 1H, H-7 α , $J(7\alpha, 6\beta)$ 3.1 Hz, $J(7\alpha, 7\beta)$ 17.3 Hz, $J(7\alpha, 8)$ 6.1 Hz], 2.35 [dt, 1H, H-7β, J(7β, 6β) 2.4 Hz, J(7β, 8) 2.4 Hz], 2.44 (s, 3H, N-Me), 2.61 (m, 1H, H-16eq), 2.64 (m, 1H, H-10α), 2.67 (m, 1H, H-16ax), 3.23 [d, 1H, H-10 β , $J(10\beta$, 10 α) 18.0 Hz], 3.57 [d, 1H, H-9, $J(9,10\alpha)$ 6.4 Hz] 3.86 (s, 3H, 3-OMe), 3.98 (bs, 1H, H-6β), 5.49 (dd, 1H, H-8), 6.60 [d, 1H, H-1, J(1,2) 8.2 Hz], 6.68 (d, 1H, H-2). ¹³C NMR: δ 144.78 (C-4), 141.16 (C-3), 138.70 (C-14), 126.81 (C-11), 119.28 (C-1), 112.63, 111.98 (C-8, C-2), 93.47 (C-5), 73.94 (C-6), 61., 78 (C-9), 56.21 (3-OMe), 45.84 (C-16), 43.65 (C-13), 42.28 (N-Me), 32.68 (C-15), 29.01 (C-10) 26.84 (C-7), 19.80 (5 β -Me). IR: $\nu_{\text{max}}^{\text{KBr}}$ 3170 (OH) cm $^\circ$

(-)-7 β -Methoxyneopine (9)

3 (1.501 g, 3.971 mmol) was added to a solution of anhydrous methanol (30 ml) and triethylamine (2.75 ml). After 3 min refluxing (complete conversion, TLC) the solution was allowed to cool to room temperature. Sodium (1.0 g) was reacted with methanol (25 ml) and the resulting mixture was added to the crude reaction mixture. After 1 h the conversion of 5 was complete (TLC). Water (75 ml) was added and the aqueous layer was extracted with chloroform (1×125) ml, 2×50 ml). The combined organic layers were washed with water (2×200 ml) and a saturated solution of NaCl (200 ml). After drying (Na₂SO₂), the solvent was removed under reduced pressure to yield 1.094 g of crude product. Purification by column chromatography (96:4) gave **9** (0.673 g, 2.046 mmol, 52%). M.p. 84–86°C; $[\alpha]_{15}^{25}$ -131° (c, 1.00). MS: 329 (M⁺, 100), 314 (26), 298 (30), 254 (50). High-resolution mass: m/z 329.1621; calcd. for C₁₉H₂₃NO₄: 329.1627. ¹H NMR: δ 1.80 [ddd, 1H, H-15eq, J(15eq, 15ax) 12.5 Hz, J(15eq, 16ax) 3.7 Hz, J(15eq, 16eq) 1.7 Hz], 2.09 [ddd, 1H, H-15ax, J(15ax, 16ax) 12.7 Hz, J(15ax, 16eq) 4.9 Hz], 2.46 (s, 3H, N-Me) 2.58 [m, 1H, H-16eq, J(16eq, 16ax) 13.1 Hz], 2.80 [dd, 1H, H-10 α , $J(10\alpha, 10\beta)$ 18.2 Hz], 2.81 (ddd, 1H, H-16ax), 3.24 (d, 1H, H-10\beta), 3.42 (s, 3H, 7-OMe), 3.58 [d, 1H, H-9, J(9,10α) 6.8 Hz], 3.87 (s, 3H, 3-OMe), 3.87 (m, 1H, H-7 α), 4.32 [t, 1H, H-6 β , J(6 β , 5) 3.9 Hz, J(6 β , 7 α) 3.9 Hz], 4.83 (d, 1H, H-5 β), 5.79 [d, 1H, H-8, $J(8,7\alpha)$ 5.5 Hz], 6.61 [d, 1H, H-1, J(1, 2) 8.2 Hz], 6.70 (d, 1H, H-2). ¹³C NMR δ 145.70 144.22 (C-4, C-14), 141.86 (C-3), 131.96 (C-12), 126.67 (C-11), 119.53 (C-1), 113.80, 113.50 (C-8, C-2), 89.16 (C-5), 75.70, 68.11 (C-7, C-6), 61.68 (C-9), 56.70, 56.45 (3-OMe, 7-OMe), 45.67 (C-16), 42.72 (C-13), 42.04 (*N*-Me), 36.22 (C-15), 29.00 (C-10). IR: $\nu_{\text{max}}^{\text{KBr}}$ 3490 (OH) cm⁻¹.

