Studies on C18–C20 Aldol Couplings of Rhizopodin

Michael Dieckmann,^a Sven Rudolph,^b Carolin Lang,^c Wiebke Ahlbrecht,^c Dirk Menche*^a

^a Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany

Fax +49(228)735813; E-mail: dirk.menche@uni-bonn.de

^b ASM Research Chemicals, 30938 Burgwedel, Germany

^c Universität Heidelberg, Institut für Organische Chemie, INF 270, 69120 Heidelberg, Germany

Received: 09.04.2013; Accepted after revision: 17.05.2013

Abstract: The aldol addition of an enol(ate) to a carbonyl compound is one of the most powerful and versatile C–C bond forming reactions. In complex target synthesis the coupling of two chiral partners may complicate the stereochemical outcome by multiple stereoinductions. Here, we report studies on pivotal aldol couplings employed in the rhizopodin synthesis, detailing the various directing effects exerted by the stereogenic centers present in this sterically hindered connection.

Key words: natural products, aldol reaction, asymmetric synthesis, methyl ketone, Felkin product

Myxobacteria are an extremely proliferative source of novel polyketides and an impressive number of structurally unique and biosynthetically diverse representatives have been reported from these soil-living organisms, in particular by the pioneering work of Höfle and Reichenbach.¹ In 1993 they reported rhizopodin as the main metabolite from Myxococcus stipitatus (strain Mx f164).^{2,3} Being originally considered to be monomeric, the structure was more recently revised to be a C₂-symmetric dimer (1), as shown in Scheme 1.⁴ The full configuration was independently assigned in our group by extensive NMR studies in combination with modeling and chemical derivatization⁵ and in the group of Schubert by an X-ray structure analysis of actin-bound rhizopodin.⁶ The unique architecture of rhizopodin is characterized by a 38-membered macrolide ring with two conjugated diene systems and two disubstituted oxazole systems in combination with two enamide side chains and contains in total 18 stereogenic centers.

Rhizopodin presents a highly potent antiproliferative agent that inhibits the growth of various cancer cell lines in low nanomolar concentrations.² This potency has been attributed to its ability to disrupt actin cytoskeleton formation by binding specifically to a few critical sites of G-actin.⁷ The important biological properties and its natural scarcity, coupled with its intriguing molecular architecture have attracted high interest from the synthetic community⁸ and so far two total syntheses have been accomplished by our group and by Paterson et al.⁹ A concise preparative approach to the central C8–C22 subunit **2** proved to be particularly challenging. To enable conver-

SYNTHESIS 2013, 45, 2305–2315

Advanced online publication: 12.07.2013

DOI: 10.1055/s-0033-1338493; Art ID: SS-2013-T0198-OP

© Georg Thieme Verlag Stuttgart · New York

gent access to this key fragment, our synthetic plan relied on pivotal aldol reactions¹⁰ to set the C18–C20 segment, either by a coupling along the C19–C20 bond (aldol coupling 1) or along the C18–C19 bond (aldol coupling 2), by union of aldehyde **5** with ketones **3/4** or ketone **8** with aldehydes **6/7**, respectively. Herein, we report in detail the subtle stereoselective contributions of the various stereogenic centers of the methyl ketones and aldehydes in these pivotal aldol reactions under various enolization conditions with different protective groups. This fundamental study enabled high-yielding access to the central C8–C22 fragment **2** of rhizopodin.

Scheme 1 Pivotal C18–C20 aldol couplings in the synthesis of rhizopodin

As shown in Scheme 2, a joint synthesis of the required ketones (3 and 4) and aldehydes (6 and 7) was effected by a late-stage diversification strategy starting from readily available aldehyde 9.^{11,12} Brown allylation¹³ and protection of the newly generated alcohol as a TBS ether gave homoallylic ether 10, which was further derivatized to either primary alcohol 11 by deprotection of the PMB group or acid 12 by oxidative cleavage of the double bond. Oxidation of 11 then gave the target aldehyde 6, which was transformed into methyl ketone 3 through a two-step sequence (addition of MeMgBr and oxidation). Acid 12, in turn, was condensed with serine methyl ester to oxazole 13, which was then transformed into aldehyde 7 in a fivestep sequence, involving reduction of the terminal ester to the aldehyde, asymmetric Brown allylation, methylation of the newly generated alcohol, PMB deprotection, and subsequent oxidation of the terminal alcohol. The corresponding methyl ketone 4 was obtained in an analogous sequence as before.

Scheme 2 Joint synthesis of required ketones 3 and 4 and aldehydes 6 and 7

Having established an efficient route to the required building blocks, we first turned our attention to aldol coupling of type 1 and studied the union of methyl ketones 3/4 with aldehydes 5a/5b bearing different protective groups (Table 1). As shown in Figure 1, a Felkin–Anh induction exerted by the aldehyde was expected to favor the desired 1,2'-syn product 16. In contrast, high 1,5-anti inductions in the coupling of methyl ketones have been observed in boron and alkali-metal-mediated aldol couplings.¹⁴ According to a model developed by Goodman,¹⁵ this selectivity may be rationalized by a boat-type transition state involving an H-bond between the formyl-H of the aldehyde and the β -alkoxy substituent of the ketone. In agreement with this model, substituents favoring such a coordination (e.g., PMB, Bn, MOM) led to high selectivities, while only a moderate or no selectivity has been observed with bulky silyl groups and, in one case, a high 1,5syn selectivity which would also be required here was reported for a substrate with a β -OTBS-substituent.¹⁶ Consequently, a TBS protective group was chosen for the β alkoxy-substituent of the methyl ketones studied herein (3/4).

Figure 1 Transitions states for aldol couplings of type 1

As shown in Table 1 for selected examples, a variety of reaction conditions with various metal counter ions and bases were evaluated. However, in all cases, either the undesired isomer **17** was obtained preferentially or no selectivity was observed. This unfavorable facial bias could also not be overturned by the use of chiral Ipc ligands (entries 4 and 5) or by using Mukaiyama type conditions.¹⁷ Similar results were obtained with the simplified ketone **3** as well as with the more elaborate analogue **4**. In addition, yields remained low in all cases, presumably due to the high steric hindrance exerted by the neopentylic center of the methyl ketone.

Faced with these unpromising results, we turned our attention to an inversion of the coupling partners and studied the coupling of aldehydes 6/7 with methyl ketones 8a/8b, giving the two possible aldol products 18 and 19. As shown in Table 2 for selected reactions with simplified aldehyde 6,18 a strong facial bias towards the undesired product 19 was again observed. This preference could again not be overturned by the use of chiral Ipc ligands (entries 4 and 5). Only Mukaiyama type aldol couplings enabled preferential formation of the desired epimer 18 (entry 6). However, very low conversion was observed, which could not be further increased. In general, the observed yields remained initially moderate under conventional conditions, again presumably due to the high steric hindrance exerted by the geminal dimethyl-substituents of the aldehyde. However, in contrast to the studies described above, higher degrees of conversion could be obtained by modification of the reaction conditions (entry 7), which could be further optimized (Table 4).

As shown in Figure 2, this inherent facial bias towards **19** may be explained by a 1,4-*syn* induction exerted by the methyl ketone. In analogy to the model developed by Goodman,¹⁴ this selectivity may result from either formation of a hydrogen bond between the β -alkoxy-substituent and the formyl hydrogen in a similar fashion to that described above, or a coordination of the metal center with this β -substituent, as schematically shown for structures **20** and **21**. This facial bias could not be reversed by using

TBSC OPG TBSO OPG OH R base 5a/5b 3/4 **3**: R TBSO a: PG = PMB b: PG = TBS OPG OMe 4: R = 17 Solvent dr 16/17 Yield Entry Ketone PG Conditions (%) 3 PMB LiHMDS, -78 °C 1 THF 1.1636 2 3 PMB NaHMDS, -78 °C THF 1:1.6 17 3 3 PMB KHMDS, -78 °C THF 1:1.6 19 4 3 TBS (+)-Ipc₂BCl, Et₃N, Et₂O 1.1.7 23 -78 to -20 °C 3 TBS (-)-Ipc2BCl, Et3N, THF 1:1.2 5 12 −78 to −20 °C 4 PMB LiHMDS, -78 °C THF 1:2.0 25 6 NaHMDS, -40 °C THF 7 4 PMB 1:1.3 33 8 4 TBS (+)-Ipc₂BCl, Et₃N, Et₂O 1:2.6 5 -78 to -20 °C TMS-OTf, Et₃N, 9 4 PMB CH₂Cl₂ 1:1 23 BF₃, -78 °C PMB TBS-OTf, Et₃N, 10 4 CH₂Cl₂ 1:1 6 BF₃, −78 °C

 Table 1
 Aldol Couplings of Ketones 3/4 with Aldehydes 6a/6b

 Table 2
 Aldol Couplings of Ketones 8a/8b with Aldehyde 6

a voluminous non-coordinating β -alkoxy substituent (Table 2, entry 7), which may favor an alternative, more open transition state of type **22** and then give the desired 1,4*anti* product **18**, based on minimization of allylic strain. The β -alkoxy substituent of the aldehyde was, in turn, expected to exert a 1,3-*anti* induction, which may be explained by either the polar Evans model (**23**)¹⁹ or the Reetz–Cram model (**24**),²⁰ leading to the desired epimer **18** (Figure 2). Based on the results shown in Table 2, this influence appeared to be overturned by the strong stereochemical influence exerted by the ketone.

Figure 2 Possible transitions states for aldol couplings given in Table 2

To further analyze the respective contributions induced by the α -stereogenic center of the methyl ketone as well as the geminal dimethyl groups of the chiral aldehyde on the stereochemical outcome of this reaction, the coupling of methyl ketones 8a/8b with simplified aldehydes 25 and 28 was studied (Scheme 3, Table 3). Comparison of the respective couplings presented in Table 2, entries 4 and 5 with the corresponding results in Scheme 3 suggest that the geminal dimethyl center decreases the inherent 1,3'anti induction of the aldehyde. Furthermore, inversion of the stereochemistry at the β -center of the aldehyde led to increased diastereoselectivity towards **30** (Table 3, entry 1) based on a matched stereoinduction of the methyl ketone and the aldehyde, in agreement with our stereochemical model (Figure 2). The 1,3'-anti induction was confirmed in an analogous addition of a methyl ketone lacking the α -stereogenic center (entries 5 and 6).

