Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of cyclicsulfonamide derivatives as 11β-hydroxysteroid dehydrogenase 1 inhibitors

Se Hoan Kim^a, Ravirala Ramu^b, Sung Wook Kwon^a, Su-Hee Lee^b, Chi Hyun Kim^b, Seung Kyu Kang^b, Sang Dal Rhee^b, Myung Ae Bae^b, Sung Hoon Ahn^b, Duck Chan Ha^a, Hyae Gyeong Cheon^b, Ki Young Kim^{b,*}, Jin Hee Ahn^{b,*}

^a Department of Chemistry, Korea University, Seoul 121-742, Republic of Korea ^b Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon 305-600, Republic of Korea

ARTICLE INFO

Article history: Received 13 October 2009 Revised 20 November 2009 Accepted 7 December 2009 Available online 11 December 2009

Keywords: 11β-Hydroxysteroid dehydrogenase 1 Cyclic sulfonamide Diabetes Inhibitor

ABSTRACT

A new series of cyclic sulfonamide derivatives was synthesized and evaluated for their ability to inhibit 11 β -HSD1. Cyclic sulfonamides with phenylacetyl substituents at the 2-position showed nanomolar inhibitory activities. Among them, compound **4e** exhibited a good in vitro inhibitory activity and selectivity toward human 11 β -HSD2.

© 2009 Elsevier Ltd. All rights reserved.

11 β -Hydroxysteroid dehydrogenase type 1 (11 β -HSD1) is an endoplasmic reticulum-associated enzyme that acts as NADPH-dependent reductase and converts inactive cortisone to the active glucocorticoid cortisol (Fig. 1).¹

The connection between 11 β -HSD1 and type 2 diabetes has been demonstrated in mouse genetic models. Mice overexpressing 11 β -HSD1 in adipose showed metabolic syndrome-like phenotypes such as central obesity, glucose intolerance, and insulin resistance.^{2,3} In contrast, 11 β -HSD1 deficient mice were resistant to the development of high-fat diet-induced obesity and exhibited improved insulin sensitivity and lipid profiles.^{4,5} These data suggest that 11 β -HSD1 could be a drug target for the treatment of metabolic syndrome as well as type 2 diabetes.

During the last few years, small molecule inhibitors for 11 β -HSD1 have been reported,^{6–11} and Incyte and Amgen's compounds are in clinical trials. Although a number of small molecule inhibitors were introduced, the discovery of a new scaffold is still very important. Therefore, the search for new 11 β -HSD1 inhibitor through high throughput screening (HTS) using the chemical library of Korea Chemical Bank was performed and compound **1a**¹² was discovered as a hit (Fig. 2).

We now wish to report the synthesis of cyclic sulfonamide derivatives and their biological study for 11β -HSD1 inhibitors. A

series of cyclic sulfonamide derivatives was synthesized according to Schemes 1–3. Saccharin sodium salt **2** was reacted with α -bromo ketone or ester in DMF to provide the alkylated product **3**. It is on reaction with sodium in ethanol resulted ring expansion to provide compound **1** (including hit **1a**, R¹ = phenyl) and its derivatives, which were further derivatized with diverse alkyl halides and α -halo ketones to result in the coupled product **4** (Scheme 1).

Figure 1. The role of 11β-HSD1 between cortisone and cortisol.

Figure 2. Chemical structure of compound 1a.

^{*} Corresponding authors. Tel.: +82 42 860 7076 (J.H.A.). *E-mail address:* jhahn@krict.re.kr (J.H. Ahn).

Scheme 1. Reagents and conditions: (a) $BrCH_2COR^1$ (R^1 = methyl, phenyl, OEt), DMF, 100 °C, 4 h (78–88%); (b) Na, EtOH, reflux, 4 h (53–60%); (c) 1 M NaOH, X– R^2 (R^2 = methyl, benzyl, phenethyl, CH₂COAr), room temperature, 12 h (47–60%).

