

Pergamon

S0957-4166(96)00164-4

Efficient Synthesis of the four Diastereomers of Phosphothreonine from Lactaldehyde.

Alessandro Bongini*, Roberto Camerini, and Mauro Panunzio*.

Dipartimento di Chimica "G. Ciamician" Università and C.S.F.M.-C.N.R., Via Selmi 2, I-40126 Bologna Italy

Abstract: The four stereoisomers of phosphothreonine are obtained in high diastereomeric purity based on the stereoselective addition of trimethylsilyldiethylphosphite (TMSDEP) to scalemic *N*-trimethylsilyl-lacticimine and addition of TMSDEP to lactaldehyde followed by Mitsunobu inversion of the corresponding α -hydroxy- β -silyloxy phosphonate. Copyright © 1996 Elsevier Science Ltd

 α -Amino phosphonic acids have been recognised as biologically active surrogates for the corresponding carboxylic acids.^{1,2} In recent years, this class of amino acids has attracted substantial synthetic interest³ because of their importance as enzyme inhibitors⁴ and as conformational modifiers in physiologically active peptides.⁵ Among these amino acids, their β -hydroxy congeners ⁶ can be viewed as the analogous amino acids of threonine or serine, which should have marked effects on phosphono peptides as well as presumably show biological activity. Most synthetic routes to enantiomerically enriched phosphoamino acids are based on resolution, enzymatic techniques, or utilising some aspect of asymmetric bond formation. We wish to describe here a new method for the synthesis of each optically active *P* -threonine⁷ (1a-1d) (Fig. 1) starting from α -silyloxy-lactaldehyde and its *N*-trimethylsilylimine⁸ derivative⁹.

Initially formed Schiff base (N-trimethylsilylimine) 2a, obtained from the (S)-2-triisopropylsilyoxy lactaldehyde¹⁰ 5a, underwent selective phosphonylation with trimethylsilyldiethyl phosphite¹¹ 3 to give β -silyloxy- α -amino-phosphonic ethyl ester 4a in 85% yield and >98:2 syn/anti diastereomeric ratio (Scheme 1); subsequent desilylation and hydrolysis (HCl, reflux) yielded optically active β -hydroxy α -amino propane phosphonic acid 1a. The structure of 1a possessing the (1S, 2S) configuration¹² was determined by means of a combined ¹H, ¹³C and ³¹P-NMR spectroscopic analysis of the ester 4a, of the acid 1a, and of the corresponding oxazolidin-2-one 7 obtained from 4a upon desilylation followed by ring closure with 1,1'-carbonyldiimidazole in the presence of Hünig's base. (Scheme 1)

(1R, 2R) -Phosphothreonine 1b was obtained from 2b in the same manner following the protocol described above. The ¹H, ¹³C and ³¹P NMR spectra of 4b and 1b were superimposable upon those of 4a and

1a. Moreover the value of specific rotation for 1b was very close but opposite to that of 1a thus confirming the structure assigned. In this way two enantiomers of phospho-threonine were prepared in two steps.

i: THF/CH2Cl2, -78°C, then r.t. 5hrs.ii: HCl 6N, 6 hrs (; iii TBAF/THF/r.t./3 hrs; iv : CDI/DIPEA/CH2Cl2

The synthesis of the other two enantiomers was next examined. At the present time, since all attempts to obtain directly the *anti* products **4c** or **4d** *in high diastereomeric excess*, following the addition reaction of TMSDEP to the imine **2**, were unsuccessful⁹, we decided to explore a new approach.

Recent studies¹³ from our laboratory have shown that a very high *syn* diastereoselectivity could be achieved in the phosphonylation of α -hydroxy aldehydes, using as the protecting group of the hydroxy functionality the very bulky triisopropylsilyl group¹⁴ (TIPS). Taking into account these results we decided to prepare the other two phosphothreonine enantiomers, namely the enantiomers (*IR*,2*S*) and (*IS*, 2*R*), according to Scheme 2.

i : CH₂Cl₂, -78°C, then r.t. 5hrs. *ii* : citric acid/ MeOH, 3 hrs; *iii* : HN₃, Ph₃P, (EtO₂CN=)₂; *iv*: H₂/PtO₂; *v*: 6N HCl, *I*

Reaction of the (S) -triisopropylsilyloxy lactaldehyde 5a with one equivalent of TMSDEP 3 in CH₂Cl₂ at -78°C for three hrs furnished the trimethylsilyloxy phosphonic esters 8a and 9a which, upon treatment with citric acid in methanol, were converted to alcohols 10a and 11a in 62% overall yield and 92/8 diastereomeric ratio. Next, the elaboration of 10a with introduction of the amine moiety and concomitant inversion of configuration was realised by a Mitsunobu reaction¹⁵. Two procedures, which differ in the source of N₃ group, were adopted to gain this goal: use of HN₃, PPh₃ and diethylazodicarboxylate¹⁶ and alternatively use of commercially available diphenyl phosphoryl azide, PPh₃ and diethylazodicarboxylate¹⁷. Since the former procedure proved a cleaner and higher yielding reaction this was the choice procedure despite the dangerous use of hydrazoic acid. (Scheme 2).