In summary, these results suggest that the stereochemical outcome of the aldol coupling of type 2 is mainly governed by a 1,4-*syn* induction exerted by the ketone, and overrides an opposing stereochemical influence of the aldehyde from the β -substituent. Notably, the observed 1,4-*syn* selectivity could not be overcome by suitable choice of protective groups on either the aldehyde or ketone or by suitable enolization conditions. We therefore decided to

Scheme 3 Coupling of ketone 8a with simplified aldehyde 25

Table 3	Aldol Couplings of Ketones 8a/34 with Simplified Alde-
hydes 28a	a/28b

PGO	о Н + /		Ipc ₂ BCI, Et ₃ N Et ₂ O, -78 °C	OPG OH 7 29a/	0 OPMB	
28a : PG = TBS 28b : PG = Bn		Ř 8a (R = Me) 34 (R = H)		OPG OH O OPMB		
Entry	PG	R	Ipc	dr 29/30	Yield (%) ^a	
1	TBS	Me	(+)-Ipc	1:10	85	
2	TBS	Me	(-)-Ipc	1:2.5	43	
3	Bn	Me	(+)-Ipc	1:19	95	
4	Bn	Me	(-)-Ipc	1:6	95	
5	TBS	Н	(+)-Ipc	1:3	68	
6	TBS	Н	(-)-Ipc	1:2	66	

^a Yields estimated from the corresponding domino aldol/reduction process. See also Dieckmann and Menche.^{8h}

optimize the chemical yield of aldol coupling of type 2 and correct the stereochemistry of the undesired epimer at a subsequent stage of the synthesis (see below). Notably, the resulting aldol products could be readily separated by HPLC.

Based on previous results, boron and lithium mediated aldol couplings were studied in more detail, as shown in Table 4. As shown, longer reaction times in the evaluated lithium-aldol reactions led to increased yields (entry 3) and only very low degrees of retro-aldol or elimination processes were observed. In detail, methyl ketone 8a was treated at -78 °C in THF with equimolar amounts of LiHMDS and, after two hours, aldehyde 7 was added. It was shown that the ratio of the two resulting epimers could be influenced by the type of solvent and the reaction temperature. Improved selectivities were obtained in N,Ndimethylformamide (DMF; entries 7 and 8), resulting in a 1:1.1 diastereomeric ratio, albeit in only low yields which could not be further increased by using an excess of methyl ketone (entry 5). In a similar fashion, modified selectivities were also observed in THF by increasing the reaction temperature to -40 °C (entries 3 and 4), whereas higher
 Table 4
 Aldol Couplings of Ketones 8a with Aldehyde 7

Entry	8a (equiv)	Conditions	Solvent	dr 31/32	Yield (%)
1	1.3	(+)Ipc ₂ BCl, Et ₃ N, -78 to -20 °C, 20 h	Et ₂ O	1:4.0	17
2	1.3	(+)Ipc ₂ BCl, Et ₃ N, -78 to 25 °C, 20 h	Et ₂ O	1:4.8	95ª
3	1.7	LiHMDS, –78 °C, 30 min	THF	1:2.5	60
4	1.7	LiHMDS, -40 °C, 30 min	THF	1:1.7	66
5	2.5	LiHMDS, -30 °C, 30 min	THF	1:2.1	50
6	1.3	LiHMDS, -40 °C, 40 min	THF	1:1.7	95
7	1.7	LiHMDS, -40 °C, 30 min	DMF	1:1.1	16
8	1.7	LiHMDS, –78 °C, 40 min	DMF–THF (3:1)	1:1.1	19

^a The intermediate aldol product **32** was converted into the corresponding 1,3-*anti* diol under these conditions. See also Dieckmann and Menche.^{8h}

reaction temperatures as well as the use of an excess of base lead to decreased yields. Very good yields could only be reproducibly obtained with a slight excess of methyl ketone and base (1.3 equivalents each) and a prolonged reaction time of 40 minutes (entry 6).

Due to the excellent yields and the relatively facile separation of the two diastereomers, this aldol coupling was selected for the synthesis of the desired C8-C22 fragment 2. The reaction proved to be easily scalable and several grams of both isomers 31 and 32 were readily available after separation. For conversion of aldol product 31 into building block 2a, the β -hydroxy-ketone was stereoselectively reduced in a 1,3-anti fashion with NMe₄HB(OAc)₃ in acetonitrile/THF/acetic acid according to the Evans-Carreira protocol (dr > 19:1),²¹ whereas a similar alternative using the Evans–Tishchenko protocol²² proved to be less reliable. The resulting diol could then be regioselectively methylated with sodium hydride and methyl iodide.²³ Minor amounts of the regioisomeric C18-OMe ether could be readily removed by chromatography. Selectivity could be controlled by the reaction temperature and time, and optimum results were obtained at 10 °C (80%, selectivity 8:1).²⁴

Conversion of the epimeric aldol product 32 into 2a was, in turn, effected by an oxidation/reduction sequence.25 The conversion was initiated by a 1.3-svn reduction of sterically hindered β -hydroxy-ketone, which was efficiently effected by initial chelation with dicyclohexylboron chloride/Et₃N and subsequent treatment with LiBH₄ at -78 °C, resulting in high selectivities (dr > 19:1). To obtain high yields (95%) it was crucial to treat the crude product with 3 M NaOH/H₂O₂ for prolonged times (1.5 h) to secure complete cleavage of the intermediate boronate. Selective methylation was again effected by treatment with NaH/MeI under slightly modified conditions. Considerable efforts were then necessary to enable efficient conversion into ketone 33. After several low-yielding attempts with various oxidizing agents (e.g., 2-iodoxybenzoic acid, Swern), it was found that high conversion could be achieved with PCC in dichloromethane heated to reflux. To obtain high yields (97%) it proved beneficial to directly purify the reaction mixture after absorption on Celite by silica gel chromatography. As shown in Scheme 4, strong reducing agents (LAH, Red-Al) were then required to effect the required stereoselective reduction of sterically hindered ketone 33 to 2a. High selectivities and yields were obtained with LAH at $-90 \degree C$ (dr = 8:1, 80%). This sequence allowed the conversion of 32 into 2a in 62% yield over these four steps. Together with the conversion of **31**, the aldol products could be converted into the desired fragment 2a in 68% overall yield. In combination with the high yield in the aldol coupling, these results demonstrate the usefulness of this approach.

In summary, we have presented a detailed analysis of the subtle stereoselective contributions in sterically hindered C18–C20 aldol reactions of rhizopodin. Based on this fundamental study, a high-yielding aldol coupling along the C18–C19 bond could be effected by use of a lithium-

mediated reaction. Both epimeric aldol products could be effectively transformed into the desired C8–C22 building block of rhizopodin in a diastereoconvergent fashion. These results add to a more general understanding of the subtle stereoselective effects in complex aldol reactions and will be beneficial for the applicability and predictability of such couplings in elaborate target synthesis.

NMR spectra were recorded in CDCl_3 with a Bruker AM 300, AM 400 or DMX-600 spectrometer. Chemical shifts are reported in parts per million (ppm, δ) with the residual non-deuterated solvent as internal standard. Thin-layer chromatography (TLC) was performed on precoated silica gel 60 F₂₅₄ (Merck) analytical plates and visualized by fluorescence quenching under UV light. Mass spectra were obtained with a Finnigan MAT 95 spectrometer, high-resolution data were acquired using peak matching (M/DM = 10000).

(S)-tert-Butyl[1-(4-methoxybenzyloxy)-2,2-dimethylhex-5-en-3-yloxy]dimethylsilane (10)

Allylmagnesium bromide (1.0 M in Et₂O, 10.7 g, 74.4 mL, 74.4 mmol, 1.9 equiv) was added dropwise to a stirred solution of (-)-(ipc)₂BOMe (24.8 g, 78.0 mmol, 2.0 equiv) in Et₂O (72 mL) at 0 °C and stirred for 10 min at this temperature. The mixture was then stirred for 1 h at r.t., the suspension was centrifuged under argon and the solution was separated from the settled magnesium salts. The residue was washed with pentane. The combined organic phase was concentrated, dissolved in Et₂O (10 mL) and cooled to -98 °C (liq. N₂/MeOH). To this cooled solution of the allylborane, a solution of the corresponding aldehyde 9 (8.70 g, 39.0 mmol) in Et₂O (10 mL) was added dropwise and the mixture was stirred for 3 h at -98 °C. The reaction mixture was warmed to r.t., treated with 3 M NaOH (24 mL) and 30% H₂O₂ (48 mL) then stirred at r.t. for 90 min, then sat. aq NaHCO₃ (50 mL) was added and the phases were separated. The aqueous phase was extracted with Et₂O $(2 \times 150 \text{ mL})$, tert-butyl methyl ether $(2 \times 100 \text{ mL})$, and EtOAc $(2 \times 50 \text{ mL})$. The combined organic phases were dried over MgSO₄, filtered and concentrated. The residue was purified by column chromatography on silica gel (hexanes-EtOAc, 9:1) to give the desired homoallylic alcohol as a colorless oil (7.33 g, 32.8 mmol, 71%).

 $R_f = 0.25$ (hexanes–EtOAc, 9:1); ee = 92% (Mosher ester analysis); $[\alpha]_D^{20} - 14.4$ (c = 0.42, CHCl₃).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (d, J = 3.96, 6 H), 2.02–2.05 (m, 1 H), 2.24–2.26 (m, 1 H), 3.25 (d, J = 8.9 Hz, 1 H), 3.35 (d, J = 8.9 Hz, 1 H), 3.50 (dd, J = 10.3, 2.5 Hz, 1 H), 3.80 (s, 3 H), 4.43 (s, 2 H), 5.02–5.07 (m, J = 10.2, 1.5 Hz, 1 H), 5.10 (dq, J = 10.2, 1.5 Hz, 1 H), 5.91 (ddt, J = 18.0, 9.0, 6.2 Hz, 1 H), 6.86 (d, J = 8.9 Hz, 2 H), 7.2 (d, J = 8.9 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 19.7, 22.7, 36.6, 38.4, 55.3, 73.27, 79.4, 113.85, 116.56, 129.19, 130.1, 136.87, 159.26.

HRMS (ESI+): m/z calcd for $C_{16}H_{24}O_3Na$: 287.1623; found: 287.1621.

A solution of homoallylic alcohol obtained as described above (1.30 g, 4.92 mmol, 1.0 equiv) in CH₂Cl₂ (13 mL) under an argon atmosphere was cooled to 0 °C and 2,6-lutidine (1.16 g, 1.26 mL, 10.8 mmol, 2.2 equiv) was added. After stirring for 5 min, TBSOTF (1.93 g, 1.69 mL, 7.30 mmol, 1.5 equiv) was added dropwise. The mixture was stirred for 30 min at this temperature and at r.t. for 1 h, then sat. aq NaHCO₃ (10 mL) was added and the phases were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (3 × 15 mL) and the combined organic phase was dried over MgSO₄, filtrated and the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel (hexanes–EtOAc, 19:1) to give TBS-ether **10** as a colorless oil (1.67 g, 4.40 mmol, 90%).