Scheme 2. Reagents and conditions: (a) bromoacetophenone, K_2CO_3 , acetone, room temperature, 3 h (71%); (b) trifluoromethanesulfonic anhydride, pyridine, CH_2Cl_2 , room temperature, 2 h (90%); (c) 3,4-methylenedioxyphenyl boronic acid, K_2CO_3 , Pd(PPh₃)₄, toluene/DMF, reflux, 2 h (75%).

As shown in Scheme 2, compound **4** was further derivatized with α -bromoacetophenone to give the O-alkylated compound **5**. Also, compound **4** was converted to triflate **6**, followed by Suzuki reaction with a boronic acid derivative to give **7**.

Compound **4** ($\mathbb{R}^1 = OEt$, $\mathbb{R}^2 = CH_2COPh$) was converted to carboxylic acid or amide derivatives (Scheme 3). Benzylation of compound **4** followed by treatment with lithium hydroxide afforded the corresponding acid **8**. The compound **8** was directly converted to the carboxylic acid **10** under acidic debenzylation condition or amidated with aniline or benzyl amine to give amide derivatives, followed by debenzylation under acidic condition afforded the corresponding amide **9**.

In vitro inhibition activity of 11 β -HSD1 was assessed by a HTRF cortisol assay. Human microsomes were incubated with cortisone, NADPH, and chemical compound. The IC₅₀ values of compounds were determined from concentration-dependent inhibition curves. Carbenoxolone was used as a reference compound.¹³

Scheme 3. Reagents and conditions: (a) benzyl bromide, K_2CO_3 , toluene, 100 °C, 12 h (80%); (b) LiOH, THF/EtOH/H₂O, room temperature, 6 h (90%); (c) aniline or benzyl amine, EDCI, DMAP, CH₂Cl₂, room temperature, 12 h (41–53%); (d) 15% aq HCl/dioxane, reflux, 3–6 h (60–85%).

 Table 1

 In vitro 11β-HSD1 inhibitory activity of cyclic sulfonamide derivatives

^a IC₅₀ values were determined by GraphPad Prism software.

A high throughput screen was conducted to discover new 11 β -HSD1 inhibitors. Cyclic sulfonamide **1a** was identified as a hit with an IC₅₀ value of 14.8 μ M. First, the substituent effects of cyclic sulfonamide at the 2-, 3-, and 4-position were evaluated as shown in Table 1. N-Methylated cyclic sulfonamide (**4a**, IC₅₀ = 0.388 μ M) was shown to have a nearly 50-fold greater potency than that of the hit compound **1a**. However, further O-alkylated compound **5** and 3,4-methyldioxyphenyl substituent at the 4-position **7** exhibited decrease of in vitro activities. Also, substitution of benzoyl moiety to ester (ethyl ester) at the 3-position **1b** and **4b** led to decrease in vitro potency.

Next, the substituent effect at the 2-position was further evaluated as shown in Table 2. The methyl analogue **4a** showed an IC_{50} value of 388 nM. Benzyl and phenethyl derivative (**4c** and **4d**) had an approximately twofold greater potency than the methyl substituent (254 and 234 nM, respectively). Furthermore, compound **4e** having phenylacetyl group at the 2-position exhibited a good in vitro potency with an IC_{50} value of 31 nM. The phenylacetyl group at the 2-position was fixed, and other substituent effects were studied and the results were summarized (Table 3). Substitution of the benzoyl group to the acetyl group (**4f**) at the 3-position resulted in a loss of activity. Also the masking of OH at the 4-position showed a decrease of in vitro potency (**6**). An introduction of acid derivative at the 3-position was found to be detrimental (**4g-4j**). Compound **4e** was still the most potent, therefore a further modification at the 2-position was performed.

