## Tetrahedron Letters 53 (2012) 3630-3632

Contents lists available at SciVerse ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet



# Facile syntheses of 2-substituted 3-cyanochromones

K. S. Levchenko<sup>a,\*</sup>, I. S. Semenova<sup>b</sup>, V. N. Yarovenko<sup>b</sup>, P. S. Shmelin<sup>a</sup>, M. M. Krayushkin<sup>b</sup>

<sup>a</sup> Central Science Research Institute of Technology Technomash', 4 Ivana Franko St., Moscow 121108, Russia
<sup>b</sup> N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Pr., Moscow 119991, Russia

#### ARTICLE INFO

## ABSTRACT

A simple and general route to 3-cyanochromones containing various substituents on position 2 of the ring is developed. The method is based on condensation of 3-(2-hydroxyphenyl)-3-oxopropionitrile with acid chlorides or anhydrides in pyridine at room temperature.

© 2012 Elsevier Ltd. All rights reserved.

Article history: Received 30 March 2012 Revised 26 April 2012 Accepted 3 May 2012 Available online 11 May 2012

## Keywords:

2-Substituted 3-cyanochromones 3-(2-Hydroxyphenyl)-3-oxopropionitrile 3-Hetaryl-2-(2-hydroxybenzoyl) acrylonitriles Acylation

3-Cyanochromones are of interest as antifungal agents<sup>1</sup> and novel telomerase inhibitors.<sup>2</sup> In addition, they are precursors of a number of 2-substituted chromone-3-carboxylic acids,<sup>3</sup> which are known as inhibitors of p56lCk tyrosine kinase,<sup>4</sup> and chromone-3-carbaldehydes,<sup>5</sup> which exhibit cytotoxic, anti-Helicobacter pylori, urease inhibitory, and anti-HIV activity.<sup>6</sup> The presence of the cyano group at position 3 allows further functionalization of chromones or the design of new heterocyclic compounds.<sup>7-10</sup>

Several routes to 3-cyanochromones are described in the literature, however, these methods only enable the synthesis of products with a limited set of substituents, particularly, at position 2 of the chromone. For example, 3-cyano derivatives were synthesized by substitution of chlorine in 3-chloro-2-phenylchromones with copper cyanide.<sup>2,11–13</sup> These reactions proceeded under reflux in Nmethylpyrrolidone at 200-220 °C, and were limited by the availability of 3-halochromones. 3-Cyanochromones can also be synthesized by cyanation of 2-alkyl-3-bromochroman-4-ones with the use of the SmI<sub>2</sub>/KHMDS/TsCN system at -78 °C, followed by oxidation of the resulting 2-alkyl-3-cyanochroman-4-ones with DDQ on reflux in 1,4-dioxane for 12 h to give 2-alkyl-3-cyanochrom-4-ones.<sup>14</sup> 2-Unsubstituted 3-cyanochromones were synthesized by refluxing a benzene solution of sulfuric acid and O-methyl oximes, which were produced by the reaction of chromone-3-carbaldehydes with O-methylhydroxylamine.<sup>15</sup>

In 2003, a method was developed for the synthesis of 3-cyano-2phenylchromones (in 35–65% yields) involving the reaction of  $\beta$ -bromo- $\alpha$ -alkylthiocinnamonitriles with various substituted methyl salicylates followed by treatment with AlCl<sub>3</sub>/PhNO<sub>2</sub> at 150 °C.<sup>5</sup> It should be noted that methods for the synthesis of 3-cyanochromones containing heterocyclic moieties at position 2 are lacking in the literature.

In the present study, we report a simple and general route to various 2-substituted 3-cvanochromones containing alkyl, aryl, or heterocyclic substituents at position 2 (Scheme 1). In the first step, readily available 2'-hydroxyacetophenone was converted into the corresponding dimethylaminomethylene derivative 2 in quantitative yield under reflux in DMF-DMA. Compound 2 was then refluxed in ethanol with hydroxylamine hydrochloride to give 2-(isoxazol-5-yl)phenol 3 in 80% yield. Upon treatment with aqueous-ethanolic NaOH solution at room temperature, the isoxazole ring in compound **3** was cleaved to form 3-(2-hydroxyphenyl)-3-oxopropionitrile (4) in 75% yield.<sup>16</sup> The synthesis of target nitriles **6a,b** was performed according to a method previously used by us for the synthesis of 3-acyl-2-hetarylchromones 10.17,18 In this method, β-diketone 7 (Scheme 2) underwent an aldol condensation with various aldehydes at room temperature or with slight heating to form a mixture of compounds 8 and 9, which give 3acyl-2-substituted chromones 10 upon oxidation with selenium dioxide in refluxing 1,4-dioxane. Using this approach we prepared condensation products 5 in 70-80% yield. The latter were easily oxidized to give compounds 6 in 52-75% yield.