 $R_f = 0.61$ (hexanes–EtOAc, 19:1); $[\alpha]_D^{20} - 0.4$ (c = 0.79, CHCl₃).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.00-0.04$ (m, 6 H), 0.86-0.90 (m, 15 H), 2.13-2.15 (m, 1 H), 2.33-2.36 (m, 1 H), 3.10 (d, J = 8.7 Hz, 1 H), 3.22 (d, J = 8.7 Hz, 1 H), 3.66-3-38 (m, 1 H), 3.80 (s, 3 H), 4.31-4.33 (m, 1 H), 4.41-4.43 (m, 1 H), 4.94-4.96 (m, 1 H), 4.99-5.03 (m, 1 H), 5.85-5.89 (m, 1 H), 6.86 (d, J = 9.2 Hz, 2 H), 7.23-7.25 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = -2.91, -3.31, 21.17, 21.66, 25.73, 26.13, 38.04, 40.35, 55.29, 72.77, 75.86, 113.67, 115.56, 129.00, 131.10, 137.62, 159.00.

HRMS (ESI+): m/z calcd for $C_{22}H_{39}O_3Si$: 379.2668; found: 379.2663.

(S)-3-(*tert*-Butyldimethylsilanyloxy)-2,2-dimethylhex-5-en-1-ol (11)

PMB-ether **10** (200 mg, 0.53 mmol, 1.0 equiv) was dissolved in a mixture of CH_2Cl_2 and pH 7 phosphate buffer (10:1, 22.0 mL). DDQ (0.26 g, 1.16 mmol, 2.2 equiv) was added and the reaction mixture was stirred for 40 min at 0 °C. After stirring for an additional 1 h at r.t., the reaction mixture became dark-red. The reaction was quenched by adding sat. aq NaHCO₃ (20 mL), the layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 30 mL). The recombined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (silica gel; hexanes–EtOAc, 10:1) to give alcohol **11** (132 mg, 0.51 mmol, 98% yield) as a yellowish oil.

 $R_f = 0.58$ (hexanes–EtOAc, 4:1); $[\alpha]_D^{20}$ –9.2 (c = 9.90, CHCl₃).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.08$ (s, 3 H), 0.09 (s, 3 H), 0.81 (s, 3 H), 0.90 (s, 9 H), 1.03 (s, 3 H), 2.26–2.33 (m, 1 H), 2.43–2.53 (m, 1 H), 2.71 (s, 1 H), 3.18 (d, J = 10.8 Hz, 1 H), 3.65 (d, J = 10.8 Hz, 1 H), 3.60–3.63 (m, 1 H), 5.00–5.05 (m, 1 H), 5.09–5.10 (m, 1 H), 5.90 (dddd, J = 17.0, 10.0, 7.0, 7.0 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = -4.5, -3.6, 18.1, 21.7, 23.7, 26.0, 38.2, 39.7, 70.2, 79.9, 116.4, 136.5.

HRMS (ESI+): m/z calcd for $C_{14}H_{30}NaO_2Si$: 281.1913; found: 281.1907.

(S)-3-(*tert*-Butyldimethylsilanyloxy)-2,2-dimethylhex-5-en-1-al (6)

Alcohol **11** (570 mg, 2.19 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (25 mL) and DMP (3.64 g, 8.58 mmol, 3.9 equiv) was added at r.t. After stirring for 3 h, the solvent was removed in vacuo and the crude product was purified by column chromatography on silica gel (hexane–EtOAc, 10:1). The desired aldehyde **6** (490 mg, 1.93 mmol, 88%) was obtained as a yellowish liquid.

 $R_f = 0.70$ (hexanes-EtOAc, 10:1); $[\alpha]_D^{20} + 12.1$ (c = 1.1, CHCl₃).

¹H NMR (300 MHz, CDCl₃): δ = 0.06 (s, 3 H), 0.08 (s, 3 H), 0.89 (s, 9 H), 1.04 (s, 3 H), 1.07 (s, 3 H), 2.29–2.31 (m, 2 H), 3.85–3.87 (m, 1 H), 5.06–5.10 (m, 2 H), 5.74–5.79 (m, 1 H), 9.60 (s, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = -5.0, -4.0, 17.7, 18.9, 25.5, 38.0, 51.0, 75.7, 117.2, 134.8, 205.9.

HRMS (ESI+): m/z calcd for $C_{14}H_{28}O_2Si$: 256.1756; found: 256.1759.

(S)-4-(*tert*-Butyldimethylsilyloxy)-3,3-dimethylhept-6-en-2-one (3)

À solution of aldehyde **6** (360 mg, 1.40 mmol, 1.0 equiv) was dissolved in Et₂O (20 mL) under an argon atmosphere and cooled to -78 °C before a solution of methylmagnesiumbromide (3 M in Et₂O, 335 mg, 0.9 mL, 2.81 mmol, 2 equiv) was slowly dropped into the solution. The mixture was stirred for 30 min at this temperature, then the reaction was quenched by addition of sat. aq ammonium chloride (12 mL). After warming to r.t., the mixture was diluted with Et₂O (10 mL) and H₂O (10 mL). The organic phase was separated and the aqueous phase was extracted with Et₂O (2 × 20 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The obtained alcohol (380 mg, 1.40 mmol) was directly used for the next step.

The alcohol (380 mg, 1.40 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (18 mL), and DMP (1.37 g, 3.22 mmol, 2.3 equiv) was added at 0 °C. After stirring for 2 h, the solvent was removed in vacuo and the crude product was purified by column chromatography on silica gel (hexane–EtOAc, 40:1). The desired methylketone **3** (300 mg, 1.10 mmol, 78%) was obtained as a colorless oil.

 $R_f = 0.51$ (hexane-EtOAc, 10:1); $[\alpha]_D^{20} + 14.6$ (c = 0.9, CHCl₃).

¹H NMR (300 MHz, CDCl₃): δ = 0.05 (s, 3 H), 0.08 (s, 3 H), 0.89 (s, 9 H), 1.10 (s, 3 H), 1.11 (s, 3 H), 2.15 (s, 3 H), 2.18–2.20 (m, 2 H), 3.95 (dd, *J* = 6.2, 4.9 Hz, 1 H), 5.01–5.05 (m, 2 H), 5.79 (dddd, *J* = 17.1, 10.1, 7.1 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = -4.4, -3.6, 18.2, 20.3, 22.2, 26.0, 39.0, 53.2, 76.7, 116.8, 136.1, 213.7.

HRMS (ESI+): m/z calcd for $C_{15}H_{30}O_2Si$: 256.1756; found: 256.1759.

(S)-3-(*tert*-Butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-4,4dimethylpentanoic Acid (12)

The corresponding terminal alkene **10** (221 mg, 0.58 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (4.0 mL) and cooled to -78 °C. A stream of ozone was transmitted through this solution for ca. 2 min, then oxygen was transmitted through this solution for a few minutes, before Ph₃P (280 mg, 1.06 mmol, 1.8 equiv) was added. The resulting mixture was stirred for 2 h at r.t., before the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel (hexanes–EtOAc, 9:1) to give the desired aldehyde (173 mg, 0.458 mmol, 78%) as a light-yellow oil.

 $R_f = 0.37$ (hexanes-EtOAc, 9:1).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.01$ (s, 3 H), 0.06 (s, 3 H), 0.84 (s, 3 H), 0.86 (s, 9 H), 0.90 (s, 3 H), 2.45 (ddd, J = 16.7, 5.2, 2.8 Hz, 1 H), 2.66 (ddd, J = 16.7, 5.5, 1.9 Hz, 1 H), 3.11 (d, J = 8.9 Hz, 1 H), 3.20 (d, J = 8.9 Hz, 1 H), 3.22 (s, 3 H), 4.20 (t, J = 5.3 Hz, 1 H), 4.30 (d, J = 11.7 Hz, 1 H), 4.38 (d, J = 11.7 Hz, 1 H), 6.86 (d, J = 8.7 Hz, 2 H), 7.22 (d, J = 8.7 Hz, 2 H), 9.76 (t, J = 1.9 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = -4.7, -3.9, 18.2, 21.1, 21.6, 26.0, 39.9, 48.2, 55.3, 71.5, 72.7, 76.3, 113.7, 129.1, 130.7, 159.1, 202.3.

The aldehyde derived from ozonolysis (620 mg, 1.63 mmol, 1.0 equiv) was dissolved in *tert*-butanol (120 mL) and H_2O (30 mL). 2-Methyl-2-butene (13 mL, 130 mmol, 80 equiv), sodium dihydrogen phosphate (586 mg, 4.89 mmol, 6 equiv) and sodium chlorite (884 mg, 9.77 mmol, 3 equiv) were added and the mixture was stirred for 1.5 h at r.t. under an argon atmosphere. The solvent was removed in vacuo and the residue was dissolved in EtOAc (200 mL) and washed with brine (100 mL). The aqueous phase was extracted with EtOAc (3 × 100 mL), dried (MgSO₄), filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography on silica gel (hexanes–EtOAc, 4:1) to give the desired acid **12** (635 mg, 1.60 mmol, 98%).

 $R_f = 0.3$ (hexanes-EtOAc, 4:1); $[\alpha]_D^{20} - 8.1$ (c = 1.11, CHCl₃).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.06$ (m, 6 H), 0.87 (m, 9 H), 0.9 (s, 6 H), 2.41 (m, 1 H), 2.67 (dd, J = 4.7, 16.4 Hz, 1 H), 3.17 (m, 2 H), 3.79 (s, 3 H), 4.11 (m, 1 H), 4.38 (m, 2 H), 6.59 (d, J = 8.7, 2 H), 7.23 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = -4.2, -4.9, 18.2, 21.1, 21.4, 26.0, 38.3, 40.0, 55.3, 72.8, 73.6, 76.3, 113.7, 128.6, 129.1, 130.7, 159.1, 176.0.

HRMS (ESI+): m/z calcd for $C_{21}H_{35}O_5Si$: 395.2254; found: 395.2245.