Complete inversion of configuration occurred giving rise to the corresponding azide 12a (67%) contaminated by 20% of starting material¹⁸. Reductive work-up of this intermediate furnished the phosphoamino ester 4c. By the same procedure the phosphoamino ester 4d was obtained starting from the unnatural (R)-triisopropylsilyloxy lactaldehyde 5b. The esters 4c and 4d were converted to the target phosphoaminoacids by hydrolysis with 6N HCl at reflux (Scheme 2). Pure phosphoaminoacids 1a, 1b, 1c, and 1d were obtained according to the literature procedure.⁷

Scheme 3

As anticipated above analysis of the NMR spectra of the products allowed assignment of *syn* -configuration to the diastereoisomers **4a** and **4b**, and *anti* -configuration to the diastereoisomers **4c** and **4d**. The coupling constants between H₁-H₂, P-H₂ and P-C₃ in the acids **1a** and **1c**, are compatible with two conformations *anti*, *gauche*, *gauche* and *gauche*, *gauche*. Since the former is possible only for to the diastereoisomer **1a** and latter for the diastereoisomer **1c**¹⁹ the configuration of these two compounds is thus established. Moreover analysis of the data arising from the cyclic structure **7**, prepared from the open-chain compound **4a**, confirms the assignments we have made. In this case a NOE technique (steady state experiment) was used. Irradiating the methyl group of the cyclic compound **7** with a saturation time of 5 sec, an increment of 13% on both vicinal and geminal hydrogens is observed. (Scheme 1).

This behaviour is conclusive evidence that the two vicinal protons are at the same distance (2.8 Å) from the methyl group and therefore the vicinal proton is cis to the methyl group.²⁰ Finally the specific rotations of the corresponding aminophosphonic acids are in agreement with the values reported in literature.⁸ Mechanistic considerations.

The present nucleophilic addition of TMSDEP to prochiral sp^2 system²¹ of α -trialkylsilyloxy imines is characterised by two important features: (i) the α -silyloxy group induces a high degree of syn diastereoselectivity, without chelating Lewis acids; (ii) with increasing bulkiness of the silicon protecting group, an increase of the syn- diastereoselectivity is observed⁹. This remarkable observation of high syn diastereoselectivity on increasing the bulkiness of the silicon protecting group stands in contrast to the normal, steric hindrance dependent, anti selectivity seen for these species²².

The high syn selectivity observed requires that a Cram cyclic model should be invoked²³. In the preliminary report⁹ we attributed the high syn diastereoselectivity to the chelating effect of lithium cations

arising from the preparation of the N-trimethylsilylimine (prepared *in situ* from aldehyde and lithium hexamethyldisilylamide). After that preliminary letter, we checked the reaction diastereoselectivity in absence of lithium cations²⁴. This goal has been attained using as the source of iminic nitrogen sodium hexamethyldisilylamide. Although a large reduction of the yields occurred, nevertheless, from steric point of view, a *high syn diastereoselectivity* was, once again, observed.

Denmark²⁵, Kobayashi²⁶, Myers²⁷ and Sakurai²⁸ have recently reported the role of a hypercoordinate silicon atom²⁹ in determining the diastereoselectivity in certain types of reactions. This knowledge leads to postulate a silicon dependent diastereoselectivity through a coherent mechanistic pathway involving a bicyclic transition-state due to the chelating effect of a trigonal bipyramidal organosilicon (Chart 1).

In this bicyclic transition state A one of the isopropyl group of the silicon is, inevitably, going to match the effect of the methyl group of the imine, increasing the *syn* diastereoselectivity since the already disfavoured *pro-anti* face becomes even more encumbered.

Computational Studies. In order to evaluate the possible formation of a chelated imine presenting a hypercoordinate silicon atom, we performed *ab initio* computations on the model compound HN=CH-CH₂OSiH₃. All calculations were performed at SCF/3-21G* level using the Gaussian 92 program³⁰ on a Microvax 3500. All possible linear and bent input geometries were analysed and fully optimised by gradient techniques. The final minima were checked by frequency analysis and only one geometry was found to be a real minimum corresponding to the cyclic structure (**B**). Electronic features are reported in Table 1. This structure is more stable than a linear form (which represents a rotational transition state) by 17.9 KJ/m. The calculated H-Si-O angles are consistent with a cyclic structure possessing a distorted trigonal bipyramidal geometry for the silicon. (see geometry in Fig. 2)

Fig. 2 - Structure B: H3SIOCH2CH=NH

Bond lengths (Å): N-C, 1.252; C-C, 1.506; C-O, 1.410; O-Si, 1.647; Si-N, 2.688. Bond Angles (deg): N-C-C, 118.7; C-C-O, 111.9; C-O-Si, 137.1; O-Si-N, 70.5; Si-N-C, 101.8; Ha-Si-O, 102.2; Hg-Si-O, 115.4. The calculated Si-N bond-length allows to exclude the formation of a strong σ bond between the silicon and the nitrogen atoms. In fact the calculated value of 2.68 Å lies between a valence bond (1.8 Å) and the sum of the Van der Waals radii (3.4 Å). Therefore the Si-N bond is a weak bond with some degree of covalence (calculated bond order 0.154 e⁻) but mainly electrostatic in agreement with previous calculations on neutral pentacoordinated silicon compounds³¹. A particular importance has to be given to the stabilisation of the LUMO orbitals found in the cyclic complex (0.42 eV), as the more the LUMO energy is lowered the more the imine bond is favoured towards the nucleophilic attack of the phosphono derivative.