(-)-7 β -Methoxy-5 β -methylneopine (10)

4 (0.590 g, 1.505 mmol) was dissolved in anhydrous methanol (15 ml) and triethylamine (1 ml) and refluxed for 1 h. Sodium (1.0 g) was reacted with methanol (25 ml) and the resulting mixture was added to the reaction mixture. After 3 h stirring at room temperature, water (50 ml) was added and the aqueous layer was extracted with chloroform (1×100 ml, 2×25 ml). The combined chloroform layers were washed with water (2×150 ml) and a saturated solution of NaCl (150 ml). Drying (Na₂SO₄) and removal of the solvent under reduced pressure gave a foam. Crystallization from anhydrous diethyl ether yielded pure 10 (0.279 g, 0.813 mmol, 54%). M.p. 153.5-155°C. -80° (c 1.00). MS: 343 (M⁺, 100), 328 (33), 312 (20), 268(31), $[\alpha]_{\rm fr}$ 190 (20). High-resolution mass: m/z 343.1786; calcd. for C₂₀H₂₅NO₄: 343.1784. ¹H NMR: δ 1.65 [ddd, 1H, H-15 eq. J(15eq. 15ax) 12.5 Hz, J(15eq, 16ax) 3.5 Hz, J(15eq, 16eq) 1.9 Hz], 1.67 (s, 3H, 5B-Me), 2.02 [ddd, 1H, H-15ax, J(15ax, 16ax) 12.5 Hz, J(15ax, 16eq) 5.2 Hz], 2.44 (s, 3H, N-Me), 2.61 (m, 1H, H-16eq), 2.75 [dd, 1H, H-10 α , J(10 α , 9) 6.7 Hz, J(10 α , 10 β) 18.9 Hz], 2.78 [m, 1H, H-16ax, J(16ax, 16eq) 12.7 Hz], 3.23 (d, 1H, H-10 β), 3.40 (s, 3H, 7-OMe), 3.56 (d, 1H, H-9), 3.80 [dd, 1H, H-7 α , $J(7\alpha, 6\beta)$ 3.0 Hz, $J(7\alpha, 8)$ 5.8 Hz], 3.85 (s, 3H, 3-OMe), 4.03 (m, 1H, H-6 β), 5.77 (d, 1H, H-8), 6.58 [d, 1H, H-1, J(1, 2) 8.3 Hz], 6.68 (d, 1H, H-2). ¹³C NMR: 8 144.67 (C-4), 143.47, 141.25 (C-3, C-14), 133.59 (C-12), 126.78 (C-11), 119.25 (C-1), 113.69, 112.69 (C-2, C-8), 93.22 (C-5), 76.36, 74.08 (C-6, C-7), 62.13 (C-9), 56.77, 56.21 (3-OMe, 7-OMe), 45.60 (C-16), 44.30 (C-13), 42.04 (*N*-Me), 32.12 (C-15), 28.73 (C-10), 20.23 (5 β -Me). IR: ν_{max}^{KBr} 3140 (OH) cm⁻¹.

$(+)-6\alpha$ -O-Acetyl-14 β -bromocodeine (11)