(S)-Methyl 2-[2-(*tert*-Butyldimethylsilyloxy)-4-(4-methoxybenzyloxy)-3,3-dimethylbutyl]oxazole-4-carboxylate (13)

A solution of carboxylic acid **12** (40.4 mg, 0.10 mmol, 1.0 equiv) in THF (25 mL) under an argon atmosphere was cooled to -30 °C, and treated with NMM (24.6 mg, 24 µL, 0.21 mol, 2.1 equiv) and IBC (15.0 mg, 15 µL, 0.11 mmol, 1.1 equiv). The resulting mixture was stirred at this temperature for 30 min, before L-serine methyl ester hydrochloride (17.4 mg, 0.11 mmol, 1.1 equiv) was added as a solid. The reaction mixture was warmed to r.t. and stirred overnight, then the solvent was removed in vacuo, the residue was dissolved in EtOAc (50 mL), filtered and washed exhaustively with EtOAc, before the solution was dried (MgSO₄), filtered and the solvent was evaporated. The obtained crude product (50.6 mg, 0.10 mmol, 99%) was used without further purification for the next step.

The obtained amide (50.6 mg, 0.10 mmol, 1.0 equiv) was dissolved in CH₂Cl₂ (1.5 mL) under an argon atmosphere. The resulting solution was cooled to -78 °C before DAST (24.2 mg, 20 µL, 0.15 mmol, 1.5 equiv) was added slowly over 15 min. This mixture was stirred at -78 °C for 1.5 h, before being slowly poured into sat. aq NaHCO₃ (5 mL). The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (2 × 10 mL). After drying the combined organic layer with MgSO₄ and filtering, the solvent was removed in vacuo and the residue was purified by column chromatography on silica gel (hexanes–EtOAc, 2:1) to give the oxazoline (36.0 mg, 73.0 µmol, 73%) as a light-yellow oil.

 $R_f = 0.41$ (hexanes-EtOAc, 2:1); $[\alpha]_D^{20} + 24.4$ (c = 0.18, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = 0.03$ (s, 3 H), 0.06 (s, 3 H), 0.85 (s, 9 H), 0.86 (s, 3 H), 0.90 (s, 3 H), 1.39 (t, J = 7.2 Hz, 1 H), 2.34 (ddd, J = 15.5, 6.1, 0.9 Hz, 1 H), 2.72 (ddd, J = 15.6, 5.1, 1.3 Hz, 1 H), 3.16 (d, J = 8.9 Hz, 1 H), 3.20 (d, J = 8.9 Hz, 1 H), 3.76 (s, 3 H), 3.80 (s, 3 H), 4.37–4.39 (m, 4 H), 4.67 (dd, J = 10.7, 8.1 Hz, 1 H), 6.85 (d, J = 8.9 Hz, 2 H), 7.22 (d, J = 8.7 Hz, 2 H).

 ^{13}C (100 MHz, CDCl₃): δ = -4.7, -4.3, 1.1, 18.2, 21.2, 26.0, 33.1, 40.3, 52.6, 55.3, 68.2, 69.0, 72.7, 73.8, 76.5, 113.7, 128.9, 131.0, 159.0, 169.7, 171.7.

HRMS (ESI+): m/z calcd for C₂₅H₄₁NO₆SiNa: 502.2601; found: 502.2604.

The obtained oxazoline (31.0 mg, 65.0 µmol, 1.0 equiv) was dissolved in CH_2Cl_2 (0.5 mL) under an argon atmosphere. This solution was cooled to 0 °C, then DBU (19.8 mg, 20 µL, 130 µmol, 2 equiv) and BrCCl₃ (14.1 mg, 7 µL, 71.0 µmol, 1.1 equiv) were added successively. The resulting mixture was stirred without further cooling for 20 h. The resulting dark-brown solution was quenched with sat. aq NH₄Cl (2 mL). The organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic extracts were dried (MgSO₄), filtered and the solvent was removed in vacuo. The obtained crude product was purified by column chromatography on silica gel (hexanes–EtOAc, 4:1) to give the desired oxazole (22.1 mg, 46.0 µmol, 71%) as a colorless oil.

 $R_f = 0.37$ (hexanes–EtOAc, 4:1); $[\alpha]_D^{20} - 11.6$ (c = 0.57, CHCl₃).

¹H NMR (300 MHz, CDCl₃): $\delta = -0.38$ (s, 3 H), 0.00 (s, 3 H), 0.82 (s, 9 H), 0.86 (s, 3 H), 0.90 (s, 3 H), 2.88 (dd, J = 15.3, 7.4 Hz, 1 H), 3.10 (dd, J = 15.3, 4.1 Hz, 1 H), 3.16 (d, J = 8.9 Hz, 1 H), 3.21 (d, J = 8.9 Hz, 1 H), 3.79 (s, 3 H), 3.89 (s, 3 H), 4.20 (dd, J = 7.4, 4.1 Hz, 1 H), 4.29 (d, J = 11.9 Hz, 1 H), 4.39 (d, J = 11.9 Hz, 1 H), 6.85 (d, J = 8.7 Hz, 2 H), 7.20 (d, J = 8.7 Hz, 2 H), 7.25 (s, 1 H).

 13 C (100 MHz, CDCl₃): δ = -4.9, -4.6, 18.2, 21.0, 21.3, 26.0, 32.8, 40.1, 52.1, 55.3, 72.8, 74.6, 76.3, 113.7, 129.0, 130.8, 133.3, 143.6, 159.0, 161.8, 164.8.

HRMS (ESI+): m/z calcd for C₂₅H₃₉NO₆SiNa: 500.2444; found: 500.2468.

(S)-3-(*tert*-Butyldimethylsilyloxy)-4-{4-[(S)-1-methoxybut-3-enyl]oxazol-2-yl}-2,2-dimethylbutanal (7)

Methyl ester **13** (180 mg, 0.38 mmol, 1.0 equiv) was diluted in CH₂Cl₂ (5 mL) under an argon atmosphere and cooled to -78 °C. DIBAL-H (133 mg, 0.94 mL, 0.94 mmol, 2.5 equiv) was added and the resulting reaction mixture was stirred for 2 h at -78 °C. The reaction was quenched by successive addition of MeOH (1 mL), EtOAc (10 mL), and sat. aq NH₄Cl (5 mL). The biphasic mixture was warmed to r.t., then 1 M aqueous tartaric acid (10 mL) was added. The organic layer was separated and the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic extracts were dried over MgSO₄, filtrated, and the solvent was evaporated in vacuo. The crude product was purified by column chromatography on silica gel (hexanes–EtOAc, 4:1) to give the desired aldehyde (169 mg, 0.38 mmol, quantitative).

 $R_f = 0.53$ (hexanes-EtOAc, 4:1); $[\alpha]_D^{20} - 12.5$ (c = 0.61, CH₃Cl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = -0.29$ (s, 3 H), 0.04 (s, 3 H), 0.86 (s, 9 H), 0.90 (s, 3 H), 0.95 (s, 3 H), 2.91 (dd, J = 15.3, 7.1 Hz, 1 H), 3.15 (dd, J = 15.5, 4.3 Hz, 1 H), 3.20 (d, J = 8.7 Hz, 1 H), 3.25 (d, J = 8.7 Hz, 1 H), 3.83 (s, 3 H), 4.29–4.31 (m, 1 H), 4.32 (d, J = 11.7 Hz, 1 H), 4.43 (d, J = 11.7 Hz, 1 H), 6.88 (d, J = 8.7 Hz, 2 H), 7.24 (d, J = 8.7 Hz, 2 H), 8.15 (s, 1 H), 9.91 (s, 1 H).

 13 C (100 MHz, CDCl₃): δ = -4.8, -4.6, 18.2, 21.1, 21.3, 26.0, 32.9, 40.2, 55.3, 72.8, 74.7, 76.3, 113.7, 129.0, 130.8, 141.1, 144.1, 159.1, 165.5, 189.1.

HRMS (ESI+): m/z calcd for C₂₄H₃₇NO₅SiNa: 470.2339; found: 470.2326.

A solution of (-)-(Ipc)₂BOMe (229 mg, 0.72 mmol, 2 equiv) in Et₂O (1.0 mL) under argon was cooled to -78 °C and treated slowly with allylmagnesiumbromide (1 M in Et₂O, 100 mg, 0.68 mL, 0.69 mmol, 1.9 equiv). After stirring for 15 min at this temperature, the solution was warmed to r.t. and stirred for 1 h, then the precipitate was forced to settle by centrifugation. The solution was decanted into another flask under argon and the residue was washed twice with pentane. The combined solution was then concentrated and the residue was dissolved in Et₂O (1.0 mL) before the resulting solution was cooled to -100 °C (MeOH/liq. N2). A solution the corresponding aldehyde (162 mg, 0.36 mmol, 1 equiv) in Et₂O (1.0 mL) was then added and the reaction mixture was stirred at -100 °C for 2 h. The reaction was warmed to r.t. and treated with 3 M aqueous NaOH (0.8 mL) and H_2O_2 (30% solution, 0.4 mL). The biphasic mixture was stirred for 1 h at r.t., then the organic layer was separated, the aqueous phase was extracted with Et_2O (3 × 5 mL) and the combined organic layer was washed with H₂O (15 mL) and brine (15 mL). After drying (MgSO₄), filtering and evaporating, the crude product was purified by column chromatography on silica gel (hexanes-EtOAc, 4:1) to give the corresponding homoallylic alcohol (116 mg, 0.24 mmol, 67%) as a colorless oil.

 $R_f = 0.28$ (hexanes-EtOAc, 4:1); $[\alpha]_D^{20} - 16.4$ (c = 0.33, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = -0.30$ (s, 3 H), 0.00 (s, 3 H), 0.83 (s, 9 H), 0.87 (s, 3 H), 0.91 (s, 3 H), 2.20 (br s, 1 H), 2.57–2.61 (m, 2 H), 2.80 (dd, J = 15.4, 7.6 Hz, 1 H), 3.02 (dd, J = 15.3, 4.0 Hz, 1 H), 3.15 (d, J = 8.9 Hz, 1 H), 3.23 (d, J = 8.9 Hz, 1 H), 3.79 (s, 3 H), 4.19 (dd, J = 7.5, 3.8 Hz, 1 H), 4.32 (d, J = 11.9 Hz, 1 H), 4.42 (d, J = 11.9 Hz, 1 H), 4.67 (dd, J = 7.3, 5.2 Hz, 1 H), 5.11–5.16 (m, 1 H), 5.17–5.22 (m, 1 H), 5.83 (ddd, J = 17.2, 10.2, 7.1 Hz, 1 H), 6.85 (d, J = 8.7 Hz, 2 H), 7.23 (d, J = 8.7 Hz, 2 H), 7.42 (s, 1 H).

 13 C (75 MHz, CDCl₃): δ = -4.9, -4.7, 18.2, 20.8, 21.5, 26.1, 32.9, 40.1, 41.0, 55.3, 66.6, 72.8, 74.8, 76.5, 113.7, 118.7, 129.0, 131.0, 133.7, 134.0, 143.1, 159.0, 163.9.

