

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 2254-2259

From pyrroles to 1-oxo-2,3,4,9-tetrahydro-1*H*- β -carbolines: A new class of orally bioavailable mGluR1 antagonists

Romano Di Fabio,* Fabrizio Micheli, Giuseppe Alvaro, Paolo Cavanni, Daniele Donati, Tatiana Gagliardi, Gabriele Fontana, Riccardo Giovannini, Micaela Maffeis, Anna Mingardi, Maria Elvira Tranquillini and Giovanni Vitulli

GlaxoSmithkline Medicine Research Centre, Via Fleming 4, 37135 Verona, Italy

Received 9 November 2006; revised 16 January 2007; accepted 19 January 2007 Available online 25 January 2007

Abstract—Exploiting the SAR of the known pyrrole derivatives, a new class of mGluR1 antagonists was designed by replacement of the pyrrole core with an indole scaffold and consequent cyclization of the C-2 position into a tricyclic β -carboline template. The appropriate exploration of the position C-6 with a combination of H-bond acceptor groups coupled with bulky/lipophilic moieties led to the discovery of a new series of mGluR1 antagonists. These compounds exhibited a non-competitive behavior, excellent pharmacokinetic properties, and good in vivo activity in animal models of acute and chronic pain, after oral administration. © 2007 Elsevier Ltd. All rights reserved.

Glutamate is the major excitatory neurotransmitter present in the mammalian brain and spinal cord. Its action mediates several key brain functions, including cognition and memory.¹ In addition, glutamate has been hypothesized to play a critical role in the pathophysiology of a variety of neurological and psychiatric diseases such as: acute stroke, traumatic brain injury, neuropathic pain, Huntington's disease, schizophrenia, depression, dependence, and addiction.² Two different families of glutamate receptors have been identified, namely ionotropic glutamate receptors^{3,4} (NMDA, AMPA, and kainate) and metabotropic receptors^{5,6} (mGluRs). Ionotropic receptors are ligand-gated cation channels responsible for fast excitatory neurotransmission and neuronal plasticity. Metabotropic receptors belong to the family of 7 TM class C G-protein coupled receptors (GPCRs) and control both glutamate release and postsynaptic excitability.

These receptors are characterized by the presence of a large amino-terminal domain containing a bilobal-structured Venus fly trap.⁷ Recent molecular modeling studies, as well as receptor models based on crystallographic

0960-894X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.01.055

data, shed new light on the mechanism of interaction of these receptors with both agonists and antagonists.^{8,9}

To date, eight different mGluR subtypes have been identified, named mGluR1–8. They can be subdivided into three groups based on their similarity sequence, pharmacology, and transduction mechanisms, namely group I (mGluR1 and mGluR5), group II (mGluR2 and mGluR3), and group III (mGluR4, mGluR6, mGluR7, and mGluR8). Our interest in this area was mainly devoted to the discovery of antagonists of the mGluR1 receptor subtype.¹⁰ Pyrrole derivatives **1–4** (Fig. 1) have

Figure 1. Series of pyrrole mGluR1 antagonists previously described.

Keywords: mGluR1 antagonists; Metabotropic receptors; Excitatory amino acids; Glutamate; Acute and chronic pain.

^{*} Corresponding author. Tel.: +390458218879; fax: +390458218196; e-mail: rdf26781@gsk.com

Figure 2. Proposed evolution of the pyrrole scaffold.

been discovered^{11–16} as potent and selective compounds, active in different in vivo animal models of acute and chronic pain.¹⁷

As part of a broad chemical strategy aimed toward the discovery of new classes of orally bioavailable mGluR1 receptor antagonists, an attempt to modify the pyrrole scaffold was performed removing simultaneously the flexible/lipophilic side chain present in the top region of the pyrrole molecules. To this end, β -carboline derivatives of type A, shown in Figure 2, were designed as a potential structural evolution of the pyrrole compounds. In particular, this scaffold, as depicted in Figure 2, resulted from the replacement of the pyrrole nucleus by the corresponding indole, along with the cyclization of the C-2 amido moiety and the C-3 methyl group. Then, once identified the core template, we managed to maximize the in vitro activity varying the nature of the R group present at the position C-6. From the previous SAR elements gathered on the pyrrole series, it was known that the north-western region of these new molecules could have been highly sensitive to the effect of the substituents. In particular, in the pyrrole derivatives, the combination of a H-bond acceptor and bulky/lipophilic groups was essential to maximize their in vitro potency.