Acetyl chloride (4 ml, 56.25 mmol) in 15 ml of chloroform was added dropwise to 14β -bromocodeine (3) (9.10 g, 24.07 mmol) in 150 ml of dichloromethane and 4 ml of pyridine. After 1 h stirring, water and ice were added and the solution was made alkaline with concentrated ammonia. After separation, the aqueous layer was extracted with dichloromethane $(2 \times 50 \text{ ml})$. The combined organic layers were washed with water $(2 \times 250 \text{ ml})$, a saturated solution of NaCl (250 ml), and dried (Na₂SO₄). The solvents were evaporated under reduced pressure to yield 11 (9.69 g, 23.07 mmol, 96%). An analytical sample was crystallized from methanol. M.p. 133.5-134°C (Ref. 11: 153–154°C^a); $[\alpha]_{25}^{25} + 9^{\circ}$ (*c* 1.00). MS: 419/421 (1:1; M⁺, 5), 340 (82), 298 (28), 281 (100), 266 (54), 254 (18). High-resolution mass: *m*/*z*-Br 340.1547; calcd. for $C_{20}H_{22}NO_4$: 340.1549. ¹H NMR: δ 1.83 (m, 1H, H-15eq), 2.15 (s, 3H, COMe), 2.34 [m, 1H, H-15ax, J(15ax, 15eq) 12.3 Hz, J(15ax, 16ax) 12.3 Hz, J(15ax, 16eq) 3.7 Hz], 2.44 (s, 3H, N-Me), 2.47 [m, 1H, H-10 α , $J(10\alpha$, 10 β) 18.2 Hz, $J(10\alpha$, 9) 5.8 Hz], 2.61-2.71 (m, 2H, H-16ax, H-16eq), 3.18 (d, 1H, H-10B), 3.29 (d, 1H, H-9), 3.85 (s, 3H, 3-OMe), 5.07 [dd, 1H, H-5 β , $J(5\beta, 6\beta)$, 7.1 Hz, $J(5\beta, 7)$ 0.9 Hz], 5.43 [ddd, 1H, H-6 β , $J(6\beta, 7)$ 3.2 Hz, $J(6\beta, 8)$ 2.0 Hz], 5.70 [ddd, 1H, H-8, J(8.7) 9.8 Hz], 5.90 (ddd, 1H, H-7), 6.55 [d, 1H, H-1, J(1, 2) 8.2 Hz], 6.67 (d, 1H, H-2). ¹³C NMR: δ 170.20 (C = O), 145.28 (C-4), 142.66 (C-3), 131.63 (C-7), 131.25 (C-12), $\begin{array}{c} (C = 0.7, 1.5.26 \ (C = 1), 1.1.20 \ (C =$ (C-13), 43.07 (*N*-Me), 32.08 (*C*-15), 23.20 (C-10), 20.65 (COMe). IR: $v^{\text{KBr}} = 1$ $\nu_{\rm max}^{\rm KBr}$ 1735 (C = O) cm⁻

$(+)-6\alpha$ -O-Acetyl-14 β -bromo-5 β -methylcodeine (12)

12 was prepared according to the procedure described for 11. 5.96 g (15.2 mmol) of 4 yielded 6.53 g (99%) of crystalline 12. An analytical sample was recrystallized from methanol. M.p. 144–145°C; $[\alpha]_{D}^{22}$ +85° (c 1.00). MS: 433/435 (1:1; M⁺, 7) 354 (69) 312 (35), 295 (100), 280 (65), 154 (27). High resolution mass: m/z 433.0887; calcd. for C₂₁H₂₄NO₄Br: 433.0889. ¹H NMR: δ 1.68 (m, 1H, H-15eq), 1.78 (s, 3H, 5β -Me), 2.14 (s, 3H, COMe), 2.30 [ddd, 1H, H-15ax, J(15ax, 15eq) 11.8 Hz, J(15ax, 16ax) 11.8 Hz, J(15ax, 16eq) 3.7 Hz], 2.45 (s, 3H, N-Me), 2.46 [m, 1H, H-10 α , $J(10\alpha$, 9) 5.8 Hz, $J(10\alpha$, 10 β) 18.5 Hz], 2.55 [ddd, 1H, H-16ax, J(16ax, 15eq) 12.3 Hz, J(16ax, 16eq) 12.3 Hz], 2.67 (m, 1H, H-16eq), 3.14 (d, 1H, H-10\beta), 3.23 (d, 1H, H-9), 12, 2.07 (ii), 11, 11, 11 (6d), 5.14 (d, 11, 11 (6), 5.25 (d, 11, 11), 3.85 (s, 3H, 3-OMe), 5.38 [t, 1H, H-6 β , J(6 β , 7) 2.6 Hz, J(6 β , 8) 2.8 Hz], 5.59 [dd, 1H, H-7, J(7,8) 9.8 Hz], 5.92 (ddd, 1H, H-8), 6.55 [d, 1H, H-1, J(1, 2) 8.2 Hz], 6.67 (d, 1H, H-2). ¹³C NMR: δ 170.65 (C = O), 144.13 (C-4), 142.18 (C-3), 131.34 (C-7), 132.00 (C-12),130.33 (C-8), 125.74 (C-11), 118.76 (C-1), 113.54 (C-2), 91.61 (C-5), 70.71, 67.77 (C-14, C-6), 65.94 (C-9), 56.33 (3-OMe), 49.15 (C-13), 46.32 (C-16), 42.97 (N-Me), 28.65 (C-15), 23.30 (C-10), 21.73 (5β-Me), 20.83 (COMe). IR: $\nu_{\text{max}}^{\text{KBr}}$ 1735 (C = O) cm⁻¹.