The computational studies provide several clues to the origin of the diastereoselectivity for our Abramov reaction. a) The geometry of the structure (**B**) is fully consistent with our hypothesis that a Cram cyclic model, presenting a pentacoordinate silicon atom, should be involved in our reaction mechanism: the structure of the complex, in fact, has the geometry and energetic features necessary for the easy formation of the above mentioned transition state. b) The stabilisation of the cyclic structure (**A**) should depend from the substituent on the nitrogen atom, since, insofar as the N-Si bond is electrostatic, any substituent capable to increase the negative charge on the nitrogen will increase the stability of the complex. Recently we have found, by computational and ¹³C NMR studies³², that the polarisation of the imine bond increases on the increasing of the metallic character of the substituent. In our case the presence of the trimethylsilyl group directly attacked to the imine nitrogen increases the electrophilic character of the imine carbon.

Conclusion

By our studies we have been able to perform a highly diastereoselective synthesis of the four enantiomers of the phosphothreonine. From computational studies it has been shown that a pentacoordinate silicon group may be involved in determining the sense of the diastereoselection in the reaction of TMSDEP with α -silyloxy imines and α -silyloxy aldehydes³³. Last but not least the use of the trimethylsilyl derivative of DEP plays an important role in the Abramov reaction both from yields and diastereoselectivity point of view. In fact, as it has been shown by other authors³⁴, the spontaneous tautomerism of diethylphosphite lies overwhelmingly on the side of tetracoordinated electrophilic species, (EtO)₂P(O)H rather than on the tricoordinated nucleophilic species (EtO)₂P(OH). Freezing out the latter by means of *O*-silylation is thus expected to promote nucleophilic reactivity strongly *via* a concerted [2+3] cycloaddition reaction as suggested by Evans³⁵. Finally the dependence of the diastereoselectivity by the steric bulkiness of the *O*-protecting group of the imine or of the aldehyde is quite surprising in the light of the literature data²². At the moment the experimental results and the theoretical calculations support the proposed bicyclic transition state with two pentacoordinate silicon atoms. Nevertheless we are fully aware that much more work is needed and, in fact, it is being undertaken.

Table 1 Calculated total energy, charge distributions and bond orders of A

E _t	Q Si	QN	QC	b.o.C=N	b.o. N-Si
-495.46226	+ 0.932	-0.629	+0.092	0.990	0.154
.					

 E_t in atomic units; Q=charge in electrons; b.o.: bond order in electrons.

Experimental Section

General: Melting points are uncorrected. All reactions were conducted under an argon atmosphere. THF was distilled from Na/benzophenone ketyl and CH₂Cl₂ was distilled from P₂O₅. ¹H- and ¹³C-NMR

spectra were recorded at 300 and 75 MHz in CDCl₃ using TMS or residual CHCl₃ as internal reference or in D₂O using dioxane as external reference. ³¹P-NMR (121.5 MHz) was taken in CDCl₃ or D₂O using 85% H₃PO₄ as an external standard with broad-band ¹H-NMR decoupling.

General Procedure for the Synthesis of Phosphoaminoesters (4a and 4b).

The imine¹⁰ 2a (1mmol) in THF (2 mL) was slowly added at -78°C to the silylphoshonic ester (TMSDEP), prepared *in situ* in methylene chloride (20 mL) from DEP (1.2 mmol), TEA (1.2 mmol), TMSCl (1.2 mmol) under argon atmosphere at 0°C (30 min). After two hours, the temperature was left to reach r.t. spontaneously and the reaction was stirred overnight. Next, the reaction mixture was poured into a buffered (pH 4/5 HCl/NH₄Cl) ice-water solution. Organic compounds were extracted with CH₂Cl₂, combined organic phases were dried on anhydrous MgSO4, and the solvent was removed by reduced pressure. Purification by flash chromatography (SiO₂, ethyl acetate) gave pure 4a (85%). The enantiomer 4b was obtained in 70% following the same procedure.

(15, 25) Diethyl-1-Amino-2-(Triisopropylsilyloxy)-Propanephosphonate 4a:

an oil; $[\alpha]_D^{20} = +8.9$ (1.73, CHCl₃); ¹H-NMR (CDCl₃) δ 1.05 (21H, m), 1.28 (3H, d, J=6.8), 1.30 (9H, m), 1.75 (2H, bs), 2.92 (1H, dd, J=13.4 and 5.6), 4.15 (4H, m), 4.25 (1H, m). ¹³C-NMR (CDCl₃) 12.30, 12.84, 16.40, 18.00, 55.68 (d, J=149.3), 61.38 (d, J=6.75), 68.27. ³¹P-NMR (CDCl₃) 26.27. IR (film) 3.500-3250, 2950, 2870, 1465, 1390, 1245, 1100. m/e (368, M+1), 323, 230, 186, 167, 157, 138, 116, 100. Anal. Calcd for C₁₆H₃₈NO₄SiP : C, 52.29; H, 10.42, N, 3.81. Found: C, 52.08; H, 10.38; N, 3.83. (*IR*, *2R*) Diethyl-1-Amino-2-(Triisopropylsilyloxy)-Propanephosphonate 4b:

an oil; $[\alpha]_D^{20} = -9.15$ (1.52, CHCl₃). Anal. Calcd for C₁₆H₃₈NO₄SiP : C, 52.29; H, 10.42; N, 3.81. Found: C, 52.40; H, 10..44; N, 3.80.

General Procedure for the Hydroxy-phosphonylation of α -Triisopropylsilyloxy Lactaldehyde: Synthesis of 10a and 10b.