To explore this hypothesis two appropriate series of amides and a series of ether derivatives shown in Tables 1 and 2, respectively, were studied, targeting specifically the substitution at the position C-6.

As far as the synthesis of amides **6–12** reported in Table 1 is concerned, they have been obtained in good yield as depicted in Scheme 1, from the known 6-carboxyethyl β -carboline intermediate **5a**¹⁸ by sequential hydrolysis of the ethyl ester, activation of the carboxyl group as the pentafluorophenylester, and amidation reaction in good to excellent yield (41–100%) with either primary or secondary amines. Compounds **13** and **14** were prepared from the nitro derivative **5b**^{19,20} in two steps, by reduction of the nitro group to the corresponding amine (CuCl, KBH₄, CH₃OH)²¹ in 61% yield, followed by an amidation reaction with 1-adamantyl acyl chloride or formation of the corresponding urea in the presence of the 1-adamantyl isocyanate, respectively.

These compounds were characterized in terms of in vitro affinity on rat mGluR1a CHO cells, measuring intracellular $[Ca^{2+}]_i$ mobilization by a fluorescent imaging plate

Table 1. Potency results on mGluR1 receptor

Entry	\mathbf{R}^1	\mathbb{R}^2	IC_{50}^{a} (nM)
1	_		16
6	(CH ₃) ₃ CHCH ₃	Н	na ^b
7	(CH ₃) ₃ CHCH ₃	CH ₃	120
8	1-Adamantyl	Н	71
9	2-Adamantyl	Н	93
10	Bicycle(2.2.1)hept-2-yl ^c	Н	226
11	CH ₂ -1-adamantyl	Н	312
12	C_6H_5	Н	1040
13	1-Adamantyl	Н	71
14	NH-1-adamantyl	Н	4660

^a Values are means of three experiments.

^b na, activity > 10 μ M.

^c compound obtained as a mixture of *endolexo* isomers.

Table 2. Potency results on mGluR1 receptor

Entry	R	R′	$IC_{50}{}^{a}(nM)$
15	Н	Н	na
16	CH_3	Н	na
17	(CH ₃) ₃ CHCH ₃	Н	239
18	C_6H_5	Н	4070
19	CH ₂ C ₆ H ₅	Н	104
20	$CH_2C_6H_{11}$	Н	5560
21	CH(CH ₃)C ₆ H ₅ ^b	Н	380
22	CH ₂ C ₆ H ₅	CH_3	167
23			2850
24	—		3980
25			1670
26			na
27	_		na
28			na
29	—		683
30	_	—	1020

^a Values are means of three experiments; na, activity > 10 μ M. ^b Racemate.

reader (FLIPR).²² From the results summarized in Table 1 (entries **6–12**), it was evident that the 1,2,2-trimethylpropyl derivatives (entries **6** and **7**) were significantly less active than the corresponding pyrrole analogues,¹¹ suggesting a different SAR operating in this new series. In this case, only the tertiary amide **7** gave encouraging in vitro activity (IC₅₀ = 120 nM), whereas compound **6** was found to be inactive (IC₅₀ > 1 μ M).