6α , 7α -(1-Methoxyethylidenedioxy)-6-deoxyneopine (13)

11 (0.52 g, 1.24 mmol) was dissolved in a mixture of anhydrous methanol (30 ml) and triethylamine (1 ml) and refluxed for 30 min. After cooling, water (25 ml) was added and the aqueous layer was extracted with chloroform (1 \times 50 ml, 2 \times 25 ml). The combined organic layers were washed with water $(2 \times 100 \text{ ml})$ and a saturated solution of NaCl (100 ml). After drying (Na₂SO₄), the solvent was removed under reduced pressure to yield 0.4 g of crude product. Purification by column chromatography (97:3) gave pure 13 (0.16 g, 0.43 mmol, 35%). Two diastereoisomers were formed in a ratio of about 9:1. MS: 371 (M⁺, 95) 339 (47), 296 (39), 280 (64), 254 (100), 241 (97) 225 (45), 152 (36). High-resolution mass: m/z 371.1738; calcd for C₂₁H₂₅NO₅: 371.1733. ¹H NMR: δ 0.96 [s, 3H, 6α-O-7α-O-C(OMe)Me], 1.84 [ddd, 1H, H-15eq, J(15eq, 15ax) 12.5 Hz, J(15eq, 16ax) 4.2 Hz, J(15eq, 16eq) 2.2 Hz], 1.90 [ddd, 1H, H-15ax, J(15ax, 16ax) 12.1 Hz, J(15ax, 16eq) 5.0 Hz], 2.44 (s, 3H, N-Me), 2.62 (m, 1H, H-16eq), 2.62 (m, 1H, H-10α), 2.69 [ddd, 1H, H-16ax, J(16ax, 16eq) 12.5 Hz], 3.22 (s, 3H, 6α-O-7α-O-C(OMe)Me), 3.28 [d, 1H, H-10 β , $J(10\beta, 10\alpha)$ 17.9 Hz], 3.62 [d, 1H, H-9, $J(9, 10\alpha)$ 6.4 Hz], 3.88 (s, 3H, 3-OMe), 4.75 [ddd, 1H, H-6β, J(6β, 5) 5.3 Hz, J(6β, 7β) 4.5 Hz, J(6B, 8) 0.8 Hz], 4.78 (d, 1H, H-5B), 4.88 [dd, 1H, H-7B, $J(7\beta, 8)$ 1.7 Hz], 5.40 (d, 1H, H-8), 6.58 [d, 1H, H-1, J(1, 2) 8.2 Hz], 6.70 (d, 1H, H-2). ¹³C NMR: δ 145.88 (C-4), 142.24 (C-3), 137.69 (C-14), 131.64 (C-12), 126.27 (C-11), 121.27 (6 α -O-7 α -0-C(OMe)Me), 119.08 (C-1), 115.11 (C-8), 114.28 (C-2), 87.09 (C-5), 74.43, 73.68 (C-6, C-7), 61.66 (C-9), 56.89 (3-OMe), 49.13 (C-13), 46.18 (C-16), 42.34 (*N*-Me), 41.00 (6 α , 7 α -O₂C(OMe)Me), 36.34 (C-15), 17.14 (C-10), 24.72 (6 α , 7 α -O₂C(OMe)Me).

6α , 7α -(1-Methoxyethylidenedioxy)-5 β -methyl-6-deoxyneopine (14)