It should be noted that the aldol condensation of aldehydes with nitrile **4** is complete in 15 min at room temperature,<sup>19</sup> which is much faster<sup>20</sup> compared to the corresponding reaction with diketones **7**, which is complete within 6–12 h. This fact is indicative of



<sup>\*</sup> Corresponding author. Tel.: +7 499 144 6835; fax: +7 499 144 7595. *E-mail address:* ntc\_technology@socket.ru (K. S. Levchenko).

<sup>0040-4039/\$ -</sup> see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.05.031



Scheme 1. Reagents and conditions: (i) DMF-DMA reflux, 1 h; (ii) NH<sub>2</sub>OH·HCl, EtOH, reflux, 2 h; (iii) NaOH, EtOH/H<sub>2</sub>O (1:3), rt 24 h; (iv) thiophene-2-carboxaldehyde or furfural, piperidine, EtOH, rt, 15 min; (v) SeO<sub>2</sub>, 1,4-dioxane, reflux.



Scheme 2. Reagents and conditions: (i) R<sup>2</sup>CHO, piperidine, EtOH, rt (6-12 h) or heating (0.5-3 h); (ii) SeO<sub>2</sub>, 1,4-dioxane, reflux.



Scheme 3. Reagents and conditions: (i) RCOCl, pyridine, rt 1-3 h.

the higher activity of the methylene group in nitrile derivatives **4** compared to that in diketones **5**. This encouraged us to synthesize esters **11** in expectation of spontaneous cyclization to cyanochromones **6a–l** (Scheme 3).

In fact, the acylation of nitrile **4** with acid chlorides in pyridine at room temperature afforded the target nitriles in 49–90% yields. It should be noted that the reaction products did not require chromatographic purification and pure products could be obtained by simple crystallization, for example, from ethanol. The method is

#### Table 1

Isolated yields and melting points of compounds 6a-la.

| Entry | R                                  | Product | Mp (°C) | Yield (%)            |
|-------|------------------------------------|---------|---------|----------------------|
| 1     | Furan-2-yl                         | 6a      | 166-168 | 82                   |
| 2     | Thien-2-yl                         | 6b      | 198-200 | 64                   |
| 3     | 5-Methylthien-2-yl                 | 6c      | 149-151 | 60                   |
| 4     | Ph                                 | 6d      | 165-166 | 90                   |
| 5     | 2-Cl-C <sub>6</sub> H <sub>4</sub> | 6e      | 150-152 | 67                   |
| 6     | 4-Cl-C <sub>6</sub> H <sub>4</sub> | 6f      | 203-205 | 78                   |
| 7     | $2-F-C_6H_4$                       | 6g      | 189-191 | 63                   |
| 8     | $4-F-C_6H_4$                       | 6h      | 209-211 | 70                   |
| 9     | 2-Me-C <sub>6</sub> H <sub>4</sub> | 6i      | 165-167 | 61                   |
| 10    | Me                                 | 6j      | 192-194 | 65 (70) <sup>b</sup> |
| 11    | Et                                 | 6k      | 123-125 | (54) <sup>b</sup>    |
| 12    | CH <sub>2</sub> Ph                 | 61      | 189-190 | 49                   |
|       | -                                  |         |         |                      |

<sup>a</sup> The corresponding acid chloride (1.05 mmol) was added to nitrile **4** (1 mmol) in pyridine (1.5 mL). After stirring at rt, the mixture was poured into water. The precipitate that formed was washed with water, dried, and if required, crystallized from ethanol.

<sup>b</sup> The yields in the acylation with the use of acid anhydrides under reflux conditions are given in parentheses. versatile and enabled the synthesis of various 3-cyanochromones **6a–I**, including previously unavailable 2-hetaryl-substituted examples **6a–c**, in good to high yields (Table 1).

In summary, we have developed a general and simple method for the synthesis of a range of 2-alkyl-, 2-aryl-, and 2-hetaryl-3cyanochromones in good to excellent yields. The method does not require the use of expensive reagents or chromatographic purification of the reaction products.

### Acknowledgements

The authors are grateful to OJSC CSRIT «Technomash» for financial support, and Dr. E. P. Grebennikov and Dr. A. U. Bochkov for helpful suggestions.

## Supplementary data

Supplementary data (characterization data of synthesized compounds) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012.05.031. These data include MOL files and InChiKeys of the most important compounds described in this article.