To a stirred solution of silylphosphonic ester (TMSDEP) (1.1 mmol) in CH₂Cl₂ (20 mL) under argon atmosphere (S)-lactaldehyde (1 mmol) in 4 mL of CH₂Cl₂ was slowly added at -78°C and the reaction mixture was stirred at the same temperature for 3 hr. Water was added to quench the reaction and the mixture was warmed to 0°C. The mixture was extracted with methylene chloride and the organic extracts were washed with brine, dried over MgSO4, and concentrated in vacuo to give the crude adducts 8a and 9a. Exposure of the crude mixture to citric acid (2 eq) in methanol (30 mL) at room temperature for 6 hr gave, after column chromatography on silica gel (cyclohexane: acetone: methylene chloride=40:20:40) the hydroxyphosphonic esters 10a and 11a in 62% (92/8 ratio). The enantiomers 10b and 11b were obtained in 70% yield (92/8 ratio) following the same protocol.

(15, 25) Diethyl-1-hydroxy-2-(Triisopropylsilyloxy)-Propanephosphonate syn-10a:

an oil; $[\alpha]_D^{20} = +7.3$ (1.2, CHCl₃); ¹H-NMR (CDCl₃) δ 4.31 (1H, m); 4.15 (4 H, m); 3.61 (1 H, dt, J=4.90, 6.44); 3.00 (1 H, dd, J=4.90, 16.1); 1.30 (9 H, m); 1.05 (21 H, m). ¹³C-NMR (CDCl₃) 12.43, 16.15, 16.26, 17.86, 21.08, (d, J=5.5), 62.08 (d, J=6); 62.17 (d, J=6); 68.22 (d, J=5.5), 72.56 (d, J=161.5). ³¹P-NMR (CDCl₃) 23.1. IR (film) 3260, 2910, 2860, 1460, 1380, 1230. m/e 201 (M+- 167), 187, 157, 145, 117, 87. HRMS m/e 369.2226 (MH⁺) calcd for C₁₆H₃₇O₅SiP found. 369.22499 Anal. Calcd for C₁₆H₃₇O₅SiP : C, 52.15; H, 10.12. Found: C, 52.30; H, 10.16. (*IR*, 2*R*) Diethyl-1-hydroxy-2-(Triisopropylsilyloxy)-Propanephosphonate syn-10b

an oil; $[\alpha]_D^{20} = -7.3$ (1.46, CHCl₃). Anal. Calcd for C₁₆H₃₇O₅SiP: C, 52.15; H, 10.12. Found: C, 52.25; H, 10.14.

General Procedure for the Synthesis of α -Azido Phosphonates (12a and 12b)

To a stirred solution of alcohol 10a (1 mmol) and triphenylphosphine (1.2 mmol) in THF (1.5 mL) HN₃ (3 ml 1 M sol. in benzene)³⁶ and diethylazodicarboxylate (1.2 mmol) at -5°C were added successively during 30 min. Then the mixture was stirred overnight at r.t.. The reaction was quenched with water, filtered to remove triphenylphosphine oxide, dried on Na₂SO₄ and chromatographed on silica gel (cyclohexane /ethyl acetate 6/4) to give the azido phosphonate 12a in 67% yield. (*IR*,2S) Diethyl-1-azido-2-(Triisopropylsilyloxy)-Propanephosphonate 12a

an oil; $[\alpha]_D^{20}$ =-10.5 (c 0.93, CHCl₃); ¹H-NMR (CDCl₃) δ 1.1 (21H, m), 1.3 (9H, m), 3.91 (1H, dd, J=2.2 and 17.1), 4.16 (4H, m), 4.46 (1H, m). 13C-NMR (CDCl₃) 12.15, 16.25, 16.35, 17.88, 18.68, 62.72 (d, J=6.5), 63.05 (d, J=6.5), 65.23 (d, J=156.5), 68.39 (d, J=9.5). ³¹P-NMR (CDCl₃) 19.22. IR (film) 2920, 2860, 2120, 1260. *m/e* 394 (M+1), 365, 350, 322, 294, 248, 222, 184, 157, 109, 81. HRMS calcd for C₁₆H₃₆N₃O₄PSi (MH⁺):394.229099. Found 394.22900. Anal. Calcd for C₁₆H₃₆N₃O₄PSi: C, 48.83; H, 9.22; N, 10.68. Found C, 48.65 ; H, 9.19 ; N, 10.72.

(1S, 2R) Diethyl-1-azido-2-(Triisopropylsilyloxy)-Propanephosphonate 12b

Y% 79; an oil; $[\alpha]_D^{20} = +11.3$ (c 0.91, CHCl₃); Anal. Calcd for C₁₆H₃₆N₃O₄PSi: C, 48.83; H, 9.22; N, 10.68. Found C, 48.70 ; H, 9.21 ; N, 10.69.

General Procedure for Hydrogenation of Azido Phosphonates

A solution of azide 12a in EtOAc was hydrogenated at room temperature for 30 min over PtO2 (0.2 eq) under atmospheric pressure. The catalyst was removed by filtration through Celite, and the filtrate was concentrated in vacuo to give the phosphoamino ester 4c. Y%=quantitative. The enantiomer 4d was obtained following the same protocol in quantitative yield. (1R, 2S) Diethyl-1-amino-2-(Triisopropylsilyloxy)-Propanephosphonate 4c.