12 (2.00 g, 4.61 mmol) was added to a mixture of anhydrous methanol (75 ml) and triethylamine (4 ml) and refluxed for 1 h. Methanol (50 ml) was partly removed under reduced pressure. Water (25 ml) was added and the aqueous layer was extracted with chloroform (1 \times 50 ml, 2×25 ml). The combined organic layers were washed with water (2×100 ml), a saturated solution of NaCl (100 ml), and dried (Na₂SO₄). Removal of the solvent under reduced pressure gave 1.77 g crude product as a foam. Purification by flash column chromatography (97:3) yielded pure 14 (1.01 g, 2.62 mmol, 57%). The ¹H NMR spectrum showed two diastereoisomers in a ratio of about 9:1. MS: 385 (M⁺, 86), 370 (22), 353 (53), 338 (29), 326 (29), 310 (31), 294 (44), 270 (56), 255 (100). High-resolution mass: m/z 385.1891; calcd. for C₂₂H₂₇NO₅: 385.1889. ¹H NMR: δ 0.92 (s, 3H, $\delta\alpha$ -O-7 α -O-C(OMe)Me), 1.56 (s, 1H, 5β-Me), 1.68 [m, 1H, H-15eq, J(15eq, 15ax) 11.9 Hz, J(15eq, 16eq) 2.5 Hz], 1.88 [ddd, 1H, H-15ax, J(15ax, 16ax) 12.1 Hz, J(15ax, 16eq) 5.8 Hz], 2.44 (s, 3H, N-Me), 2.58 [dd, 1H, H-10 α , $J(10\alpha$, 9) 6.3 Hz, $J(10\alpha$, 10 β) 18.4 Hz], 2.63 (m, 1H, H-16eq), 2.69 [dd, 1H, H-16ax, J(16ax, 16eq) 12.5 Hz, J(16ax, 15eq) 3.4 Hz], 3.20 (s, 3H, 6α-O-7α-O-C(OMe)Me), 3.28 (d, 1H, H-10β), 3.61 (d, 1H, H-9), 3.87 (s, 3H, 3-OMe), 4.45 [dd, 1H, H-6β, J(6β, 7β) 4.6 Hz, J(6β, 8) 0.8 Hz], 4.80 [dd, 1H, H-7β, J(7β, 8) 1.4 Hz], 5.38 (s, 1H, H-8), 6.56 [d, 1H, H-1, J(1, 2) 8.3 Hz], 6.67 (d, 1H, H-2). ¹³C NMR: 8 145.39 (C-4), 141.92 (C-3), 138.16 (C-14), 132.72 (C-12), 126.23 (C-11), 121.23 (6α-O-7α-0-C(OMe)Me), 118.74 (C-1), 115.14 (C-8), 113.52 (C-2), 90.29 (C-5), 81.32, 73.82 (C-6, C-7), 62.02 (C-9), 56.68 (3-OMe), 49.20 $(6\alpha, 7\alpha$ -O₂C(*OMe*)Me), 46.00 (C-13), 42.71 (C-16), 42.26 (N-Me), 32.23 (C-15), 27.28 (C-10), 24.57 (6α , 7α - $O_{2}C(OMe)Me$, 20.36 (5 β -Me).

(-)-6 α -O-Acetyl-7 α -hydroxyneopine (15) and (-)-7 α -acetoxyneopine (17)

(a). Compounds 15 and 17 from 11. 6α -O-Acetyl-14 β -bromocodeine (4.31 g, 10.26 mmol) was dissolved in 80 ml of THF, 60 ml of water, and 4 ml of triethylamine and refluxed for 4 h. Most of the THF was evaporated under reduced pressure and the aqueous residue extracted with chloroform (60 ml, 2×20 ml). The organic layers were combined and washed with water (2×100 ml) and a saturated solution of NaCl (100 ml), and dried (Na₂SO₄). The solvent was evaporated to give 3.51 g (96%) crude product. The product was redissolved in dichloromethane and ethyl acetate. Compound 15 crystallized after evaporation of dichloromethane (0.61 g, 17%). Further separation by column chromatography (95:5) yielded 17 (0.73 g, 2.04 mmol, 20%) and 15 (0.82, 2.30 mmol, 22%).

15 M.p. 130–132°C; $[\alpha]_{25}^{25}$ -5° (*c* 1.01). MS: 357 (M⁺, 94), 298 (56), 254 (100), 241 (45). High-resolution mass: *m/z* 357.1569; calcd. for C₂₀H₂₃NO₅: 357.1576. ¹H NMR: δ 1.50 (s, 3H, CO*Me*), 1.84 [ddd, 1H, H-15eq, *J*(15eq, 15ax) 12.6 Hz, *J*(15eq, 16ax) 3.7 Hz, *J*(15eq, 16eq) 1.8 Hz], 1.95 [ddd, 1H, H-15ax, *J*(15ax, 16ax) 12.4 Hz, *J*(15ax, 16eq) 5.1 Hz], 2.45 (s, 3H, N-Me), 2.61 [m, 1H, H-16eq, *J*(16eq, 16ax) 12.6 Hz], 2.70 (m, 1H, H-16ax), 2.72 [dd, 1H, H-10 α , *J*(10 α , 9) 6.5 Hz, *J*(10 α , 10 β) 18.1 Hz], 3.27 (d, 1H, H-10 β), 3.64 (d, 1H, H-9), 3.85 (s, 3H, 3-OMe), 4.56 [dd, 1H, H-7 β , *J*(7 β , 6 β) 2.7 Hz, *J*(7 β , 8) 1.4 Hz], 4.79 [d, 1H, H-6 β), 6.59 [d, 1H, H-1, *J*(1, 2) 8.2 Hz], 6.66 (d, 1H, H-2). ¹³C NMR: δ 171.08 (C = O), 145.42 (C-4), 142.02 (C-3), 137.81 (C-14), 131.63 (C-12), 126.70 (C-11), 119.75, 118.68 (C-1, C-8), 114.40 (C-2), 87.22 (C-5), 71.91 (C-6), 65.88 (C-7), 61.20 (C-9), 56.99 (3-OMe), 45.95 (C-16), 42.73 (C-13), 42.11 (*N*-Me), 35.87 (C-15), 27.17 (C-10), 20.22 (CO*Me*). IR: ν_{max}^{KBr} 3450 (OH), 1745 (C = O) m⁻¹.