HRMS (ESI+): m/z calcd for C₂₇H₄₃NO₅SiNa: 512.2808; found: 512.2817.

To a solution of the homoallylic alcohol obtained as described above (0.27 g, 0.55 mmol, 1 equiv) in Et_2O (20 mL), was added 4 Å molecular sieves, methyliodide (7.82 g, 3.4 mL, 55.1 mmol,

100 equiv) and silver(I) oxide (1.28 g, 5.51 mmol, 10 equiv). The suspension was stirred for 18 h at r.t. without light, then the mixture was filtered through cotton/silica gel and washed with Et_2O . The solvent was removed in vacuo and the crude product was purified by silica gel chromatography (hexane–EtOAc, 7:1) to give the methyl ether (0.25 g, 0.50 mmol, 92%) as a colorless oil.

 $R_f = 0.72$ (hexanes-EtOAc, 2:1); $[\alpha]_D^{20} - 31.7$ (c = 0.90, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = -0.32$ (s, 3 H), 0.00 (s, 3 H), 0.83 (s, 9 H), 0.86 (s, 3 H), 0.90 (s, 3 H), 2.56 (app t, J = 6.4 Hz, 2 H), 2.82 (dd, J = 15.3, 7.6 Hz, 1 H), 3.03 (dd, J = 15.5, 3.8 Hz, 1 H), 3.15 (d, J = 8.7 Hz, 1 H), 3.24 (d, J = 8.7 Hz, 1 H), 3.31 (s, 3 H), 3.79 (s, 3 H), 4.18–4.20 (m, 1 H), 4.32 (d, J = 11.7 Hz, 1 H), 4.42 (d, J = 11.7 Hz, 1 H), 5.02–5.06 (m, 1 H), 5.07–5.12 (m, 1 H), 5.80 (ddd, J = 17.2, 10.2, 7.0 Hz, 1 H), 6.85 (d, J = 8.7 Hz, 2 H), 7.23 (d, J = 8.7 Hz, 2 H), 7.44 (s, 1 H).

 ^{13}C (75 MHz, CDCl₃): δ = -4.40, -4.41, 18.6, 21.1, 21.9, 26.4, 33.4, 39.6, 40.5, 55.7, 57.3, 73.2, 75.1, 76.7, 76.9, 113.7, 117.2, 129.0, 131.0, 134.4, 135.0, 140.8, 159.0, 164.0.

HRMS: *m/z* calcd for C₂₈H₄₅NO₅SiNa: 526.2965; found: 526.2998.

The PMB-ether obtained from above (30.0 mg, 59.4 µmol, 1.0 equiv) was dissolved in $CH_2Cl_2-H_2O$ (10:1, 1.8 mL/0.18 mL) under an argon atmosphere, then DDQ (30.0 mg, 131 µmol, 2.2 equiv) was added at r.t. and the resulting suspension was stirred for 25 min. The reaction was quenched by addition of sat. aq NaHCO₃ (3 mL), then the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 5 mL), dried over MgSO₄, filtered, and the solvent was removed under reduced pressure, before the crude product was purified by flash chromatography on silica gel (hexane–EtOAc, 7:1 \rightarrow 2:1) to give the desired alcohol (14 mg, 37.5 µmol, 63%) as a colorless liquid.

 $R_f = 0.45$ (hexanes-EtOAc, 1:2); $[\alpha]_D^{20}$ -41.7 (c = 0.75, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = -0.18$ (s, 3 H), -0.06 (s, 3 H), 0.86 (s, 9 H), 0.87 (s, 3 H), 0.94 (s, 3 H), 2.56 (app. t, J = 6.6 Hz, 2 H), 2.87 (dd, J = 16.0, 5.7 Hz, 1 H), 3.04 (br s, 1 H), 3.12 (dd, J = 16.6, 5.5 Hz, 1 H), 3.31 (d, J = 11.3 Hz, 1 H), 3.31 (s, 3 H), 3.56 (d, J = 11.3 Hz, 1 H), 4.16–4.18 (m, 1 H), 5.05–5.10 (m, 2 H), 5.77 (ddd, J = 17.1, 10.2, 7.0 Hz, 1 H), 7.45 (s, 1 H).

¹³C (75 MHz, CDCl₃): δ = -4.82, 18.0, 21.6, 25.9, 33.0, 39.0, 40.1, 56.9, 69.4, 76.1, 77.3, 117.4, 134.1, 135.2, 140.8, 163.6.

HRMS (ESI+): m/z calcd for $C_{20}H_{37}NO_4Na$: 406.2390; found: 406.2382.

The obtained primary alcohol (15.0 mg, 0.04 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (0.5 mL) under an argon atmosphere, then a solution of DMP (23.2 mg, 0.06 mmol, 1.4 equiv) in CH_2Cl_2 (1.5 mL) was added and the resulting mixture was stirred at r.t. for 1 h. Sat. aq NaHCO₃ (2 mL) was added, the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (2 × 5 mL). The combined organic layer was dried (MgSO₄), filtered and the solvent was removed in vacuo. The resulting crude product was purified by column chromatography on silica gel (hexanes–EtOAc, 1:2) to give aldehyde 7 (14.0 mg, 94%) as a colorless oil.

$$R_f = 0.64$$
 (hexanes-EtOAc, 1:2); $[\alpha]_D^{20} - 18.0$ ($c = 0.1$, CH₃Cl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = -0.24$ (s, 3 H), -0.02 (s, 3 H), 0.81 (s, 9 H), 1.00 (s, 3 H), 1.09 (s, 3 H), 2.53–2.57 (m, 2 H), 2.86 (dd, J = 15.3, 7.1 Hz, 1 H), 2.95 (dd, J = 15.2, 7.1 Hz, 1 H), 3.30 (s, 3 H), 4.17 (t, J = 6.5 Hz, 1 H), 4.45 (dd, J = 7.1, 4.8 Hz, 1 H), 5.04–5.08 (m, 2 H), 5.76–5.80 (m, 1 H), 7.45 (s, 1 H), 9.49 (s, 1 H).

¹³C (100 MHz, CDCl₃): δ = -4.8, -4.7, 17.3, 18.6, 25.8, 33.0, 39.1, 51.3, 56.9, 74.2, 76.1, 117.3, 134.2, 135.3, 141.0, 162.2, 204.9.

HRMS: m/z [M + Na]⁺ calcd for C₂₀H₃₅NO₄SiNa⁺: 404.2228; found: 404.2226.

(S)-4-(*tert*-Butyldimethylsilyloxy)-5-{4-[(S)-1-methoxybut-3-enyl]oxazol-2-yl}-3,3-dimethylpentan-2-one (4)

A solution of the aldehyde 7 (83 mg, 0.22 mmol, 1.0 equiv) was dissolved in Et₂O (10 mL) under an argon atmosphere and cooled to -78 °C, then a solution of methylmagnesiumbromide (3 M in Et₂O, 52 mg, 150 µL, 0.44 mmol, 2 equiv) was added. The resulting mixture was stirred for a further 30 min at this temperature and quenched by addition of sat. aq NH₄Cl (2 mL). After warming to r.t., the mixture was diluted with Et₂O (10 mL) and H₂O (10 mL). The organic layer was separated and the aqueous phase was extracted with Et₂O (2 × 10 mL). The combined organic layer was dried (MgSO₄), filtered and the solvent was removed in vacuo to give the secondary alcohol (82.0 mg, 0.21 mmol) as the crude product, which was directly used for the next step.

The secondary alcohol (82.0 mg, 0.21 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (5 mL) under an argon atmosphere and treated with Dess–Martin periodinane (123 mg, 0.29 mmol, 1.4 equiv) at 0 °C. The reaction mixture was stirred for 30 min at this temperature, then warmed to r.t. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (hexanes–EtOAc, 1:1), to give the desired ketone **4** (78.0 mg, 0.20 mmol, 92% over two steps) as a colorless liquid.

 $R_f = 0.67$ (hexanes-EtOAc, 2:1); $[\alpha]_D^{20}$ -42.9 (c = 0.6, CH₃Cl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = -0.25$ (s, 3 H), 0.01 (s, 3 H), 0.82 (s, 9 H), 1.08 (s, 3 H), 1.14 (s, 3 H), 2.17 (s, 3 H), 2.53–2.57 (m, 2 H), 2.79 (dd, J = 15.8, 7.2 Hz, 1 H), 2.86 (dd, J = 15.3, 4.1 Hz, 1 H), 3.30 (s, 3 H), 4.17 (t, J = 6.4 Hz, 1 H), 4.53 (dd, J = 7.1, 4.6 Hz, 1 H), 5.03 (dd, J = 10.2, 1.5 Hz, 1 H), 5.08 (dd, J = 17.3, 1.5 Hz, 1 H), 5.79 (ddt, J = 17.2, 10.3, 6.9 Hz, 1 H), 7.45 (s, 1 H).

 13 C (100 MHz, CDCl₃): δ = -4.8, -4.8, 18.1, 20.2, 21.3, 25.9, 26.9, 33.5, 39.2, 53.0, 56.9, 74.9, 76.2, 117.3, 134.2, 135.3, 140.9, 162.7, 212.7.

HRMS (ESI+): m/z calcd for C₂₁H₃₇NO₄SiNa: 418.2390; found: 418.2549.

(2*S*,5*S*,7*S*)-7-[(*tert*-Butyldimethylsilyl)oxy]-5-hydroxy-1-[(4-methoxybenzyl)oxy]-8-{4-[(*S*)-1-methoxybut-3-en-1-yl]oxazol-2-yl}-2,6,6-trimethyloctan-3-one (31) and (2*S*,5*R*,7*S*)-7-[(*tert*-Butyldimethylsilyl)oxy]-5-hydroxy-1-[(4-methoxybenzyl)oxy]-8-{4-[(*S*)-1-methoxybut-3-en-1-yl]oxazol-2-yl}-2,6,6-trimethyl-octan-3-one (32)

To a cooled (-78 °C) solution of methylketone 8a (375 mg, 1.68 mmol, 1.3 equiv) in anhydrous THF (3.0 mL) was added a solution of LiHMDS (1 M in THF, 281 mg, 1.68 mL, 1.68 mmol, 1.3 equiv). The mixture was stirred at -78 °C for 2 h, then warmed to -40 °C, then aldehyde 7 (495 mg, 1.30 mmol, 1.0 equiv) was added as a solution in THF (2.0 mL) and the mixture was stirred at this temperature for 40 min. Sat. aq NH₄Cl (6 mL) was added and the solution was allowed to warm to r.t., then Et₂O (30 mL) was added and the solution was washed with sat. aq NaCl (25 mL). The aqueous layer was extracted with Et_2O (4 × 25 mL), dried over MgSO₄ and concentrated in vacuo. Purification by silica column petroleum chromatography (40 g SiO_2 ; ether-EtOAc, $80:20 \rightarrow 50:50$) gave a mixture (1:1.7) of aldol products 31 and 32 (747 mg, 1.24 mmol, 95%) as a light-yellow oil. Both diastereoisomers could be separated by reverse-phase HPLC [Machery-Nagel; Nucleodur-C18; MeCN-H₂O, 95:5; 35 mL/min; $t_R = 4.5$ (31), 5.0 min (**32**)].