an oil; $[\alpha]_D^{20} = -0.35$ (c 1.44, CHCl₃); ¹H-NMR (CDCl₃) δ 1.05 (21H, m), 1.25 (3H, d, J=6.3), 1.33 (6 H, t, J=6.0), 1.65 (2 H, bs), 3.25 (1H, dd, J=3.03 and 19.5), 4.15 (4H, m), 4.31 (1H, m). ¹³C-NMR (CDCl₃) 12.18, 16.28, 16.33, 17.75, 17.94, 55.60 (d, J=149.0), 61.86 (d, J=6.5), 62.19 (d, J=6.5), 67.59 (d, J=11.0). ³¹P-NMR (CDCl₃) 26.08. IR (film) 2940, 2860, 1510, 1380, 1240. *m/e* 368 (M+1), 324, 230, 201, 186, 167, 138, 116, 100, 75, 59. Anal. Calcd for $C_{16}H_{38}NO_4PSi$: C, 52.29; H, 10.42; N, 3.81. Found C, 52.43; H, 10.45; N, 3.79. (*IS*, *2R*) Diethyl-1-amino-2-(Triisopropylsilyloxy)-Propanephosphonate 4d.

an oil; $[\alpha]_D^{20} = +0.68$ (c 1.6, CHCl₃). Anal. Calcd for C₁₆H₃₈NO₄PSi: C, 52.29; H, 10.42; N, 3.81. Found C, 52.20; H, 10.46; N, 3.82.

General Procedure for the Synthesis of Phosphoaminoacids hydrochlorids.

3 mmol of the aminophosphonic ester were mixed with 5 ml 6N hydrochloric acid and the mixture was refluxed for 6h. Ethyl acetate was added. The aqueous phase was lyophilised to give phosphoamino acids 1a, 1b, 1c and 1d respectively in almost quantitative yield. (15,2S) -1-amino-2-hydroxy-Propanephosphonic acid x HCl 1a

hygroscopic; $[\alpha]_D^{20} = +5.1 \ (c \ 1.67, H_2O);$

¹H-NMR (D₂O) δ 1.13 (3H, d, J=6.3), 2.91 (1H, dd, J_{H1-H2}=8.50, J_{H1-P}=13.8), 3.82 (1 H, ddq, J_{H1-H2}=8.5; JH2-P=4.80; JH2-CH3=6.3)

¹³C-NMR (D₂O) 21.5 (d, J=2.0); 55.68 (d, J=140.2); 65.86 . ³¹P-NMR (D₂O) 14.55.

(IR, 2R -1-amino-2-hydroxy-Propanephosphonic acid x HCl 1b

hygroscopic; $[\alpha]_D^{20} = -5.88 \ (c \ 2.89, \ H_2O);$

¹H-NMR (D₂O) δ 1.13 (3H, d, J=6.3), 2.91 (1H, dd, J_{H1-H2}=8.50, J_{H1-P}=13.8), 3.82 (1 H, ddq, J_{H1-H2}=8.5; JH2-P=4.80; JH2-CH3=6.3)

¹³C-NMR (D₂O) 21.5 (d, J=2.0); 55.68 (d, J=140.2); 65.86 . ³¹P-NMR (D₂O) 14.55. (*IR*,2S) -1-amino-2-hydroxy-Propanephosphonic acid x HCl 1c.

hygroscopic; $[\alpha]_D^{20} = -6.9 (c \ 0.67, D_2O);$

¹H-NMR (D₂0) δ 1.31 (3H, d, J=6.6), 3.39 (1H, dd, J_{H1-H2}=3.9, J_{H1-P}=15.4), 4..31 (1 H, ddq, J_{H1-H2}=3.9; J_{H2-P}=7.7; J_{H2-CH3}=6.6). ¹³C-NMR (D₂O) 18.36 (d, J=2.0); 55.00 (d, J=141.0); 65.60 . ³¹P-NMR (D₂O) 14 48

(IS, 2R -1-amino-2-hydroxy-Propanephosphonic acid x HCl 1d.

an oil; $[\alpha]_D^{20} = +7.4$ (c 0.61, D₂O).

¹H-NMR (D₂0) δ 1.31 (3H, d, J=6.6), 3.39 (1H, dd, J_{H1-H2}=3.9, J_{H1-P}=15.4), 4..31 (1 H, ddq, J_{H1-H2}=3.9; J_{H2-P}=7.7; J_{H2-CH3}=6.6). ¹³C-NMR (D₂O) 18.36 (d, J=2.0); 55.00 (d, J=141.0); 65.60 . ³¹P-NMR (D₂O) 14.48.

Purification by column chromatography on ion-exchange resin Dowex 50 W x 8 (eluting H_20^{18} gave pure phosphoaminoacids 1a, 1b, 1c and 1d.

1a Y% 78 m.p.=230-233°C; $[\alpha]_D^{20} = +8.5$ (c 0.28, H₂O) (lit^{8a}. m.p. 231-232; $[\alpha]_D^{20} = +8.9$ (c 1.0, H₂O) **1b** Y% 80 m.p. 228-230°C $[\alpha]_D^{20} = -8.9$ (c 0.208, H₂O) (lit^{8b}. m.p. 234-236; $[\alpha]_D^{20} = -9.4$ (c 1.8, H₂O) 1c Y% 84 m.p. 217-219°C $[\alpha]_D^{20} = -8.9$ (c 0.294, H₂O). ¹H-NMR (D₂O) δ 1.27 (3H, d, J=6.7), 3.33 (1H, dd, J_{H1-H2}=3.7, J_{H1-P}=15.4), 4.26 (1H, m). ¹³C-NMR (D₂O) 18.14 ; 55.50 (d, J=136.5); 65.77 . ³¹P-NMR (D₂O) 13.02. Anal. Calcd for C₃H₁₀NO₄P: C, 23.23; H, 6.50; N, 9.03. Found C, 23.15 ; H, 6.48; N, 9.05. 1d Y% 85 m.p. 218-220°C $[\alpha]_D^{20} = +8.8 (c \ 0.218, H_20) (lit^{8b}. m.p. 220-221; [\alpha]_D^{20} = +9.6 (c \ 1.5, H_20)$