17 M.p. $90-91^{\circ}$ C; $[\alpha]_{D}^{25}$ -54° (c 0.99). MS: 357 (M⁺, 100), 298, (61), 280 (58), 254 (92), 241 (50). High-resolution mass: m/z 357.1574; calcd. for $C_{20}H_{23}NO_5$: 375.1576. ¹H NMR: δ 1.80 [m, 1H, H-15eq, J(15eq, 15ax) 12.5 Hz, J(15eq, 16ax) 3.5 Hz, J(15eq, 15eq) 1.6 Hz], 1.96 [ddd, 1H, H-15ax, J(15ax, 16ax) 12.4 Hz, J(15ax, 16eq) 5.1 Hz], 2.10 (s, 3H, COMe), 2.44 (s, 3H, N-Me), 2.58 [dd, 1H, H-16eq, J(16ax, 16eq) 12.6 Hz], 2.74 (m, 2H, H-10 α , H-16ax), 3.24 [d, 1H, H-10 β , $J(10\beta, 10\alpha)$ 18.1 Hz], 3.64 [d, 1H, H-9, $J(9, 10\alpha)$ 6.4 Hz], 3.87 (s, 3H, 3-OMe), 4.37 (m, 1H, H-6 β), 4.74 [d, 1H, H-5, $J(5,6\beta)$ 4.4 Hz], 5.39 (s, 1H, H-8), 5.51 [dd, 1H, H-7 β , $J(7\beta, 6\beta)$ 2.6 Hz, $J(7\beta, 8)$ 1.4 Hz], 6.62 [d, 1H, H-1, J(1, 2) 8.2 Hz], 6.72 (d, 1H, H-2). ¹³C

^a The only physical property of 11 described in Ref. 9 deviates strongly from our findings.

NMR: δ 170.30 (C = O), 145.46 (C-4), 141.87 (C-3), 139.80 (C-14), 131.36 (C-12), 126.53 (C-11), 119.75 (C-1), 114.08, 113.83 (C-2, C-8), 88.67 (C-5), 69.87, 69.04 (C-6, C-7), 61.09 (C-9), 56.58 (3-OMe), 45.74 (C-13), 42.83 (C-16), 42.16 (*N*-Me), 36.19 (C-15), 27.62 (C-10), 21.08 (CO*Me*). IR: $\nu_{\text{MBr}}^{\text{MBr}}$ 3450 (OH), 1735 (C = O) cm⁻¹.

(b). Compounds 15 and 17 by hydrolysis of 13. 13 (0.36 g, 0.97 mmol) was dissolved in 15 ml of 2N HCl. After 2 h stirring, chloroform (20 ml) was added and the aqueous layer was made alkaline with concentrated ammonia. After separation, the aqueous layer was extracted with chloroform (2×10 ml). The combined organic layers were washed with water (2×40 ml) and a saturated solution of NaCl (40 ml) and dried (Na₂SO₄). The solvent was removed under reduced pressure to yield 0.27 crude product as a foam. Separation by column chromatography (96:4) yielded 17 (0.10 g, 29%) and 15 (0.07 g, 20%), in all respects identical with the compounds described above.

