

Radiolysis of CF4–C6H6 Systems

Paul Y. Feng and Ljerka Mamula

Citation: The Journal of Chemical Physics **28**, 507 (1958); doi: 10.1063/1.1744168 View online: http://dx.doi.org/10.1063/1.1744168 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/28/3?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in Homoepitaxy of 6H and 4H SiC on nonplanar substrates Appl. Phys. Lett. **72**, 197 (1998); 10.1063/1.120683

Mechanisms of etching and polymerization in radiofrequency discharges of CF4–H2, CF4–C2F4, C2F6–H2, C3F8–H2 J. Appl. Phys. **54**, 1284 (1983); 10.1063/1.332193

The effect of added hydrogen on the rf discharge chemistry of CF4, CF3H, and C2F6 J. Appl. Phys. **50**, 6594 (1979); 10.1063/1.325908

Ion-molecule reactions in the systems CF4-CH4 and CF4-C2H6 J. Chem. Phys. **62**, 1027 (1975); 10.1063/1.430570

Interaction Energies from Scattering Cross Sections of Hydrogen Ions in CH4, CF4, C2H6, and C2F6 J. Chem. Phys. **36**, 1866 (1962); 10.1063/1.1701281

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 130.89.98.137 On: Sun, 30 Nov 2014 04:06:49

ments for CO are endowed with greater experimental uncertainties than for N2, it is clear that in several respects the adsorption behavior of the two gases is different. For the low-temperature α peak this has already been reported¹; further flash filament experiments reveal that CO also differs in that an additional γ peak is *not* found when adsorption is carried out at 115°K. Furthermore, in the field emission microscope the course of the adsorption of CO on tungsten appears qualitatively the same at temperatures from 80°-350°K, resulting in an increase of the work function ϕ from 4.5 to 5.2 v at saturation at 80°K and $1 \cdot 10^{-8}$ mm. This confirms the absence of an additional low-temperature state analogous to the γ state of N₂. That CO, unlike N₂, does not dissociate on the surface is also indicated by both flash filament and field emission observations. In the former, the adsorption of nitrogen has been measured on a tungsten filament, both before and after measurements with CO on the same sample, and has been found unchanged. The behavior of N_2 is sensitive to carbon contamination, and the reproducibility of our measurements therefore indicates the absence of such carbon formation. The field emission patterns for CO on tungsten, moreover, are distinct from those arising from carbon contaminated points and even upon heating to 2300°K at a CO pressure of 2×10⁻⁸ mm such patterns have not been observed.

Though both the strongly and weakly bound states of chemisorbed N_2 and CO are different in origin, the kinetics of formation of the β states are qualitatively similar. The γ state is unique with nitrogen, however, and we conclude that it therefore should not play a dominant role in the kinetics of formation of the β state—a conclusion supported by detailed kinetic measurements to be reported elsewhere.

¹ T. W. Hickmott and G. Ehrlich, J. Chem. Phys. 24, 1263 (1956); J. Phys. Chem. Solids (to be published). ² G. Ehrlich, J. Phys. Chem. **60**, 1388 (1956).

³ J. C. P. Mignolet, Rec. trav. chim. 74, 685 (1955).

Radiolysis of $CF_4 - C_6H_6$ Systems*

PAUL Y. FENG AND LJERKA MAMULA

Physics Research Department, Armour Research Foundation, Chicago 16, Illinois (Received January 13, 1958)

URING our studies of the radiation chemistry of halogenated organic compounds, we have observed a series of radiation induced "cross-halogenations" exemplified by the over-all reactions:

> $C_6H_6+CF_4\rightarrow C_6H_5CF_3+HF$ (1)

$$C_6H_6 + CF_4 \rightarrow C_6H_5F + CHF_3. \tag{2}$$

Although reactions similar to (1) and (2) are expected to be generally applicable to many halogen compounds,

and

we have emphasized the $CF_4 - C_6H_6$ system because of (a) the interesting radiation chemistry of the very strong carbon-fluorine bond, (b) the need of obtaining radiation chemical data of fluorinated organic compounds in general, and (c) the desirability of developing a new synthetic method for organic fluorine compounds.

FIG. 1. Infrared spectra of irradiate mixture.

In addition, our experimental results also suggested that, at least for the $CF_4-C_6H_6$ system, mechanisms other than those of a free radical nature must be responsible for the observed radiation induced reaction.

The experimental work reported herein was carried out with Mallinckrodt AR benzene and Dupont freon-14 (CF₄). Other systems studied included C₆H₆ or C₆H₅CH₃ irradiated together with CHF₃, CCl₂F₂, CCl₃F, or $C_2Cl_2F_4.$

The irradiation samples were prepared in the following manner. Known amounts of benzene were introduced to weighed glass irradiation capsules, and were degassed by freezing in liquid nitrogen and evacuation. Predetermined amounts of CF4 were introduced and the capsules were sealed and reweighed to check the exact amount of reagents introduced. The filled capsules were then irradiated with gamma rays from the Argonne spent fuel facility,¹ a cobalt-60 source, or the Armour reactor fission gas source. After irradiation, the liquid portions of the samples were analyzed directly by a Perkin-Elmer Model 21 double beam infrared spectrophotometer.