(1S,2S) Diethyl-1-amino-2-hydroxy-propanephosphonate 6

3 mmol (0.98g) of the O-protected phosphoamino ester 4a were dissolved in 10 ml anhydrous THF at 0°C under argon atmosphere. In one portion 3 ml of 1N solution of tetrabutylammonium fluoride (TBAF) in THF was added and the reaction was stirred for 3 h. The reaction mixture was poured into a saturated solution of MgSO4 in H₂O, organic compounds were extracted with ethyl acetate, dried by anhydrous Na₂SO4, after which the solvent was removed by reduced pressure. The product was purified by flash chromatography to give 6 (68%).

¹H NMR (CDCl₃) 1.35 (9H, m); 2.65 (3 H, bs); 2.83 (1H, dd, J=3.9 and 13.5); 4.1 (1 H, m); 4.18 (4 H, m). ¹³C NMR (CDCl₃) 16.36, 19.2 (d, J=13.8), 52.0 (d, J=156.0), 62.40 (d, J=75), 65.5. ³¹P-NMR (CDCl₃) 28.41. I.R. (film): 3300, 2980, 2940, 2915, 1490, 1460, 1380, 1235, 1150. *m/e* 193 (M-H₂0) 179, 166, 138, 111, 100. Anal. Calcd for C₇H₁₈NO₄P: C, 39.81; H, 8.59; N, 6.63. Found C, 39.94; H, 8.61; N, 6.60.

(4S, 5S)-5-methyl-2-oxo-oxazolidin-4-yl-phosphonic acid diethyl ester 7.

2 mmol (0.42 gr) of 6 and 0.2 mmol (0.03 gr) of ethyldiisopropyl amine were mixed in 100 ml anhydrous THF at 0°C under argon atmosphere. Slowly 2 mmol (0.32 gr) of *N*,*N*-carbonyldiimidazole were added, and the reaction mixture was stirred for 15 h. The solvent was removed by reduced pressure and the residue was poured into a 10% HCl_{aq} sol. Organic compounds were extracted with CH₂Cl₂, dried with anhydrous MgSO₄, after which the solvent was removed by reduced pressure. The product was purified by flash chromatography (CHCl₃/CH₃OH/NH₄OH 23:3:1) to give the cyclic product 7 in 25% yield.

an oil ¹H-NMR (CDCl₃) δ 1.37 (6 H, t, J=7); 1.52 (3 H, d, J=6.2); 3.63 (1 H, bd, J=6.63); 4.2 (4 H, m). ¹³C-NMR (CDCl₃) 16.32, 20.95 (d, J=8.5), 56.5 (d, J=166.3), 63.2 (d, J=52.7), 73.8, 158.5 (d, J=7.6). ³¹P-NMR (CDCl₃) 18.63. IR (film) 3400, 2990, 1770, 1385, 1230, 1180. *m/e* 237 (M⁺), 222, 193, 179, 165, 138, 111, 100, 82, 56. Anal. Calcd for C₈H₁₆NO₅P : C, 40.51 ; H, 6.8 , N, 5.91 . Found: C, 40.40 ; H, 6.6; N, 5.92.

Acknowledgements: This project was partially supported by Progetto Strategico "Tecnologie Chimiche Innovative" C.N.R.-Rome and M.P.I. (Fondi 40%). R.C thanks *Glaxo Italia* Verona for financial support.