$(+)-6\alpha$ -O-Acetyl-7 α -hydroxy-5 β -methylneopine (16)

12 (21.70 g, 50.0 mmol) was dissolved in 250 ml of THF, 250 ml of water, and 35 ml of triethylamine and refluxed for 4 h. Most of the THF was evaporated under reduced pressure and the aqueous residue extracted with chloroform (250 ml, 2×100 ml). The organic layers were combined and washed with water (2×400 ml) and a saturated solution of NaCl (400 ml), and dried (Na₂SO₄). The solvent was evaporated and the foam (18.13 g) redissolved in 20 ml ethyl acetate and 10 ml dichloromethane. Evaporation of dichloromethane resulted in crystallization of 16 (8.49 g, 22.9 mmol, 46%). An analytical sample was recrystallized from ethyl acetate. M.p. 205–206°C; $[\alpha]_D^{25}$ + 36° (c 1.00). MS: 371 (M⁺, 100), 312 (50), 294 (52), 282 (35), 268 (72), 255 (48). High-resolution mass: m/z 371.1735; calcd. for C₂₁H₂₅NO₅: 371.1733. ¹H NMR: & 1.47 (s, 3H, COMe), 1.65 (s. 3H, 5B-Me), 1.70 [m, 1H, H-15eq, J(15eq, 15ax) 12.2 Hz. J(15eq, 16ax) 3.6 Hz, J (15eq, 16eq) 2.6 Hz], 1.89 [ddd, 1H, H-15ax, J(15ax, 16ax) 11.7 Hz, J(15ax, 16eq) 6.3 Hz], 2.44 (s, 3H, N-Me), 2.64 [m, 1H, H-16eq, J(16ax, 16eq) 12.3 Hz], 2.64 (m, 1H, H-16ax), 2.69 [dd, 1H, H-10 α , 7 (10 α , 9) 6.6 Hz, $J(10\alpha, 10\beta)$ 18.0 Hz], 3.25 (d, 1H, H-10β), 3.60 (d, 1H, H-9), 3.84 (s, 3H, 3-OMe), 4.53 [dd, 1H, H-7\beta, J(7\beta, 6\beta) 3.0 Hz. J(7\beta, 8) 1.3 Hz], 5.33 [dd, 1H, H-6 β , *I*(6 β , 8) 1.4 Hz], 5.42 (t, 1H, H-8), 6.59 [d, 1H, H-1, *J*(1, 2) 8.1 Hz], 6.66 (d, 1H, H-2). ¹³C NMR: δ 170.81 (C = O), 144.91 (C-4), 141.46 (C-3), 138.91 (C-14), 132.79 (C-12), 126.97 (C-11), 119.28 (C-1), 117.86 (C-8), 113.50 (C-2), 91.17 (C-5), 66.24 (C-6, C-7), 61.59 (C-9), 56.62 (3-OMe), 45.75 (C-13), 44.32 (C-16), 42.21 (*N*-Me), 32.12 (C-15), 27.03 (C-10), 20.12, 19.75 (5 β -Me, CO*Me*). IR ν_{max}^{KBr} 3160 (OH), 1735 (C = O) cm⁻¹.

(-)-7 α -Acetoxy-5 β -methylneopine (18)

Compound 14 (1,01, g, 2.62 mmol) was dissolved in 50 m of 2N HCl and stirred for 6 h. The solution was made alkaline with concentrated ammonia and extracted with chloroform (1×75 ml, 2×25 ml). The combined organic layers were washed with water (2×100 ml) and a saturated solution of NaCl (100 ml). After drying (Na₂SO₄), the solvent was removed under reduced pressure. The yield was 0.94 g (97%) of crude product as a foam, which was redissolved in dichloromethane (10 ml) and ethyl acetate (20 ml). After evaporation of dichloromethane, 16 (0.48 g, 1.30 mmol, 50%) crystallized. The filtrate was concentrated and separated by column chromatography (96:4) yielding 0.031 g (0.084 mmol, 3%) of 7α-acetoxy compound 18. M.p. 83–86°C; [α]²⁵₂₅ -8° (*c* 0.51). MS: 371 (M⁺, 100), 328 (47), 312 (44), 294 (66), 268 (56), 255 (98). High-resolution r.ass: *m*/*z* 371.1728; calcd. for C₂₁H₂₅NO₅: 371.1733. ¹H NMR: δ 1.63 (s, 3H,