Aldol Product 31

 $R_f = 0.10$ (petrol ether-EtOAc, 80:20); $[\alpha]_D^{20} - 24.1$ (c = 0.63 in CHCl₃).

¹H NMR (600 MHz, CDCl₃): $\delta = -0.26$ (s, 3 H), 0.09 (s, 3 H), 0.76 (s, 3 H), 0.85 (s, 9 H), 0.92 (s, 3 H), 1.10 (d, J = 7.0 Hz, 3 H), 2.51 (d, J = 16.2 Hz, 1 H), 2.57 (ddd, J = 13.9, 13.9, 7.2 Hz, 2 H), 2.63 (dd, J = 16.9, 9.9 Hz, 1 H), 2.91–2.95 (m, 1 H), 2.93–2.97 (m, 1 H), 3.11 (dd, J = 15.6, 3.6 Hz, 1 H), 3.33 (s, 3 H), 3.46 (dd, J = 9.2, 5.5 Hz, 1 H), 3.62 (dd, J = 8.8, 8.0 Hz, 1 H), 3.67 (s, 1 H),

3.80 (s, 3 H), 4.20 (t, J = 6.3 Hz, 1 H), 4.20 (t, J = 6.3 Hz, 1 H), 4.26 (d, J = 9.9 Hz, 1 H), 4.33 (dd, J = 7.0, 3.4 Hz, 1 H), 4.40 (d, J = 11.6 Hz, 1 H), 4.44 (d, J = 11.6 Hz, 1 H), 5.09 (dd, J = 29.2, 13.9 Hz, 2 H), 5.79–5.83 (m, J = 24.0, 17.2, 7.0 Hz, 1 H), 6.87 (d, J = 6.3 Hz, 2 H), 7.23 (d, J = 8.2 Hz, 2 H), 7.47 (s, 1 H).

 ^{13}C NMR (150 MHz, CDCl₃): δ = –5.1, –4.8, 13.4, 18.1, 19.1, 20.6, 25.9, 32.8, 39.1, 41.3, 44.1, 47.0, 55.2, 56.8, 70.7, 71.8, 72.9, 77.6, 77.6, 113.7, 117.3, 129.3, 130.1, 134.2, 135.1, 140.8, 159.2, 163.4, 213.8.

HRMS (ESI+): m/z [M + Na]⁺ calcd for C₃₃H₅₃NO₇SiNa: 626.3489; found: 626.3494.

Aldol Product 32

 $R_f = 0.13$ (petrol ether–EtOAc, 80:20); $[\alpha]_D^{20} + 0.4$ (c = 0.61 in CHCl₃).

¹H NMR (600 MHz, CDCl₃): $\delta = -0.23$ (s, 3 H), 0.03 (s, 3 H), 0.79 (s, 3 H), 0.88 (s, 9 H), 0.94 (s, 3 H), 1.05 (d, J = 7.0 Hz, 3 H), 2.56 (t, J = 6.6 Hz, 2 H), 2.61–2.64 (m, 2 H), 2.80 (dd, J = 21.9, 5.8 Hz, 1 H), 2.89–2.92 (m, 1 H), 3.17 (dd, J = 16.1, 4.7 Hz, 1 H), 3.33 (s, 3 H), 3.44 (dd, J = 8.9, 5.4 Hz, 1 H), 3.58 (t, J = 8.5 Hz, 1 H), 3.72 (d, J = 3.0 Hz, 1 H), 3.81 (s, 3 H), 4.01 (d, J = 9.7 Hz, 1 H), 4.21 (t, J = 6.5 Hz, 1 H), 4.25 (t, J = 5.2 Hz, 1 H), 4.40 (d, J = 11.6 Hz, 1 H), 4.43 (d, J = 11.7 Hz, 1 H), 5.07 (dd, J = 28.1, 13.7 Hz, 2 H), 5.77–5.82 (m, 1 H), 6.87 (d, J = 7.9 Hz, 2 H), 7.22 (d, J = 8.0 Hz, 2 H), 7.47 (s, 1 H).

¹³C NMR (150 MHz, CDCl₃): δ = -4.8, 13.2, 15.3, 18.1, 18.5, 19.5, 26.0, 33.0, 39.1, 42.5, 44.5, 47.1, 55.2, 56.9, 70.6, 71.9, 72.9, 75.1, 76.1, 113.8, 117.3, 129.3, 130.0, 134.2, 135.1, 140.6, 159.2, 164.0, 214.3.

HRMS (ESI+): m/z [M + Na]⁺ calcd for $C_{33}H_{53}NO_7SiNa^+$: 626.3489; found: 626.3494.

(2*S*,4*S*,6*S*,7*S*)-2-[(*tert*-Butyldimethylsilyl)oxy]-6-methoxy-8-[(4-methoxybenzyl)oxy]-1-{4-[(*S*)-1-methoxybut-3-en-1-yl]oxazol-2-yl}-3,3,7-trimethyloctan-4-ol (2a from 31)

NMe₄HB(OAc)₃ (160 mg, 606 μmol, 4.7 equiv) was added to a mixture of MeCN–acetic acid (1:1, 1.0 mL) at r.t. and stirred for 30 min. This solution was added to a solution of β-hydroxy-ketone **31** (78.0 mg, 129 μmol, 1.0 equiv) in THF–MeCN (1:1, 1.5 mL) at –30 °C. The mixture was warmed to –20 °C, stirred for 3.5 h at this temperature and kept in a freezer overnight (–20 °C, 12 h). An aqueous solution of Na/K-tartrate (20%, 3.0 mL) was added at –20 °C and the mixture was allowed to warm to r.t., then CH₂Cl₂ (25 mL) was added and the solution was washed with Na/K-tartrate solution (20%, 10 mL). The aqueous layer was extracted with CH₂Cl₂ (4 × 15 mL), and the combined organic layers were dried over MgSO₄ and concentrated in vacuo. Silica column chromatography (7 g SiO₂; pentane–EtOAc, 80:20 → 50:50) gave the corresponding 1,3-*anti*-diol product (74.0 mg, 123 μmol, 95%) as a colorless oil.

 $R_f = 0.11$ (pentane–EtOAc, 2:1); $[\alpha]_D^{20}$ –29.3 (c = 1.50 in CHCl₃).

¹H NMR (600 MHz, CDCl₃): $\delta = -0.27$ (s, 3 H), 0.09 (s, 3 H), 0.78 (s, 3 H), 0.86 (s, 9 H), 0.99 (d, J = 7.0 Hz, 3 H), 1.02 (s, 3 H), 1.39 (dd, J = 12.9, 11.0 Hz, 1 H), 1.49 (dd, J = 12.7, 10.6 Hz, 1 H), 1.87 (br s, 1 H), 2.58 (m, 2 H), 3.01 (dd, J = 15.8, 7.4 Hz, 1 H), 3.17 (dd, J = 15.7, 2.2 Hz, 1 H), 3.32 (s, 3 H), 3.49 (dd, J = 8.9, 5.5 Hz, 1 H), 3.55 (dd, J = 9.0, 4.2 Hz, 1 H), 3.80 (s, 3 H), 4.07–4.09 (m, 1 H), 4.11–4.13 (m, 1 H), 4.16–4.18 (m, 1 H), 4.19–4.21 (m, 1 H), 4.41 (d, J = 11.6 Hz, 1 H), 4.46 (d, J = 11.3 Hz, 1 H), 5.06 (d, J = 10.2 Hz, 1 H), 5.12 (d, J = 17.3 Hz, 1 H), 5.78–5.83 (m, 1 H), 6.86 (d, J = 8.1 Hz, 2 H), 7.24 (d, J = 8.0 Hz, 2 H), 7.47 (s, 1 H).

 ^{13}C NMR (150 MHz, CDCl₃): δ = –5.2, –4.7, 11.3, 18.0, 20.1, 22.9, 25.9, 32.6, 35.7, 38.5, 39.1, 40.8, 55.3, 56.7, 60.4, 70.6, 71.5, 73.1, 74.9, 76.1, 81.7, 113.8, 117.3, 129.2, 130.2, 134.2, 135.1, 140.9, 159.2, 163.3.

HRMS (ESI+): m/z [M + H]⁺ calcd for C₃₃H₅₆NO₇Si⁺: 606.3826; found: 606.3818.

To a stirred solution of the 1,3-*anti* diol obtained above (49.0 mg, 80.9 μ mol, 1.0 equiv) in anhydrous THF (1.0 mL) was added NaH (60% dispersion in oil, 32.2 mg, 809 μ mol, 10.0 equiv) at 0 °C. The mixture was stirred for 10 min at 0 °C, then iodomethane (150 μ L) was added and the solution was stirred at +10 °C for 65 min before the addition of sat. aq NH₄Cl (2 mL). The mixture was warmed to r.t., Et₂O (10 mL) was added and the mixture was extracted with sat. aq NaCl (5 mL), the aqueous layer was extracted with Et₂O (4 × 10 mL), the combined organic layers were dried over MgSO₄ and concentrated in vacuo. Purification by column chromatography (10 g SiO₂; pentane–EtOAc, 3:1) gave C20-monomethylated **2a** (40.1 mg, 64.7 μ mol, 80%) in addition to C18-monomethylated sideproduct (3.1 mg, 5.1 μ mol, 6%, both isomers could be separated by column chromatography) as a colorless oil.

 $R_f = 0.55$ (pentane-EtOAc, 2:1); $[\alpha]_D^{20} - 34.3$ (c = 0.81 in CHCl₃).