The substituent effect on the phenyl group at the 2-position, mouse 11β -HSD1 inhibition potency, selectivity, metabolic stability, and PK study were investigated (Table 4). Compound **4e** and other phenyl derivatives (**4k**-**4n**) except acid substituent (**4o**) showed good in vitro activities toward human 11β -HSD1 with IC₅₀ values in the range of 28–40 nM. On the other hand, toward

Table 2

וו אוניס דו א-חאבר אוווווסונסרע מכנועונע סו כעמ	ciic suifonamide derivatives
---	------------------------------

^a IC₅₀ values were determined by GraphPad Prism software.

Table 3

In vitro	118-HSD1	inhibitory	activity	of	vclic	sulfona	mide	derivatives	
III VILIO	110-11301	mmultur	activity	UI U	VUIU	Sunone	unuc	utilvativts	

Compound	Structure	$IC_{50}^{a}(\mu M)$
4e		0.031
4f		Not active 18% at 10 µM
6		0.74
4g		3.0
4h		Not active 24% at 10 µM
4i	OH O H H H H H H	Not active 21% at 10 µM
4j		Not active 38% at 10 µM
Carbenovolone		0.5

^a IC_{50} values were determined by GraphPad Prism software.

mouse 11 β -HSD1, compound **4e** was the most potent with a moderate inhibitory activity (7.8 μ M).

11β-HSD2 oxidizes cortisol to cortisone utilizing NAD as a cofactor and is primarily expressed in the kidney, colon, and other tissues.^{14,15} Inhibition of 11β-HSD2 might lead to sodium retention, hypokalemia, and hypertension,¹⁴ indicating that inhibitors for 11β-HSD1 must be selective over 11β-HSD2. Compound **4e** showed a good selectivity against human 11β-HSD2 enzyme. Also,

Table 4

In vitro inhibition, metabolic stability, hERG and PK study of cyclic sulfonamide derivatives

Compound	Structure	hHSD1 IC ₅₀ ª (µM)	mHSD1 IC ₅₀ ª (µM)	hHSD2 IC ₅₀ ª (µM)	Microsomal stability $(t_{1/2})$	hERG	РК
4e		0.031	7.8	6% at 20 µM	Human 74.88 min	>100 µM	PO $C_{max} = 1.1$ $\mu g/mL$ $t_{1/2} = 5.5$ h Cl (L/h/ Kg) = 0.4 F = 48.7%
4k		0.028	36% at 10 µM	NT ^b	NT	NT	
41		0.030	38% at 10 µM	NT	NT	NT	
4m		0.031	43% at 10 μM	NT	NT	NT	
4n		0.040	9.0	NT	NT	NT	
40		0.72	9.7% at 10 µM	NT	NT	NT	
Carbenoxolone	and determined by Court Did Date of C	0.5					

C₅₀ values were determined by GraphPad Prism software

^b Not tested.

4e was moderately stable in human liver microsomes and exhibited no binding with hERG (>100 µM). The rat PK profiles of compound 4e showed moderately good systemic exposure and oral bioavailability with an acceptable clearance and half-life.

pound 4e showed good in vitro activity and selectivity. Further investigation for increasing both human and mouse 11β-HSD1 inhibition activity is in progress.

In conclusion, we have identified a series of cyclic sulfonamide derivatives as 11β -HSD1 inhibitors through the screening of a small-molecule library. Our initial hit compound **1a** showed weak inhibitory activity. Significant improvements in potency were achieved by modification at the 2-position. The most potent com-

Acknowledgments

This research was supported by the Center for Biological Modulators of the 21st Century Frontier R&D Program, Ministry of Education, Science and Technology, Korea.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2009.12.035.