5β-Me), 1.69 [m, 1H, H-15eq, J(15eq, 15ax) 12.2 Hz, J(15eq, 16ax) 3.7 Hz, J(15eq, 16eq) 1.8 Hz], 1.94 [ddd, 1H, H-15ax, J(15ax, 16ax) 12.3 Hz, J(15ax, 16eq) 5.2 Hz], 2.09 (s, 3H, COMe), 2.45 (s, 3H, N-Me), 2.63 [m, 1H, H-16eq, J(16eq, 16ax) 13.3 Hz], 2.69 (m, 1H, H-10α), 2.74 (m, 1H, H-16ax), 3.25 [d, 1H, H-10β, J(10β, 10α) 18.1 Hz], 3.61 [d, 1H, H-9, J(9, 10α) 6.5 Hz], 3.86 (s, 3H, 3-OMe), 4.12 (m, 1H, H-6β), 5.36 [t, 1H, H-8, J(8, 6β) 1.4 Hz, J(8, 7β) 1.4 Hz], 5.51 [dd, 1H, H-7β, J(7β, 6β) 2.8 Hz], 6.59 [d, 1H, H-1, J(1, 2) 8.3 Hz], 6.70 (d, 1H, H-2). ¹³C NMR: δ 170.26 (C = O), 144.90 (C-4), 141.27, 140.07 (C-3, C-14), 132.26 (C-12), 126.46 (C-11), 119.50 (C-1), 114.11, 113.20 (C-2, C-8), 92.46 (C-5), 75.50 (C-7), 70.09 (C-6), 61.52 (C-9), 56.36 (3-OMe), 45.57(C-13), 44.32 (C-16), 42.06 (N-Me), 31.97 (C-15), 27.64 (C-10), 21.10, 19.58 (COMe, 5β-Me). IR: ν_{max}^{HB} 3440 (OH), 1730 (C = O) cm⁻¹.

Acknowledgements

We are grateful to the Management of Diosynth B.V., Apeldoorn, The Netherlands, for the gift of chemicals. We are indebted to Dr. J.A. Peters and Mr. A. van Estrik for their help in recording and interpreting the ¹H and ¹³C NMR spectra. We thank Mrs. A.H. Knol-Kalkman for recording the mass spectra.

References and note

- * Part XXXIX: R.H. Woudenberg, T.S. Lie and L. Maut, Recl. Trav. Chim. Pays-Bas 112, 557 (1993).
- ¹ A.F. Casy, Adv. Drug Res. 18, 178 (1989).
- K.W. Bentley and D.G. Hardy, J. Am. Chem. Soc. 89, 3267 (1967).
 K.W. Bentley in "The Alkaloids", R.H.F. Manske (Ed.), Vol. XIII,
- ⁴ R.W. Bentley in The Alkalous, R.H.F. Manske (Ed.), vol. XIII, Academic Press, New York, 1971, p. 75.
 ⁴ P.R. Crabbendam, L. Maat and H.C. Beyerman, Recl. Trav.
- Chim. Pays-Bas **100**, 293 (1981).
- ⁵ S. Berényi, S. Makleit, R. Bognár and A. Tegdes, Acta Chim. Acad. Sci. Hung. 103, 365 (1980).
- ⁶ T.A. Henry, "The Plant Alkaloids", J. & A. Churchill Ltd., London (1949).
- ^{7a} *R.B. Barber* and *H. Rapoport*, J. Med. Chem. **19**, 1175 (1962);
- ^b S.W. Wunderly and E. Brochmann-Hansen, J. Org. Chem. 42, 4279 (1977).
- ⁸ S. Makleit, S. Berényi and R. Bognár, Acta Chim. Acad. Sci. Hung. 94, 165 (1977).
- ⁹ R.H. Woudenberg and L. Maat, Recl. Trav. Chim. Pays-Bas 112, 113 (1993).
- ¹⁰ S. Okuda, K. Abe and M. Onda, Chem. Pharm. Bull. **16**, 1124 (1968).
- ¹¹ K. Abe, Y. Nakamura and S. Okuda, Tetrahedron **27**, 4495 (1971).
- 2 R.M. Magid, Tetrahedron **36**, 1901 (1980). $^{3-1}$ H and 13 C NMR data from trimethyl orthoacetate are compati-
- ble with our observations. C.J. Pouchert, "The Aldrich Library of NMR Spectra", Edition II, Vol. 1, p. 185, Aldrich Chemical Company. Inc., Milwaukee, Wisconsin (1983); V. Formáček, L. Desnoyer, H.P. Kellerhals, T. Keller and J.T.
- Cleve, "¹³C Data Bank Vol. 1", p. 835, Bruker, Karlsruhe (1976). *E.H. Cordes*, in "The Chemistry of Functional Groups; the Chem-
- istry of Carboxylic Acids and Esters", *S. Patai* (Ed.), Interscience-Publishers, London (1969).
- ¹⁵ C.F. van Duin, R. Robinson and J.C. Smith, J. Chem. Soc., 903 (1926).