¹H NMR (600 MHz, CDCl₃): $\delta = -0.30$ (s, 3 H), 0.06 (s, 3 H), 0.75 (s, 3 H), 0.83 (s, 9 H), 0.94 (d, J = 6.8 Hz, 1 H), 0.94 (s, 3 H), 1.38–1.40 (m, 2 H), 1.94–2.02 (m, 1 H), 1.99 (qddd, J = 7.2, 7.0, 4.7, 4.4 Hz, 1 H), 2.50–2.60 (m, 2 H), 2.97 (dd, J = 15.7, 7.6 Hz, 1 H), 3.14 (dd, J = 15.8, 3.4 Hz, 1 H), 3.27 (dd, J = 16.1, 5.8 Hz, 1 H), 3.30 (s, 3 H), 3.41 (s, 3 H), 3.46 (dd, J = 16.0, 4.7 Hz, 1 H), 3.54 (ddd, J = 7.7, 4.4, 4.4 Hz, 1 H), 3.78 (s, 3 H), 3.93 (dd, J = 5.6, 5.5 Hz, 1 H), 4.16–4.20 (m, 2 H), 4.39 (d, J = 11.5 Hz, 2 H), 4.43 (d, J = 11.5 Hz, 2 H), 5.03 (d, J = 10.1 Hz, 1 H), 5.08 (dd, J = 17.2, 1.3 Hz, 1 H), 5.78 (dddd, J = 17.1, 10.0, 6.9, 6.9 Hz, 1 H), 6.85 (d, J = 8.6 Hz, 2 H), 7.24 (d, J = 8.5 Hz, 2 H), 7.45 (s, 1 H).

 13 C NMR (150.90 MHz, CDCl₃): δ = –5.2, –4.7, 12.7, 18.0, 19.8, 22.4, 25.9, 32.7, 34.0, 37.4, 39.1, 41.0, 55.3, 56.9, 59.2, 71.4, 72.4, 72.7, 76.1, 79.1, 80.6, 113.7, 117.3, 129.1, 129.2, 130.8, 134.2, 135.1, 140.9, 159.0, 163.3.

HRMS (ESI+): m/z [M + Na]⁺ calcd for $C_{34}H_{57}NO_7SiNa^+$: 642.3802; found: 642.3810.

(2*S*,6*S*,7*S*)-2-[(*tert*-Butyldimethylsilyl)oxy]-6-methoxy-8-[(4-methoxybenzyl)oxy]-1-{4-[(*S*)-1-methoxybut-3-en-1-yl]oxazol-2-yl}-3,3,7-trimethyloctan-4-one (33)

Aldol product 32 (930 mg, 1.54 mmol, 1.0 equiv) was dissolved in Et_2O (9.0 mL) and cooled to –30 °C, then anhydrous Et_3N (322 $\mu L,$ 2.31 mmol, 1.5 equiv), and Cy₂BCl (1 M in THF, 2.31 mL, 2.31 mmol, 1.5 equiv) were added and the white mixture was stirred for 90 min. The solution was cooled to -78 °C and LiBH₄ (2 M in THF, 3.85 mL, 7.70 mmol, 5.0 equiv) was added and the mixture was stirred at this temperature for 90 min. Sat. aq NH₄Cl (10 mL) was added slowly and the mixture was allowed to warm to r.t., then Et₂O (20 mL) and sat. aq NH₄Cl (10 mL) were added. The solution was washed, the aqueous layer was extracted with $Et_2O(4 \times 20 \text{ mL})$ and the combined organic layers were concentrated in vacuo. The colorless residue was dissolved in MeOH (6.0 mL) and cooled to 0 °C. The solution was stirred and aq NaOH (3 M, 3.0 mL) and H₂O₂ (30%, 3.0 mL) were added and the mixture was stirred for 2 h at r.t. The solution was diluted with CH₂Cl₂ (10 mL) and H₂O (10 mL) and, after washing and separation of the phases, the aqueous layer was extracted with CH_2Cl_2 (4 × 20 mL), the combined organic layers were dried over MgSO₄ and concentrated in vacuo. Purification by column chromatography (90 g SiO₂; petrol ether-EtOAc, $3:1 \rightarrow 1:1$) gave the corresponding 1,3-syn-diol (886 mg, 1.46 mmol, 95%) as a colorless oil.

 $R_f = 0.18$ (pentane–EtOAc, 3:1); $[\alpha]_D^{20}$ –29.3 (c = 1.50 in CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = -0.16$ (s, 3 H), 0.07 (s, 3 H), 0.82 (s, 3 H), 0.92 (s, 9 H), 0.97 (d, J = 7.2 Hz, 3 H), 0.99 (s, 3 H), 1.51– 1.73 (m, 2 H), 1.89 (qddd, J = 7.2, 6.9, 5.0, 1.5 Hz, 1 H), 2.60 (t, J = 6.7 Hz, 2 H), 2.84 (dd, J = 16.5, 5.0 Hz, 1 H), 3.22 (dd, J = 16.6, 5.4 Hz, 1 H), 3.36 (s, 3 H), 3.48 (dd, J = 9.0, 5.0 Hz, 1 H), 3.54 (dd, J = 8.8, 6.9 Hz, 1 H), 3.68–3.75 (m, 2 H), 3.85 (s, 3 H), 3.96 (dt, J = 9.2, 2.5 Hz, 1 H), 4.15 (d, J = 5.8 Hz, 1 H), 4.24 (t, J = 6.5 Hz, 1 H), 4.29 (t, J = 5.1 Hz, 1 H), 4.47 (s, 2 H), 5.08 (d, J = 11.6 Hz, 1 H), 5.15 (d, J = 17.2 Hz, 1 H), 5.82 (dddd, J = 17.1, 10.0, 6.9, 6.9 Hz, 1 H), 6.92 (d, J = 8.5 Hz, 2 H), 7.28 (d, J = 8.5 Hz, 2 H), 7.51 (s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = -4.8, -4.7, 11.3, 17.4, 18.0, 19.2, 25.9, 32.9, 33.9, 38.9, 39.0, 43.2, 55.3, 56.9, 73.0, 73.7, 74.8, 76.0, 76.6, 77.2, 113.8, 117.4, 129.3, 134.0, 135.2, 142.0, 158.9, 164.2.

HRMS (ESI+): $m/z [M + H]^+$ calcd for $C_{33}H_{56}NO_7Si^+$: 606.3826; found: 606.3835.

To a stirred solution of the 1,3-*syn*-diol obtained above (15.0 mg, 24.8 µmol, 1.0 equiv) in anhydrous THF (0.5 mL) was added NaH (60% dispersion in oil, 5.0 mg, 124 µmol, 5.0 equiv) at 0 °C. The mixture was stirred for 10 min at 0 °C, then iodomethane (100 µL) was added and the solution was stirred at 0 °C for 40 min before the addition of sat. aq NH₄Cl (1 mL). The mixture was warmed to r.t., Et₂O (10 mL) was added, and the mixture was washed with sat. aq NaCl (5 mL), the aqueous layer was extracted with Et₂O (4 × 10 mL), and the combined organic layers were dried over MgSO₄ and concentrated in vacuo. Purification by silica column chromatography (5 g SiO₂; pentane–EtOAc, 3:1→1:1) gave the corresponding C20-monomethylated product (10.0 mg, 16.1 µmol, 65%, 89% brsm) besides recovered starting material (4.0 mg, 6.60 µmol, 27%) as a colorless oil.

 $R_f = 0.27$ (pentane-EtOAc, 3:1); $[\alpha]_D^{20} - 27.5$ (c = 1.59 in CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = -0.27$ (s, 3 H), 0.02 (s, 3 H), 0.78 (s, 3 H), 0.87 (s, 9 H), 0.93 (d, J = 6.8 Hz, 3 H), 0.93 (s, 3 H), 1.39–1.63 (m, 2 H), 1.97–2.18 (m, 1 H), 2.56 (t, J = 6.6 Hz, 2 H), 2.83 (dd, J = 15.8, 6.6 Hz, 1 H), 3.18 (dd, J = 15.9, 4.1 Hz, 1 H), 3.28–3.35 (m, 1 H), 3.33 (s, 3 H), 3.37 (s, 3 H), 3.42–3.56 (m, 2 H), 3.62 (d, J = 9.4 Hz, 1 H), 3.81 (s, 3 H), 3.99 (d, J = 1.8 Hz, 1 H), 4.20 (t, J = 6.1 Hz, 1 H), 4.26 (dd, J = 6.4, 4.1 Hz, 1 H), 4.43 (s, 4 H), 5.05 (d, J = 10.7 Hz, 1 H), 5.15 (s, 1 H), 5.81 (ddd, J = 17.1, 10.0, 6.9, 6.9 Hz, 1 H), 6.88 (d, J = 8.6 Hz, 2 H), 7.26 (d, J = 8.7 Hz, 2 H), 7.46 (s, 1 H).

¹³C NMR (150 MHz, CDCl₃): δ = -4.7, -4.7, 12.6, 17.6, 18.1, 19.5, 26.0, 29.7, 32.1, 32.8, 36.0, 39.1, 42.9, 55.3, 56.9, 57.6, 71.9, 72.8, 75.1, 75.2, 76.2, 83.9, 113.7, 117.2, 129.2, 130.5, 134.2, 135.0, 140.6, 159.1, 164.1.

HRMS (ESI+): m/z [M + Na]⁺ calcd for $C_{34}H_{57}NO_7SiNa^+$: 642.3802; found: 642.3829.

To a stirred solution of the alcohol prepared above (290 mg, 469 μ mol, 1.0 equiv) in CH₂Cl₂ (7.0 mL) was added PCC (506 mg, 2.35 mmol, 5.0 equiv) at r.t. The mixture was heated at reflux for 90 min, cooled to r.t., filtered over Celite, which was rinsed with CH₂Cl₂ (50 mL), and concentrated in vacuo. Purification by silica column chromatography (20 g SiO₂; pentane–EtOAc, 3:1) gave the corresponding ketone **33** (281 mg, 455 μ mol, 97%) as a colorless oil.

 $R_f = 0.38$ (pentane-EtOAc, 3:1); $[\alpha]_D^{20} + 40.0$ (c = 1.13 in CHCl₃).

¹H NMR (600 MHz, CDCl₃): $\delta = -0.31$ (s, 3 H), 0.00 (s, 3 H), 0.80 (s, 9 H), 0.89 (d, J = 7.0 Hz, 3 H), 1.10 (s, 3 H), 1.11 (s, 3 H), 1.92–1.98 (m, 1 H), 2.46 (dd, J = 18.0, 4.1 Hz, 1 H), 2.53 (t, J = 6.6 Hz, 2 H), 2.75 (dd, J = 15.5, 7.5 Hz, 1 H), 2.78–2.84 (m, 2 H), 3.27 (s, 3 H), 3.28–3.31 (m, 1 H), 3.29 (s, 3 H), 3.45 (dd, J = 9.0, 6.6 Hz, 1 H), 3.78 (s, 3 H), 3.85 (ddd, J = 7.8, 3.9, 3.8 Hz, 1 H), 4.16 (t, J = 6.5 Hz, 1 H), 4.40 (d, J = 11.7 Hz, 1 H), 4.43 (d, J = 11.7 Hz, 1 H), 4.51 (dd, J = 7.4, 3.4 Hz, 1 H), 5.05–5.11 (m, 2 H), 5.78 (ddd, J = 17.1, 10.0, 6.9, 6.9 Hz, 1 H), 6.85 (d, J = 8.5 Hz, 2 H), 7.25 (d, J = 8.5 Hz, 2 H), 7.44 (s, 1 H).