References and notes

- (a) Krozowski, Z. Mol. Cell. Endocrinol. 1992, 84, C25; (b) Kataoka, S.; Kudo, A.; Hirano, H.; Kawakami, H.; Kawano, T.; Higashihara, E.; Tanaka, H.; Delarue, F.; Sraer, J.-D.; Mune, T.; Krozowski, Z. S.; Yan, K. J. Clin. Endocrinol. Metab. 2002, 87, 877; Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Diabetes Care 2004, 27, 1047.
- 2. Masuzaki, H.; Paterson, J.; Shinyama, H.; Morton, N. M.; Mullins, J. J.; Seckl, J. R.; Flier, J. S. *Science* **2001**, *294*, 2166.
- Paterson, J. M.; Morton, N. M.; Fievet, C.; Kenyon, C. J.; Holmes, M. C.; Staels, B.; Seckl, J. R.; Mullins, J. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 7088.
- Morton, N. M.; Paterson, J. M.; Masuzaki, H.; Holmes, M. C.; Staels, B.; Fievet, C.; Walker, B. R.; Flier, J. S.; Mullins, J. J.; Seckl, J. R. Diabetes 2004, 53, 931.
- Kotelevtsev, Y.; Holmes, M. C.; Burchell, A.; Houston, P. M.; Schmoll, D.; Jamieson, P.; Best, R.; Brown, R.; Edwards, C. R. W.; Seckl, J. R.; Mullins, J. J. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 14924.
- 6. Wang, Z.; Wang, M. Curr. Chem. Biol. 2009, 3, 159.

- Siu, M.; Johnson, T. O.; Wang, Y.; Nair, S. K.; Taylor, W. D.; Cripps, S. J.; Matthews, J. J.; Edwards, M. P.; Pauly, T. A.; Ermolieff, J.; Castro, A.; Hosea, N. A.; LaPaglia, A.; Fanjul, A. N.; Vogel, J. E. *Bioorg. Med. Chem. Lett.* 2009, 19, 3493.
- Sun, D.; Wang, Z.; Cardoxo, M.; Choi, R.; DeGraffenreid, M.; Di, Y.; He, X.; Jaen, J. C.; Labelle, M.; Liu, J.; Ma, J.; Miao, S.; Sudom, A.; Tang, L.; Tu, H.; Srsu, S.; Walker, N.; Yan, X.; Ye, Q.; Powers, J. P. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 1522.
- Zhu, Y.; Olson, S. H.; Graham, d.; Patel, G.; Hermanowski-Vosatka, A.; Mundt, S.; Shah, K.; Springer, M.; Thieringer, R.; Wright, S.; Xiao, J.; Zokian, H.; Dragovic, J.; Balkovec, J. M. Bioorg. Med. Chem. Lett. 2008, 18, 3412.
- Johansson, L.; Fotsch, C.; Bartberger, M. D.; Castro, V. M.; Chen, M.; Emery, M.; Gustafsson, S.; Hale, C.; Hickman, D.; Homan, E.; Jordan, S. R.; Komorowski, R.; Li, A.; McRae, K.; Moniz, G.; Matsumoto, G.; Orihuela, C.; Palm, G.; Veniant, M.; Wang, M.; Williams, M.; Zhang, J. J. Med. Chem. **2008**, *51*, 2933.
- 11. Fotsch, C.; Wang, M. J. Med. Chem. 2008, 51, 4851.
- 12. Although this scaffold was reported by Toru, H.; Masatoshi, M.; Mariko, K. Japan Patent 2007197369, 2007, any biological data were not disclosed.
- Barf, T.; Vallgarda, J.; Emond, R.; Haggstrom, C.; Kurz, G.; Nygren, A.; Larwood, V.; Mosialou, E.; Axelsson, K.; Olsson, R.; Engblom, L.; Edling, N.; Ronquist-Nii, Y.; Ohman, B.; Alberts, P.; Abrahmsen, L. J. Med. Chem. 2002, 45, 3813.
- Tomlinson, J. W.; Walker, E. A.; Bujalska, I. J.; Draper, N.; Lavery, G. G.; Cooper, M. S.; Hewison, M.; Stewart, P. M. Endocr. Rev. 2004, 25, 831.
- 15. Stulnig, T. M.; Waldhausl, W. Diabetologia 2004, 47, 1.