The 1-adamantyl **8** and the 2-adamantyl **9** derivatives were the most potent compounds identified ($IC_{50} =$

Scheme 1. Reagents and conditions: (a) LiOH, EtOH/H₂O 8:2, 60 °C, 3 h; (b) $C_6F_5OCOCF_3$, pyridine, DMF, rt, 2 h; (c) R^1R^2NH , DMF, 80 °C, 1–4 h; (d) CuCl, KBH₄ CH₃OH, rt, 30 min; (e) 1-adamantyl acyl chloride, pyridine, rt, 1 h or 1-adamantyl isocyanate, THF, rt, 12 h.

71 nM and 93 nM, respectively), confirming the need for the presence, similar to pyrroles, of a lipophilic/bulky substituent in the north-eastern region of the molecule to maximize the in vitro activity.¹¹ Notably, these compounds displayed the same non-competitive antagonism behavior already observed for the pyrrole derivatives.¹¹ The introduction of a methylene spacer (entry 11) resulted in a significant drop in potency ($IC_{50} = 312 \text{ nM}$) with respect to compound 8. The presence of an aromatic substituent was less tolerated; the phenylamide derivative 12 was found in fact to be significantly less active $(IC_{50} = 1040 \text{ nM})$ than the corresponding adamantyl analogues. Finally, the inverse adamantyl amide 13 exhibited the same in vitro potency as compound 8 $(IC_{50} = 71 \text{ nM})$, whilst the corresponding urea derivative 14 was less active, probably due to the presence of an additional H-bond donor, a polar moiety not tolerated in this region of the molecule.

To enlarge the scope of this exploration, maintaining the presence of H-bond acceptor group, a series of C-6 substituted ether derivatives was prepared. To this end, compounds **15–22**, reported in Table 2, were synthesized.

In particular, **16**, **17**, **18**, **19**, **21**, and **22** were obtained in good yield following the classical synthetic approach for the preparation of substituted β -carboline compounds,¹⁹ whereas analogue **20** was prepared, as shown in Scheme 2, by direct alkylation of the phenol derivative **15**, easily obtained by debenzylation reaction of compound **19**.

As expected, this alkylation reaction occurred in low yield, due to the intrinsic difficulty in controlling the parallel alkylation of the indole moiety.

Scheme 2. Reagents and conditions: (a) HCO_2NH_4 , Pd/C 5%, MeOH, reflux, 1 h; (b) RX, K₂CO₃, CH₃CN, 80 °C, 24 h.

Compounds 15–22 were then evaluated in the in vitro assays. As shown in Table 2, both the unsubstituted phenol derivative 15 and the methoxy derivative 16 were found inactive, further reinforcing the hypothesis regarding the need for the presence of a lipophilic/ bulky group in this region of the molecule. Conversely, the corresponding 1,2,2-trimethylpropyl ether 17 gave a positive sign of activity (IC₅₀ = 239 nM), whereas the introduction of an aromatic ring directly linked to the oxygen atom led to a poorly active molecule (entry 18, IC₅₀ = 4070 nM). Notably, the benzyl derivative 19 exhibited the best in vitro potency (IC₅₀ = 104 nM) as far as this subclass of ether compounds is concerned.

The replacement of the phenyl ring by the corresponding cyclohexyl group caused a significant reduction of the in vitro affinity (entries **20** and **19**: $IC_{50} = 5560 \text{ nM}$ and 104 nM, respectively). Moreover, the introduction of a methyl group at the benzylic position (entry **21**) gave an activity 3–4 times lower than the compound **19** ($IC_{50} = 380 \text{ nM}$ and 104 nM, respectively). Finally, the introduction of a methyl at the position C-7 can be considered almost neutral as far as the in vitro activity is concerned. (entries **22** and **19**: $IC_{50} = 167 \text{ nM}$ and 104 nM, respectively).