References and Notes

- 1 For leading Ref. see *The Role of Phosphonates in Living Systems*, ed. Hildebrand, R.L. CRC Press, Boca Raton, Fl., 1983.
- Kafarski, P.; Lejczak, B.; Mastalerz, P. Phosphonopeptides Synthesis and Biological activity. Beitr. Wirkstofforsch; 1985, Vol. 25, and references cited therein. (a) Wang, C-LJ..; Taylor, T.L.; Mical, A.J.; Spitz, S.; Reilly, T.M. Tetrahedron Lett. 1992, 33, 7667. (b) Yuan, C.; Chen, S. Synthesis 1992, 1124. (c) Peyman, A.; Budt, K-H.; Spaning, J.; Stowasser, B.; Ruppert, D. Tetrahedron Lett., 1992, 33, 4549. (d) Soloka, M.; Liebigs Ann. Chem. 1990, 331. (e) Bartlett, P.; Giannousis, P.P. J. Med. Chem., 1987, 30, 1603.
- For a review see, Dhawan, B.; Redmore, D. Phosphorus and Sulfur 1987, 32, 119. (a) Huber, R.; Knierzinger, A.; Obrecht, J.-P.; Vasella, A. Helv. Chim. Acta 1985, 68, 1730. (b) Schollkopf, U.; Schutze, R. Liebigs Ann. Chem. 1987, 45. (c) Bartlett, P.A.; McLaren, K.; Phosphorus & Sulfur, 1987, 33, 1. (d) Hayashi, T.; Ito, Y.; Sawamura, M. Tetrahedron Lett, 1989, 17, 2247. (e) Steglich, W.; Sting, M., Synthesis, 1990, 132. (f) Bennani, Y.L.; Delorme, D.; Hanessian, S. Tetrahedron Lett. 1990, 31, 6461. (g) Denmark, S.E.; Chatani, N.; Pansare, S.V. Tetrahedron 1992, 48, 2191. (i) Shibuya, S.; Yokomatsu, T. Tetrahedron Asymmetry 1992, 2, 377. (j) Kunz, H. Synthesis 1992, 90. Bennani, Y.L.; Hanessian, S.; Hervè, Y. Synlett, 1993, 35. (k) Shatzmiller, S.; Neidlein, R.; Weik, C. Liebigs Ann. Chem. 1993, 955. (m) Gordon, N. J.; Evans, S.A. J. Org. Chem. 1993, 58, 5293. (n) Sum, V.; Kee, T.P. J. Chem. Soc. , Perkin Trans. 1 1993, 2701. (o) Yager, K.M.; Taylor, C.M.; Smi th, A.B. III J. Am. Chem. Soc. 1994, 116, 9377. (p) Rath, N.P.; Spilling, C.D. Tetrahedron Lett. 1994, 35, 227. (q) Blazis, V.J.; Koeller, K.J.; Spilling, C.D. J. Org. Chem. 1995, 60, 931. (r) Cabella, G.; Jommi, G.; Pagliarin, R.; Sello, G.; Sisti, M. Tetrahedron 1995, 51, 1817. (s) Garcia-Barradas, O.; Juaristi, E. Tetrahedron 1995, 51, 3423. (t) Hubert, C.; Munoz, A.; Garrigues, B.; Luche, J.-L. J. Org. Chem. 1995, 60, 1488. (u) Blazis, V.J.; Koeller, K.J.; Spilling, C.D. J. Org. Chem. 1995, 60, 931. (v) Sasai, H.; Arai, S.; Tahara, Y.; Shibasaki, M. J. Org. Chem. 1995, 60, 6656.
- Y.; Shibasaki, M. J. Org. Chem. 1995, 60, 6656.
 (a) Bird, J.; De Mello, C.R.; Harper, P.G.; Hunter, J.D.; Karran, H.E.; Markwell, E.R.; Miles-Williams, J.A.; Rahman, S.S.; Ward, W.R. J. Med. Chem. 1994, 37, 158. (b) Janda, D.K. Pure & Appl. Chem. 1994, 66, 703 and references therein cited.
- 5 Malachowski, P.W.; Coward, K.J. J. Org. Chem. 1994, 59, 7616.
- (a) Sekine, M.; Nakajima, M.; Hata, T. Bull. Chem. Soc. Jpn. 1982, 54, 218. (b) Sekine, M.; Okimoto, K.; Yamada, K.; Hata, T. J. Org. Chem. 1981, 46, 2097 and Ref. therein cited. (c) Hammerschmidt, F.;

Vollenkle, H. Liebigs Ann. Chem. 1989, 577. (d) Hammerschmidt, F.; Vollenkle, H. Liebigs Ann. Chem. 1991, 469. Hammerschidt, F.; Kahlig, H. J. Org. Chem. 1991, 56, 2364. (e) Yokomatsu, T.; Yoshida, Y.; Shibuya, S. J. Org. Chem. 1994, 59, 7930. (f) Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2931. (g) Yokomatsu, T.; Yoshida, Y.; Suemune, K.; Yamagishi, T.; Shibuya, S. Tetrahedron Asymmetry 1995, 6, 365.
(a) Hammerschmidt, F.; Bovermann, G.; Bayer, K. Liebigs Ann. Chem. 1990, 1055. (b) Seebach, D.; Chem. Provide Rev. Chem. 1990, 22, 401 (c)