### **References and notes**

- 1. Lassagne, F.; Bombarda, I.; Dherbomez, M.; Sinbandhit, S.; Gaydou, E. M. *Heterocycles* **2006**, 68, 787–799.
- Menichincheri, M.; Ballinari, D.; Bargiotti, A.; Bonomini, L.; Ceccarelli, W.; D'Alessio, R.; Fretta, A.; Moll, J.; Polucci, P.; Soncini, C.; Tibolla, M.; Trosset, J.-Y.; Vanotti, E. J. Med. Chem. 2004, 47, 6466–6475.
- Klutchko, S. B.; Von Strandtmann, R. E. M. US Patent 3937837, 1976; Chem. Abstr. 1976, 84, 180040.
- Cushman, M.; Nagarathnam, D.; Burg, D. L.; Geahlen, R. L. J. Med. Chem. 1991, 34, 798–806.
- 5. Lassagne, F.; Pochat, F. Tetrahedron Lett. 2003, 44, 9283–9285.
- 6. Sakagami, H.; Kawase, M.; Wakabayashi, H.; Kurihara, T. In vivo 2007, 21, 829-834.
- Sosnovskikh, V. Y.; Moshkin, V. S.; Kodess, M. I. Tetrahedron Lett. 2009, 50, 6515–6519.
- 8. Ibrahim, M. A. Synth. Commun. 2009, 39, 3527-3545.
- Nohara, A.; Kuriki, H.; Saijo, T.; Sugihara, H.; Kanno, M.; Sanno, Y. J. Med. Chem. 1977, 20, 141–145.
- 10. Ghosh, C. K.; Sahana, S. Indian J. Chem., Sect. B **1996**, 35, 203–206.
- 11. Newman, M. S.; Ferrari, J. L. Tetrahedron Lett. 1962, 3, 199-201.

- 12. Newman, M. S.; Ferrari, J. L.; Garg, C. P. J. Heterocycl. Chem. 1964, 176-178.
- 13. Patonay, T.; Ltvai, A. Arch. Pharm. 1994, 327, 181-186.
- 14. Menichincheri, M.; Ballinari, D.; Bargiotti, A.; Bonomini, L.; Luthman, W.; Hilmersson, G. Org. Lett. **2010**, *12*, 2210–2213.
- Hsung, R. P.; Zificsak, C. A.; Wei, L.-L.; Zehnder, L. R.; Park, F.; Kim, M.; Tran, T.-T. T. J. Org. Chem. 1999, 64, 8736–8740.
- 3-(2-Hydroxyphenyl)-3-oxopropanenitrile (4). Mp 108–109 °C. <sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>): δ 11.36 (s, 1H), 7.54–7.58 (m, 2H), 6.94–7.05 (m, 2H), 4.17 (s, 2H). <sup>13</sup>C NMR (75.47 MHz, CDCl<sub>3</sub>): δ 192.68 (C=O), 162.76 (C-OH), 138.18 (C-4'), 129.45 (C-6'), 119.80 (C-5'), 119.2 (C-3'), 117.70 (C-1'), 113.40 (CN), 29.70 (C-2).
- Levchenko, K. S.; Barachevski, V. A.; Yarovenko, V. N.; Krayushkin, M. M.; Semenova, I. S.; Kobeleva, O. I.; Valova, T. M.; Shmelin, P. S. *Chem. Heterocycl. Compd.* **2011**, 47, 155–165.
- Krayushkin, M. M.; Levchenko, K. S.; Yarovenko, V. N.; Zavarzin, I. V.; Barachevsky, V. A.; Puankov, Y. A.; Valova, T. M.; Kobeleva, O. I. Arkivoc 2009, ix, 269–283.
- 19. General procedure for the preparation of **5**: One drop of piperidine was added to a mixture of ketonitrile **4** (322 mg, 0.2 mmol) and furfural (0.2 g,

0.208 mmol) or thiophene-2-carboxaldehyde (0.24 g, 0.208 mmol) in EtOH. After stirring for 15 min, the precipitate that formed was filtered, washed with cold EtOH, and dried in air. A pure yellow product was obtained.

3-Furan-2-yl-2-(2-hydroxybenzoyl)acrylonitrile (**5a**). Yield 380 mg (80%); mp 118–120 °C. <sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>):  $\delta$  11.34 (s, 1H), 8.11 (d, *J* = 8.1 Hz, 1H), 7.96 (s, 1H), 7.81 (s, 1H), 7.53–7.58 (m, 2H), 7.07 (d, *J* = 8.4 Hz, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 3.1 Hz, 1H).

2-(2-Hydroxybenzoyl)-3-(thien-2-yl)acrylonitrile (**5b**). Yield 70%; mp 112–114 °C. <sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>): 11.33 (s, 1H), 8.28 (s, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 3.4 Hz, 1H), 7.87 (d, J = 4.8 Hz 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.28 (m, 1H), 7.08 (d, J = 8.5 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H).

General procedure for the oxidation of **5**.  $SeO_2$  (2 mmol) was added to a solution of **5a** or **5b** (1 mmol) in 1,4-dioxane and the resulting mixture was refluxed until completion of the reaction (TLC monitoring). Column chromatographic separation afforded products **6a** and **6b** in 75% and 52% yields, respectively.

20. Huffman, K. R.; Kuhn, C. E.; Zweig, A. J. Am. Chem. Soc. 1970, 599-605.