Following these interesting findings, a wider synthetic program was undertaken to explore in more detail the SAR associated to the β -carboline scaffold. To this end, the series of modified analogues 23-30, shown in Figure 3, were synthesized. As depicted in Scheme 3, compound 25 was smoothly prepared from derivative 19 by reduction with Mg in methanol at reflux for 1 h.²³ The amino analogues 26 and 27 were obtained as a 1:1 mixture by simple reduction of compound 19 with BH₃·THF, followed by smooth separation by flash chromatography (AcOEt/CH₃OH/NH₄OH 80:19:1). The five-membered ring derivative 29 was synthesized in three steps, in good total vield, from the known aldehyde derivative 31,²⁴ by sequential reductive amination, hydrolysis of the ethyl ester, and final cyclization reaction. Compound 30 was synthesized as previously reported.24

As shown in Table 2, a significant reduction in potency was observed for both the C-5 and C-7 benzyloxy derivatives 23 and 24 with respect to C-6 analogue 19. In addition, both the amino derivative 25 and 26 were inactive. The five-membered ring 29 and compound 30 exhibited reduced in vitro potency compared to compound 19 (IC₅₀ = 683 nM and 1020 nM, respectively vs 104 nM). Finally, compounds 26, 27 and 28 were found to be inactive (IC₅₀ > 10 μ M).

In summary, from the exploration performed, it seems that the following pharmacophoric features should be present to maximize the in vitro potency of this class of mGluR1 antagonists:²⁵

(a) a N-unsubstituted δ -lactam moiety acting as H-bond acceptor and/or donor;

Figure 3. Structural modifications of the β -carboline core.

Scheme 3. Reagents and conditions: (a) Mg, CH₃OH, reflux, 1 h; (b) BH₃. THF, reflux, 4 h; (c) CH₃CO₂NH₄, (CH₃O)₃BHNa, dichoroethane, rt, 24 h; (d) LiOH, THF/H₂O 1:1, reflux, 8 h; (e) EDC, DMAP, *N*-methyl morpholine, rt, 36 h.

- (b) a H-bond acceptor group (ether or amide moiety) at the position C-6;
- (c) an appropriate bulky/lipophilic group in the northeastern region of the molecule.

Based on these results, the most potent compounds²⁶ identified **8**, **13**, and **19** were characterized in terms of in vivo pharmacokinetic in rats. As shown in Table 3, compound **8** showed encouraging signals of oral bio-availability (F = 12%). Conversely, **13** exhibited a poor in vivo pharmacokinetics profile despite the comparable Clp (52 ml/min/kg and 54 ml/min/kg for compounds **13** and **8**, respectively), accounting for a solubility-limited absorption process. As far as compound **19** is concerned, the oral bioavailability was variable and highly dependent on the oral dose used.²⁷ Conversely, the

Table 3. Comparison of the PK profiles

Compound	8	13	19	22
F%	12	_	9	36
C_{\max}^{a}	37	_	145	264

^a Maximum concentration in plasma after oral administration (ng/ml).

substituted analogue **22**, a compound specifically synthesized to shield the metabolically labile benzyl position,²⁸ exhibited a considerable improvement of the pharmacokinetic profile both in terms of oral bio-availability (F = 36%) and maximum exposure in plasma ($C_{\text{max}} = 264$ ng/ml).

Compound 22 also showed an excellent level of brain penetration (B/P = 6.1), assessed 1 h after dosing at 3 mg/kg iv.

According to these results, compound **22** was characterized in vivo in the formalin test in mice, a model of sustained inflammatory pain.²⁹ As shown in Figure 4, when **22** was given po at 10 mg/kg and 30 mg/kg, 30 min before the injection of formalin into the left hind paw, a significant reduction³⁰ of the nociceptive behavior was observed only in the LP of the study. Conversely, at a dose 30 mg/kg of **22**, a significant suppression³⁰ of the nociception in both the EP and LP was observed,^{31,32} further confirming the broad spectrum analgesic potential associated with the mGluR1 antagonists.³³

Figure 4. Formalin test in mice. EP (early phase): 0–5 min after 20 µl 1% formalin; LP (late phase): 20–60 min after 20 µl 1% formalin; ${}^{*}p < 0.05$, ${}^{**}p < 0.01$; n = 8-19.