Examination of the infrared spectra revealed the formation of C₆H₅CF₃, C₆H₅F, and CHF₃ as would be expected from Eqs. (1) and (2). The formation of the other expected product, hydrogen fluoride, was indicated by the attack on the walls of the capsules. An example of the infrared spectra of an irradiated system is shown in Fig. 1, and a plot of the yield of C₆H₅CF₃ and C_6H_5F as a function of the over-all CF_4 to C_6H_6 ratio is shown in Fig. 2. In these cases, the yields (G values) were expressed in terms of the number of molecules produced per 100 ev of radiation energy absorbed by the whole mixture, and were determined from the absorption spectra by comparison with standard samples and by application of Beer's law. The

FIG. 2. Yield of C_6H_5F and $C_6H_5CF_3$ as a function of CF_4/C_6H_6 .

radiation dosages needed for the yield calculations were based on the ferrous sulfate dosimeter with $G=15.6^{2}$

In separate experiments, we have established that as a first approximation, and under the conditions of our experiment, CF₄ dissolves in benzene in accordance with Henry's law, and that the G(radical) values of $CF_4 - C_6H_6$ systems are of the order of 0.7-1.1 as determined by the diphenyl picryl hydrazyl (dpph) method.³ Since only a fraction of the radiation produced radicals can combine to form the fluorinated aromatic compounds as a result of competition of other combination processes and since the dpph method normally gives higher G(radical) values than those obtained by other methods,4 it follows that radical combination reactions cannot be responsible for the observed results. This conclusion, coupled with the knowledge that radical-molecule reactions involving F or CF₃ and C₆H₆ lead at best to addition instead of substitution⁵ and that CF4 is immune toward attack by radicals,6 leads us to suggest that other mechanisms, probably involving ionic species, must be operative in the irradiated $CF_4 - C_6H_6$ system.

This work is being continued. Details will be reported in subsequent publications.

* The research reported in this paper was supported by the U. S. Air Force under Contract AF 18(603)-121, monitored by the Air Force Office of Scientific Research of the Air Research and Development Command. ¹ The cooperation of Miss Gladys Swope is gratefully ac-

- knowledged.
- ²C. Hochanadel and J. Ghormley, J. Chem. Phys. 21, 880 (1953). ³ Prevøst-Bernas et al., Discussions Faraday Soc. 12, 104
- (1953).
- ⁴ See, for example, W. Seitzer and A. Tobolsky, J. Am. Chem. Soc. 78, 2687 (1955). ⁶ See, for example, L. Bigelow and J. Pearson, J. Am. Chem. Soc. 56, 2773 (1954).
- ⁶ J. Dacey and J. Hodgins, Can. J. Research **B28**, 173 (1950).

Infrared Emission Spectra of $B_2O_3(g)$ and $\mathbf{B}_2\mathbf{O}_2(\boldsymbol{g})$

DAVID WHITE AND PATRICK N. WALSH, Cryogenic Laboratory, The Ohio State University, Columbus 10, Ohio

AND

D. E. MANN, National Bureau of Standards, Washington, D. C. (Received December 13, 1957)

'HE infrared emission spectrum of the heated vapor of B2O3 has been reported by Dows and Porter.1 They found one band at 2013 cm⁻¹, and observed an isotope shift of about 100 cm^{-1} when a sample highly enriched in B¹⁰ was used. They concluded from this that the free B_2O_3 molecule has a bi-pyramidal configuration with D_{3h} symmetry and that extended structures are not admissible.

The reported isotope shift seems unusually large for any reasonable molecular model. The suggested bipyramidal configuration requires an exceptionally short B-B distance and very unusual bond-angle relationships. The high frequency of the observed emission band strongly suggests that a stretching motion of a boron-oxygen double bond is involved. These and related questions impelled us to continue the investigation of the spectra of the various boron oxides begun independently in this laboratory some time before the above publication appeared.

The B₂O₃ (degassed in vacuo for three hours at 800-1000°C) was heated in a molybdenum tube inside an evacuated, water-cooled quartz furnace equipped with NaCl or KBr optical windows. The apparatus will be described elsewhere. The infrared emission was measured in the range 650 to 3500 cm⁻¹ with a Perkin-Elmer Model 99 double-pass monochromator employing a NaCl prism.

Three emission bands at 1350°C were observed with a sample of B_2O_3 having B^{11} and B^{10} isotopes in natural abundance. The band maxima occur at 2041, 1302, and 756 cm⁻¹. When a sample containing 96% B¹⁰ was examined under identical conditions, the corresponding maxima were found at 2095, 1335, and 762 cm⁻¹. The observed isotope shifts are therefore 54, 33, and 16 cm⁻¹, respectively. The measured shifts are probably somewhat too small, as bands due to the B¹¹B¹⁰ species (present to about 30%) appreciably overlap and distort the corresponding bands of the B¹¹B¹¹ species. When corrected for this, the shifts are 60 ± 3 , 37 ± 2 , and 17 ± 2 cm⁻¹, respectively. Overlapping resulting from "hot" bands; e.g., 3-2, 2-1, would affect the B₂¹¹O₃, about equally, and is, therefore, discounted here. The isotope shifts will be further investigated when a sample enriched in B¹¹ becomes available.

It is difficult to find any support in the present data for the D_{3h} model. This peculiar structure makes any predictions about its fundamental frequencies hazardous. The observed emission spectrum cannot be used directly either to disprove or confirm the bi-