- (a) Hammerschmidt, F.; Bovermann, G.; Bayer, K. Liebigs Ann. Chem. 1990, 1055. (b) Seebach, D.; Charczuk, R.; Gerber, C.; Renaud, P.; Berner, H.; Schneider, H. Helv. Chim. Acta, 1989, 72, 401. (c) Baylis, E.K.; Campbell, C.D.; Dingwoll, J.D. J. Chem. Soc., Perkin Trans. 1, 1984, 2845. (d) Kitamura, M.; Tokunaga, M.; Pham, T.; Lubell, W.D.; Noyori, R. Tetrahedron Lett. 1995, 36, 5769. (e) Kitamura, M.; Tokunaga, M.; Pham, T.; Lubell, W.D.; Noyori, R. Tetrahedron Lett. 1995, 36, 5769.
- 8 (a) Bandini, E.; Cainelli, G.; Giacomini, D.; Martelli, G.; Panunzio, M.; Spunta, G. NATO-ASI "Chemical Synthesis: Gnosis and Prognosys" 1996. In Press. (b) Panunzio, M.; Giacomini, D.; Bandini, E. Seminar in Organic Chemistry S.C.I. ed., 1993, pag. 47-69. (c) Bandini, E.; Cainelli, G.; Giacomini, D.; Martelli, G.; Panunzio, M.; Spunta, G. Biorganic and Medicinal Chem. 1993, 3, 2347. (d) Cainelli, G.; Panunzio, M.; Andreoli, P.; Martelli, G.; Spunta, G.; Bandini, E.; Giacomini, D. Pure & Applied Chem., 1990, 608 and References therein cited.
- ⁹ Bongini, G.; Camerini, R.; Hoffman, S.; Panunzio, M. Tetrahedron Lett. 1994, 43, 8045.
- (a) Čainelli, G.; Panunzio, M.; Bandini, E.; Martelli, G.; Spunta, G. Tetrahedron 1995, 51, 5067. (b)
 Cainelli, G.; Panunzio, M.; Bandini, E.; Martelli, G.; Spunta, G. Tetrahedron 1996, 52, 1685.
- 11 Wozniak, L.; Chojnowski, J. Tetrahedron 1989, 45, 2465.
- 12 The (S) configuration of the C-2 is unambiguously established since decomposition of the imine *prior* of the addition of the nucleophile gives a lactaldehyde presenting $[\alpha]_D$ value very close to that of the starting (S) lactaldehyde.
- (a) Bongini, A.; Panunzio, M.; Bandini, E.; Martelli, G.; Spunta, G. Synlett 1995, 461. (b) Bandini, E.; Martelli, G.; Spunta, G.; Panunzio, M. Tetrahedron: Asymmetry 1995, 6, 2127.
- 14 For the importance of TIPS group in organic chemistry see: Rucker, C. Chem. Rev. 1995, 95, 1009.
- 15 For review see: (a) Mitsunobu, O. Synthesis 1981, 1. (b) Hughes, D.L. Organic Reactions, ed. Paquette, L.A. et Al.; John Wilmey and Sons Inc.; New York-Chivhester-Brisbane-Toronto-Singapore 1992, 42, 335.
- 16 (a) Gajda, T.; Tetrahedron: Asymmetry 1994, 5, 1965. (b) Yokomatsu, T.; Yoshida, Y.; Shibuya, S. J. Org. Chem. 1994, 59, 7930.
- 17 Taber, D.F.; Deker, P.B.; Fales, H.M.; Jones, T.H.; Lloyd, H.A. J. Org. Chem. 1988, 53, 2968.
- 18 All attempts to improve the yield and consumption of the starting material failed.
- 19 Neeser, R.J.; Tronchet, J.M.; Charollais, J.E. Can. J. Chem. 1983, 61, 2112.
- 20 Arrowsmith, R.J. et Al. J. Chem. Soc., Chem. Commun. 1986, 755.
- 21 Engel, R. Org. React., John Wiley and Sons Inc.; New York-Chyvhester-Brisbane-Toronto-Singapore 1988, 36, 175.
- 22 Chen, X.; Hortelano, E.R.; Eliel, E.L.; Frye, S.V. J. Am. Chem. Soc. 1992, 114, 1778.
- (a) Reetz, M.T.; Kesseler, K.; Schmidtkerger, S.; Wendroth, B.; Steinbach, R. Angew. Chem. Int. Ed. 1983, 22, 989. (b) Reetz, M.T.; Hullmann, M. J. Chem. Soc., Chem. Commun. 1986, 1600. (c) Mikami, K.; Terada, M.; Nakai, T. J. Chem. Soc., Chem. Commun. 1993, 343.
- 24 Cases of "chelation controlled" carbonyl additions in the Lewis mediated addition of a neutral nucleophilic reagent (cf. Mukaiyama aldol reaction) are known. However mechanistic information on such reactions is limited. (a) Reetz, M.T.; Raguse, B.; Marth, C.F.; Hügel, H.M.; Bach, T.; Fox, D.N.A. *Tetrahedron* 1993, 48, 5731. Recently Cainelli reported a high syn diastereoselectivity in the addition of TMSCN to silylimines see: Cainelli, G.; Giacomini, D.; Treré A.; Galletti, P. Tetrahedron Asymmetry 1995, 6, 1593.
- 25 Denmark, S.E.; Griedel, B.D.; Coe, D.M.; Schnute, M.E. J. Am. Chem. Soc. 1994, 116, 7026.
- 26 Kobayashi, S.; Nishio, K. J. Org. Chem. 1994, 59, 6620.
- 27 (a) Myers, A.G.; Widdowson, K.L.; Kukkola, P.J. J. Am. Chem. Soc. 1992, 114, 2765. (b) Myers, A.G.; Kephart, S.E.; Chen, H. J. Am. Chem. Soc. 1992, 114, 7922.
- 28 Sakurai, H. Synlett 1989, 1, 1
- 29 Williams, E.A. In *The Chemistry of Organic Silicon Compounds* Patai, S., Ed.; John Wiley and Sons, Inc.; New York, 1989; Part 1, p.511. A recent paper on this topic appeared: Gung, B.W.; Zhu, Z.; Fouch, R.A. J. Org. Chem. 1995, 60, 2860.
- 30 Gaussian 92, Revision B, Frisch, M.J.; Trucks, G.W.; Head-Gordon, M.; Gill, P.M.W.; Wong, M.W.; Foresman, J.B.; Johonson, B.G.; Schlegel, H.B.; Robb, A.M.; Replogle, E.S.; Gomperts, G.; Andres, J.L.; Raghavachari, K.; Binkley, J.S.; Gonzalez, C.; Martin, R.L.; Fox, D.J.; Defrees, D.J.; Baker, J.; Stewart, J.J.P. and Pople, J.A. Gaussian, Inc., Pittsburgh PA, 1992.
- 31 Corriu, R.J.P. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; Part 2, Chapter 20.

- (a) Bernardi, F.; Bongini, A.; Cainelli, G., Robb, M.A.; Suzzi Valli, G. J. Org. Chem. 1993, 58, 750. (b) Bongini, A.; Giacomini, D.; Panunzio, M.; Suzzi Valli, G.; Zarantonello, P. Spectrochimica Acta 1995, 511, 522 32 51A, 563.
- 33
- 34 35
- A paper on this topic is currently in preparation. Afarinkia, K.; Rees, W. C.; Cadogan, J.I.G.*Tetrahedron*, **1990**, *46*, 7175. Evans, D.A.; Hurst, K.M. and Takacs, J.M. J. Am. Chem. Soc. **1978**, *100*, 3467.

(Received in UK 4 March 1996)