Therefore, despite the limited in vitro potency, compound **22** showed good in vivo activity, due to the combination of the good oral bioavailability, excellent brain penetration, and relatively high fraction unbound in plasma.³⁴

In conclusion, C-6 substituted β -carboline derivatives were identified as new mGluR1 antagonists. These compounds were rationally designed based on the known pharmacophore model available for the pyrrole derivatives previously explored in house. In particular, the appropriate exploration of the C-6 position of this class of β -carboline derivatives enabled the design of compounds exhibiting good in vitro potency and similar non-competitive antagonism behavior as the pyrrole derivatives. Among the different compounds prepared, the benzyloxy derivative 22 was identified as the most balanced compound in terms of in vitro activity and pharmacokinetic properties. According to these positive characteristics the compound was tested in vivo and a good analgesic activity both in the EP and LP of the formalin test in mice was observed, further confirming the therapeutic potential of the mGluR1 antagonists in acute and chronic pain.

Acknowledgments

The authors thank Dr. Carla Marchioro and her coworkers for the NMR and IR spectra and Dr. Handam and his coworkers for the MS spectra. Special thanks are due to Dr. Stefania Faedo and Dr. Palmira Cavallini for the in vitro binding studies and to Dr. Letizia Bettelini and Gabriella Maraia for the in vivo characterization in the formalin model in mice. Finally, as far as the PK studies are concerned, thanks are due to Dr. Franca Pugnaghi and Dr. Dino Montanari for the support received.

References and notes

- 1. Wroblewski, J. T.; Danysz, W. Annu. Rev. Pharmacol. Toxicol. 1989, 29, 441.
- Danysz, W.; Parsons, C. G.; Bresnik, I.; Quack, G. Drug News Perspect. 1998, 11, 523.