 13 C NMR (75 MHz, CDCl₃): δ = -4.9, -4.7, 12.0, 18.1, 19.6, 21.8, 25.9, 33.6, 37.0, 39.1, 41.2, 53.1, 55.3, 56.9, 58.6, 72.2, 72.6, 74.8, 76.2, 77.2, 113.7, 117.2, 129.2, 130.7, 134.3, 135.2, 140.9, 159.1, 162.8, 212.7.

(2*S*,4*S*,6*S*,7*S*)-2-[(*tert*-Butyldimethylsilyl)oxy]-6-methoxy-8-[(4-methoxybenzyl)oxy]-1-{4-[(*S*)-1-methoxybut-3-en-1-yl]oxazol-2-yl}-3,3,7-trimethyloctan-4-ol (2a from 32)

To a stirred solution of the ketone **33** (264 mg, 427 μ mol, 1.0 equiv) in THF (10.0 mL) under argon at -90 °C was added a precooled solution of LiAlH₄ (2 M in THF, 65.0 mg, 855 μ L, 1.71 mmol, 4.0 equiv). The mixture was stirred at -90 °C for 45 min, and H₂O (0.6 mL) and a solution of NaOH (3 M, 1.8 mL) were added. The mixture was warmed to r.t., Et₂O (20 mL) and H₂O (15 mL) were added and the aqueous phase was separated and extracted with Et₂O (4 × 20 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo. Purification by column chromatography (25 g SiO₂; pentane–EtOAc, 3:1 \rightarrow 1:1) gave alcohol **2a** (211 mg, 341 μ mol, 80%, dr = 8.0:1) as a colorless oil.

 $R_f = 0.55$ (pentane–EtOAc, 2:1); $[\alpha]_D^{20} - 34.3$ (c = 0.81 in CHCl₃).

¹H NMR (600 MHz, CDCl₃): $\delta = -0.30$ (s, 3 H), 0.06 (s, 3 H), 0.75 (s, 3 H), 0.83 (s, 9 H), 0.94 (d, J = 6.8 Hz, 1 H), 0.94 (s, 3 H), 1.38–1.40 (m, 2 H), 1.94–2.02 (m, 1 H), 1.99 (qddd, J = 7.2, 7.0, 4.7, 4.4 Hz, 1 H), 2.50–2.60 (m, 2 H), 2.97 (dd, J = 15.7, 7.6 Hz, 1 H), 3.14 (dd, J = 15.8, 3.4 Hz, 1 H), 3.27 (dd, J = 16.1, 5.8 Hz, 1 H), 3.30 (s, 3 H), 3.41 (s, 3 H), 3.46 (dd, J = 16.0, 4.7 Hz, 1 H), 3.54 (ddd, J = 7.7, 4.4, 4.4 Hz, 1 H), 3.78 (s, 3 H), 3.93 (dd, J = 5.6, 5.5 Hz, 1 H), 4.16–4.20 (m, 2 H), 4.39 (d, J = 11.5 Hz, 2 H), 4.43 (d, J = 11.5 Hz, 2 H), 5.03 (d, J = 10.1 Hz, 1 H), 5.08 (dd, J = 17.2, 1.3 Hz, 1 H), 5.78 (dddd, J = 17.1, 10.0, 6.9, 6.9 Hz, 1 H), 6.85 (d, J = 8.6 Hz, 2 H), 7.24 (d, J = 8.5 Hz, 2 H), 7.45 (s, 1 H).

 ^{13}C NMR (150 MHz, CDCl₃): δ = –5.2, –4.7, 12.7, 18.0, 19.8, 22.4, 25.9, 32.7, 34.0, 37.4, 39.1, 41.0, 55.3, 56.9, 59.2, 71.4, 72.4, 72.7, 76.1, 79.1, 80.6, 113.7, 117.3, 129.1, 129.2, 130.8, 134.2, 135.1, 140.9, 159.0, 163.3.

HRMS (ESI+): m/z [M + Na]⁺ calcd for $C_{34}H_{57}NO_7SiNa^+$: 642.3802; found: 642.3810.

Acknowledgment

This work was generously supported by the Deutsche Forschungsgemeinschaft (Me 2756/4-1).

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

- (a) Reichenbach, H.; Höfle, G. In *Drug Discovery from Nature*; Grabley, S.; Thierecke, R., Eds.; Springer Verlag: Berlin, **1999**. (b) Menche, D. *Nat. Prod. Rep.* **2008**, *25*, 905.
 (c) Weissman, K. J.; Müller, R. *Nat. Prod. Rep.* **2010**, *27*, 1276. (d) Gerth, K.; Pradella, S.; Perlova, O.; Beyer, S.; Müller, R. *J. Biotechnol.* **2003**, *106*, 233.
- (2) Sasse, F.; Steinmetz, H.; Höfle, G.; Reichenbach, H. J. Antibiot. 1993, 46, 741.
- (3) For the biosynthesis of rhizopodin, see: Pistorius, D.; Müller, R. ChemBioChem 2012, 13, 416.
- (4) Jansen, R.; Steinmetz, H.; Sasse, F.; Schubert, W.-D.; Hagelüken, G.; Albrecht, S. C.; Müller, R. *Tetrahedron Lett.* 2008, 49, 5796.
- (5) Horstmann, N.; Menche, D. Chem. Commun. 2008, 5173.
- (6) Hagelüken, G.; Albrecht, G.; Jansen, R.; Steinmetz, H.; Heinz, D.; Kalesse, M.; Sasse, F.; Schubert, W. D. Angew. Chem. Int. Ed. 2009, 48, 595.
- (7) Gronewold, T. M. A.; Sasse, F.; Lünsdorf, H.; Reichenbach, H. Cell Tissue Res. 1999, 295, 121.

- (8) (a) Cheng, Z.; Song, L.; Xu, Z.; Ye, T. Org. Lett. 2010, 12, 2036. (b) Chakraborty, T. K.; Pulukuri, K. K.; Sreekanth, M. Tetrahedron Lett. 2010, 51, 6444. (c) Chakraborty, T. K.; Sreekanth, M.; Pulukuri, K. K. Tetrahedron Lett. 2011, 52, 59. (d) Nicolaou, K. C.; Jiang, X.; Lindsay-Scott, P. J.; Corbu, A.; Yamashiro, S.; Bacconi, A.; Fowler, V. M. Angew. Chem. Int. Ed. 2011, 50, 1139. (e) Kretschmer, M.; Menche, D. Org. Lett. 2012, 14, 382. (f) Chakraborty, T. K.; Pulukuri, K. K. Org. Lett. 2012, 14, 2858. (g) Dieckmann, M.; Rudolph, S.; Dreisigacker, S.; Menche, D. Org. Lett. 2012, 77, 10782. (h) Dieckmann, M.; Menche, D. Org. Lett. 2013, 15, 228.
- (9) (a) Dieckmann, M.; Kretschmer, M.; Li, P.; Rudolph, S.; Herkommer, D.; Menche, D. *Angew. Chem. Int. Ed.* 2012, 51, 5667. (b) Dalby, S. M.; Goodwin-Tindall, J.; Paterson, I. *Angew. Chem. Int. Ed.* 2013, 52, 6517.
- (10) For selected reviews on aldol reactions, see: (a) Brodmann, R.; Lorenz, M.; Schäckel, R.; Simsek, S.; Kalesse, M. Synlett 2009, 174. (b) Li, J.; Menche, D. Synthesis 2009, 2293.
 (c) Ariza, X.; Garcia, J.; Romeo, P.; Urpí, F. Synthesis 2011, 2175. (d) Modern Methods in Stereoselective Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, 2013.
- (11) Trieselmann, T.; Hoffmann, R. W.; Menzel, K. Eur. J. Org. Chem. 2002, 7, 1292.
- (12) Substrates 5 and 8 were readily available from the Roche ester, see: (a) Smith, A. B. III; Doughty, V. A.; Sfouggatakis, C.; Bennett, C. S.; Koyanagi, J.; Takeuchi, M. Org. Lett. 2002, 4, 783. (b) Denmark, S. E.; Fujimori, S.; Pham, S. M. J. Org. Chem. 2005, 70, 10832. (c) Kalesse, M.; Chery, K. P.; Quitschalle, M.; Burzlaff, A.; Kasper, C.; Scheper, T. Chem. Eur. J. 2003, 9, 1129.
- (13) (a) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919. (b) Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401.

- (14) (a) Paterson, I.; Gibson, K. R.; Oballa, R. M. *Tetrahedron Lett.* **1996**, *37*, 8585. (b) Evans, D. A.; Coleman, P. J.; Côté, B. J. Org. Chem. **1997**, *62*, 788.
- (15) Paton, R. S.; Goodman, J. M. Org. Lett. 2006, 8, 4299.
- (16) Evans, D. A.; Calter, M. A. *Tetrahedron Lett.* **1993**, *34*, 6871.
- (17) Various protocols have been evaluated but these gave only unsatisfactory results. For a variant of the Mukaiyama-aldol addition, which has been successfully utilized in 'difficult' enantioselective catalytic aldol additions, see: (a) Keck, G. E.; Krishnamurthy, D. J. Am. Chem. Soc. 1995, 117, 2363.
 (b) Mikami, K.; Matsukawa, S. J. Am. Chem. Soc. 1993, 115, 7039.
- (18) Analogous selectivities and yields were obtained with the more elaborate aldehyde 7.
- (19) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322.
- (20) Reetz, M. T.; Kessler, K.; Jung, A. Tetrahedron Lett. 1984, 25, 729.
- (21) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.
- (22) Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447.
- (23) No conversion was observed by using a reported procedure for a regioselective methylation using Ag₂O/MeI, see: Bouzide, A.; Sauvé, G. *Tetrahedron Lett.* **1997**, *38*, 5945.
- (24) Double methylation resulted at 30 °C, while essentially no conversion was observed below 0 °C. Furthermore, an excess of NaH/MeI (10 equiv) proved beneficial to obtain good conversion.
- (25) As expected for such a sterically hindered alcohol, no conversion was obtained under Mitsunobu conditions. See also: Martin, S. F.; Dodge, J. A. *Tetrahedron Lett.* **1991**, *32*, 3017.