- 3. Meldrum, B. In *Excitatory Amino Acid Antagonists*; Blackwell: Oxford, England, 1991.
- 4. Collingridge, G. L.; Watkins, J. C. In *The NMDA Receptor*, 2nd ed.; IRL: Oxford, England, 1994.
- 5. Knoepfel, T.; Kuhn, R.; Allgeier, H. J. Med. Chem. 1995, 38, 1417.
- Pin, J.-P.; Acher, F. Current Drug Targets-CNS Neurol. Disord. 2002, 1, 297.
- Bertrand, H. O.; Bessis, A. S.; Pin, J. P.; Acher, F. J. Med. Chem. 2002, 45, 3171.
- Costantino, G.; Macchiarulo, A.; Pellicciari, R. J. Med. Chem. 1999, 42, 2816.
- Bessis, A. S.; Bertrand, H.-O.; Galvez, T.; De Colle, C.; Pin, J. P.; Acher, F. Protein Sci. 2000, 9, 2200.
- For a recent review on the different series of m-GluR1 antagonists identified to date, see: Sabbatini, F.; Micheli, F. Expert Opin. Ther. Patent 2004, 14, 1593.
- Micheli, F.; Di Fabio, R.; Cavanni, P.; Rimland, J. M.; Capelli, A. M.; Chiamulera, C.; Corsi, M.; Corti, C.; Donati, D.; Feriani, A.; Ferraguti, F.; Maffeis, M.; Missio, A.; Ratti, E.; Paio, A.; Pachera, R.; Quartaroli, M.; Reggiani, A.; Sabbatini, F. M.; Trist, D. G.; Ugolini, A.; Vitulli, G. *Bioorg. Med. Chem.* 2003, 11, 171.
- Micheli, F.; Di Fabio, R.; Bordi, F.; Cavallini, P.; Cavanni, P.; Donati, D.; Faedo, S.; Maffeis, M.; Sabbatini, F. M.; Tarzia, G.; Tranquillini, M. E. *Bioorg. Med. Chem. Lett.* 2003, 13, 2113.
- Micheli, F.; Di Fabio, R.; Benedetti, R.; Capelli, A. M.; Cavallini, P.; Cavanni, P.; Davalli, S.; Donati, D.; Feriani, A.; Gehanne, S.; Hamdan, M.; Maffeis, M.; Sabbatini, F. M.; Tranquillini, M. E.; Viziano, M. V. A. *Farmaco* 2004, 59, 175.
- Micheli, F.; Cavanni, P.; Di Fabio, R.; Marchioro, C.; Donati, D.; Faedo, S.; Maffeis, M.; Sabbatini, F. M.; Tranquillini, M. E. *Bioorg. Med. Chem. Lett.* 2006, 16, 1342.
- For the replacement of the pyrrole nucleus by alternative heterocycles, see: Fabrizio, M.; Di Fabio, R.; Cavanni, P.; Donati, D.; Faeedo, F.; Gehanne, S.; Maffeis, M.; Marchioro, C.; Sabbatini, F. M.; Tarzia, G.; Tranquillini, M. E.; Viziano, M. Farmaco 2003, 58, 1005.
- For a wide exploration of the C-2 amide moiety of compound 3, see: Micheli, F.; Di Fabio, R.; Cavallini, P.; Donati, D.; Hamdam, M.; Sabbatini, F. M.; Messeri, T. *Farmaco* 2004, 59, 119.
- Jessel, T. M.; Kelly, D. D. In *Principles of Neural Science*; Kandel, E. R., Schwartz, J. H., Jessell, T. M., Eds.; Appleton & Lange: Norwalk, CT, 1991; pp 385–399.
- Cegla, M. T.; Boksa, J.; Chojnacka-Wojcik, E.; Misztal, S. *Pharmazie* 1996, *51*, 932.
- 19. Abramovitch, R. A. J. Chem. Soc. 1956, 4593.
- Abramovitch, R. A.; Shapiro, D. J. Chem. Soc. 1956, 4589.
- 21. Yun, He; He, Zhao; Xinfu, Pan; Wang, Shaofei. Synth. Commun. 1989, 19, 3047.
- 22. For a detail description of the intracellular calcium determination using FLIPR technology, see Ref. Micheli et al. (2003), biology section, p 179.
- Jorgensen, M. R.; Olsen, C. A.; Mellor, I. R.; Usherwood, P. N. R.; Witt, M.; Franzyk, H.; Jaroszewski, J. W. *J. Med. Chem.* 2005, 48, 56.
- 24. Monge, A.; Parrado, P.; Font, M.; Fernandez-Alvarez, E. *J. Med. Chem.* **1987**, *30*, 1029.
- 25. From the exploration performed to date, it is evident that the presence of the ether group present at the C-6 position, probably acting as H-bond acceptor, is critical for

maximizing the in vitro potency of this subclass of β -carboline derivatives. To prove this hypothesis, a limited series of C-6 carbon linked derivatives (aryl heterocycle, hetero-aryl, alkyl-aryl, alkenyl-aryl, and alkynil-aryl derivatives) was prepared by cross-coupling reaction starting from the 6-Br and/or 6-OTf β -carboline derivatives (R. Di Fabio and R. Giovannini, unpublished results). These compounds showed a significant drop of the in vitro potency versus compound **19**. The only one exhibiting residual sign of activity was the (*E*)-2-(4-fluorophenyl)ethenyl derivative (IC₅₀ = 549 nM), in which the double bound is able to mimic somehow the electron content of the ether moiety. Final results of this exploration will be reported in due course.

- 26. Compound **8**: ¹H NMR (300 MHz): DMSO δ 11.77 (s, 1H); 8.10 (s, 1H); 7.66–7.46 (m, 3H); 7.34 (d, 1H); 3.51 (m, 2H); 2.94 (t, 2H); 2.08–2.05 (m, 9H); 1.65 (m, 6H).Compound **13**: ¹H NMR (300 MHz): DMSO δ 11.47 (s, 1H); 8.99 (s, 1H); 7.86 (d, 1H); 7.50 (s, 1H); 7.36 (dd, 1H); 7.26 (d, 1H); 3.48 (td, 2H); 2.85 (t, 2H); 2.0 (s, 3H); 1.90 (s, 6H); 1.69 (s, 6H).Compound **19**: ¹H NMR (300 MHz): DMSO δ 11.41 (s, 1H); 7.49 (s, 1H); 7.46 (d, 1H); 7.38 (t, 2H); 7.31 (t, 1H); 7.27 (d, 1H); 7.16 (d, 1H); 6.93 (dd, 1H); 5.09 (s, 2H); 3.48 (m, 2H); 2.86 (t, 2H).Compound **22**: ¹H-NMR (300 MHz): DMSO δ 11.29 (s, 1H); 7.48 (d, 2H); 7.39 (m, 3H); 7.31 (t, 1H); 7.16–7.11 (ds, 2H); 5.10 (s, 2H); 3.46 (m, 2H); 2.85 (t, 2H); 2.28 (s, 3H).
- 27. The oral bioavilability was 0% to 9% at 1 mg/kg po and 5 mg/kg po, respectively. At the latter dose an encouraging concentration of compound in plasma was observed ($C_{\text{max}} = 145$ ng/ml). This result was explained in terms of progressive saturation of the first-pass metabolism at the higher dose.
- 28. As expected, the oxidation of the benzyl position was the main route of metabolism of this subclass of compounds. Compound 33 was in fact the most abundant metabolite excreted in urine in the 0-4 h interval after oral dosing, roughly accounting for the 40% of the amount of parent compound 22 administered.

- 29. For a detailed description of the experimental procedure used for the in vivo in the formalin model in mice, see: Quartaroli, M.; Carignani, C.; Dal Forno, G.; Mugnaini, M.; Ugolini, A.; Arban, R.; Bettelini, L.; Maraia, G.; Belardetti, F.; Reggiani, A.; Trist, D. G.; Ratti, E.; Di Fabio, R.; Corsi, M. J. Pharmacol. Exp. Ther. 1999, 290, 158, and references herein enclosed.
- 30. EP: vehicle mean = 121.7 s, SD = 20.7 s, SE = 4.7 s; 10 mg/kg mean = 114.4 s, SD = 40.2 s, SE = 10.1 s; 30 mg/kg mean = 83.5 s, SD = 13.6 s, SE = 4.8 s. LP: vehicle mean = 415.6 s, SD = 167.0 s, SE = 38.3 s; 10 mg/kg mean = 299.7 s, SD = 139.7 s, SE = 34.9 s; 30 mg/kg mean = 227.6 s, SD = 96.3 s, SE = 34.0 s.
- 31. The exposure in plasma of compound **22** in mice was measured at the end of the formalin test, 2 h after the oral administration of the compound at 10 mg/kg dose. The average maximum concentration observed was 495 ng/ml, confirming that the animals were successfully exposed to the compound during the in vivo test.
- 32. Compound **22** displayed the same non-competitive antagonism behavior seen for the corresponding amide derivatives previously described, along with good receptor selectivity over the mGluR5 receptor.
- 33. This research complied with national legislation and with company policy on the Care and Use of Animals and with related codes of practice.
- 34. The free fraction in rat plasma was 3.4%. For a recent paper on the importance of the free fraction in plasma/ brain, see: Liu, X.; Smith, B. J.; Chen, C.; Callegari, E.; Becker, S. L.; Chen, X.; Cianfrogna, J.; Doran, A. C.; Doran, S. D.; Gibbs, J. P.; Hosea, N.; Liu, J.; Nelson, F. R.; Szewc, M. A.; Van Deusen, J. *Drug Metab. Dispos.* 2006, 34, 1443, and references herein enclosed.